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The non-vanishing of the deviations of a local ring

STEPHEN HALPERIN*

Let R be a local noetherian ring with maximal ideal » and residue field k.
Then (cf. [3], [6]) Tor% (k, k) has the structure of a free divided powers algebra
on a graded k-vector space V = @, V,. In particular the Poincaré series for R has
the form
. ﬁ (1 + t2j+1)dim Va1
>, [dim Torf (k, k)]’ =" (1)
i=0 H (1 _ t2j)dim vy,
=1

J

The integers e; =dim V, are called the deviations of R. The equation above
shows they are completely determined by the betti numbers dim TorF (k, k), and
conversely. Moreover ([1], [11], [12]) the Yoneda Ext-algebra, Extg(k, k), is
naturally the universal enveloping algebra of a graded Lie algebra Lz dual to V,
and hence

e;=dim L%, alli.

Let R denote the completion of R with respect to the powers of ». By the
Cohen structure theorem, R has the form R/I where R is a regular local
noetherian ring (with maximal ideal ) and I = »° We call R a weak complete
intersection if I is generated by a regular sequence.

Now in [3] Assmus proves the following

THEOREM A (Assmus). The following conditions are equivalent:
(i) R is a weak complete intersection.
- (i) ¢,=0, j=3.
(iii) e3=0.

* This research was carried out while the author was a guest at the University of Stockholm and
was in part supported by the Swedish Natural Sciences Research Council, and he expresses his
gratitude to both.
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This raised the question of whether or not any deviation could vanish if R was not
a weak complete intersection.

A first step was taken by Gulliksen [7], [8] who showed that infinitely many
e, must be nonzero for non weak complete intersections. Subsequently Avramov
and Halperin [S] showed that only finitely many e; could be zero. Moreover in
special cases (eg. Jacobsson [9], Lofwall [10]) it was known that no deviation was
zero.

In this paper we completely settle the question with

THEOREM B. Suppose R is not a weak complete intersection. Then no
deviation can vanish:

e(R)Z=1, izl

The rest of this paper is devoted to the proof of Theorem B, which depends
on a variation of an idea (special variables) of André [2], and an adaptation of
the minimal models of Avramov [4].

Our first observation is that betti numbers (and hence deviations are unchanged
if we complete R, and hence we may assume without loss of generality that
R =R/I, R regular, I c »?, as above. We make this assumption henceforth.

The next step is to build a suitable DGA model for R. This involves the
process, introduced by Tate [13], of “adjoining freely commuting variables”
which in our case may be either exterior, symmetric or divided power variables.
To simplify we shall use “X” to mean an exterior or symmetric variable and “Y”
to mean an exterior or divided power variable. More precisely we establish the
Notation convention. Let X;,...,X; (resp. Y;,...,Y;) denote symbols of
degrees p (resp., q). Denote by A(X), ..., X;) the symmetric (resp. exterior)
algebra on the free Z-module with basis X, if p is even (resp. odd). Denote by
r¢,...,Y) the free divided powers (resp. exterior) algebra on the free
Z-module with basis Y, if q is even (resp. odd).

Then, if A is any graded algebra (commutative in the graded sense) we adopt
the notation

AlX,, ..., X]=A®AX,, ..., X)
and
AlYy, ..., Y]=A®,I(Y,,... Y)

and we say we have adjoined variables X, (or Y,) to A.
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We now fix an integer g arbitrarily and construct a sequence A(0) c A(1) <
.-+ of DGA’s augmented to R. Indeed we set A(0)=R and let m:A(0)— R be

the quotient map. Then, choosing representatives xy,, . . . , X3, € I of a k-basis of
Ibe - I we set

A(l) =R[X11, LIRS | le]; Xmi =X

Extend & (uniquely) to A(1) by setting 7(X;) = 0. Then Hy(x): Hy(A(1)) > R.

Suppose by induction that A(k), 1=k=i—1, are constructed and satisfy
Hy(A(1)) = Hy(A(k)) and H,(A(k))=0, 1=I<k. Choose cycles z;,..., 2z,
representing a k-basis of H;_;(A(i — 1)) - H;_1(A(i — 1)) and define A(i) by

A(l) = {A(l - 1)[Xi1: R Xin,]; dX,-j = Zjj ifi< q.
AG—D[Y, ..., Yu);dY,=2z;ifiZq.

The differential in A(i) is then determined by the requirement that A(i) be a
DGA and (in the second case when i is even) that

d(Y’Yy) = z; ® YS_IYij, s=1,

y* denoting the divided power operations.

Finally, set A = lim A(i) and note that & extends uniquely to 7:A— R with

I

H(r):H(A)> R. We say A is a model for R with switching degree q.

PROPOSITION 1. -Let A be as above and set § =q if q is even and G =q + 1
if q is odd. Let m = dimm/m* = dim »7 /42, Then
(i) Forany oy, ..., @, €e H (k ® 44,-1)A), ap* - - *a,, =0.
(ii) The integers n; satisfy

n=e.,, 1=i<2q, and ny;= ey,

Proof. We construct inductively the commutative DGA diagram below in
which the vertical arrows induce homology isomorphisms. Indeed let yg,, ...,
Yom € # represent a basis of »7/»* and set: B(1)=A[yo, . . ., Yom); dYo; = yy;.
Because R is regular the augmentation R[Y,,, . . ., Y, ]— k induces an isomorph-
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B(0) — B(l) —> --- BG) -+ — B(q)

P Fooe

A ——"k®1§A —> "'k®A(i—l)A--- — k®A(q_|)A

ism of homology. Because B(1) is a free R[Yyy, - .., Yy,] module the induced
morphism

B(l)—)k@ﬁ[ym Yom] B(1)=k®§A

also induces an isomorphism of homology.
Suppose next that the diagram has been constructed up through B(i). Note that

k ®A(i—1)A = k[Xil’ cee, Xin,-][ ......... ]

Thus the X;; (I =j = n;) are cycles representing a basis of H;(k ® 4-1)A). Choose
cycles u;€B(i) mapping to the X; (1=j=n;) and set B(i+1)=
B()[Y:, ..., Yi]; dY; =u,. When i is odd set d(y'Y;) =u;; - ¥’ 'Y}.

We have then the sequence of DGA morphisms

B(l + 1) =B(i)[l’,1, e e ey Yini]
—(k ®A(i—1)A)[Yi1: v« 3 Fimg (inj = Xjj)

1

=k[Xi1, .o, Xiny Yir, -+, Y I+ ]
——)k®k[xtl"'yln,] k[Xil.”Yin,][. : ‘]
=k ®A(,‘)A.

The first arrow induces an isomorphism of homology because B(i) >k ® 4;-1)A
does, and the second induces an isomorphism of homology because
k[Xi1, ..., Yi,]— k does. This completes the construction of (2).

Again, because each B(i) is a free A-module and because A » R induces an

isomorphism H(A) = R it follows that for 0Si=q —1
B(l + 1)—")R ®A B(l -+ 1) =R[Y01, ceey Y,'n‘.]

induces an isomorphism of homology. In particular R ® 4 B(1) is just the Koszul
complex, K¥, and R®, B(i+1) is obtained from R®, B(i) by adjoining
a minimal number of exterior or divided power variables so as to Kkill
H,(R ®, B(i)). Thus by adjoining such variables in degrees >g¢q to R®, B(q),
we get Tate’s acyclic closure C, of R.

Now Gulliksen’s theorem [6] asserts that d(C)>»C. Since H,(C)=0 it
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follows that (ker d), =»C. Since C is a free R ® 4, B(q) module it follows that
(kerd). N (R®4 B(q)) cm @4 B(q).

The argument of Gulliksen [7; Lemma 1] now shows that the product of m + 1
homology classes in H, (R ®,4 B(q)) is zero — in view of the homology isomorph-
isms above this proves part (i) of the proposition.

Moreover, according to Gulliksen [6; Corollary 1], e; is the number of
variables in C of degree i. But for 1 =i <gq, the number of variables Y,; of degree
i+1isn; and so

n;,=e€;+1 1—§l<q. (3)

We complete the proof of part (ii) of the proposition by considering a model
A’ for R as above, but with switching degree 24 + 1. By (3), applied to A’, the
number of variables of degree j in A’ is e;,;, 1=j=24. Thus (ii) will be
established once we show that A’ has the same number of (resp., at least as
many) variables as A in degrees <24 (resp., 2G).

We may, clearly, take A'(q —1)=A(q —1). Suppose by induction that for
some r =q, A' and A have the same number of variables in degrees =r — 1, and
that there is a DGA morphism ¢ :A'(r —1)— A(r — 1) which is an isomorphism
in degrees <24.

If r <24 then H,_,(¢) is necessarily an isomorphism, and so we may choose
A'(r)=A'(r—-D[X,, ..., X,,] with H,_(¢):class (dX,;) — class (dY,;). Thus A’
and A have the same number of variables in degree r. Moreover, because the X,
are either polynomial or exterior variables, we may extend ¢ to a DGA
morphism ¢ : A'(r)— A(r) by setting ¢(X,;) = Y,;. Since

A(r)a;cA(r—1)® @™, A(r—1)- Y,

(and similarly for A’(r)) it follows that ¢ is an isomorphism in degrees < 24.

Finally, suppose r =24. Since ¢ is an isomorphism in degrees <24 it follows
that H,_,(¢) is surjective. In this case the number of variables of degree r to be
adjoined to A'(r — 1) is at least as large as the number adjoined to A(r —1). This
completes the proof. W

We now establish Theorem B by supposing e; # 0 and some ¢; =0 (i > 3) and
deducing a contradiction. Let s =3 be the least integer for which e;,, =0. There
are two cases.

Case I. s =2k + 1. Let A be a model for R as above with switching degree 2k.
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By Proposition 1 (ii),
ny=e>0 and n,,,=e,,1=0.

We construct a deg —2k derivation, 0, of the DGA, (A, d) such that
0(Yz,1)=1 and O(y'Yp1)=7"""Ya.. 4)
Indeed, (4), together with the conditions
0(A<)=0 and O6(y7Yy,) =0, i>1,

defines a derivation of the DGA, A(2k). Since n,,, is zero A(2k)=AQk +1).
Suppose 6 is extended to some A(j — 1), j — 1=2k + 1. Then 6(dY};) is a cycle in
A;_2c-1. Because j > (2k + 1) and because H,(A) =0 (since H(A) = R) it follows
that 8(dY;) = d®;, some D, € A;_,,.

Thus we may extend 0 to A(j) by setting

8(Y;) =@ (if j is odd)
and
0(y?Y,)=®,-y""'Y;, q=1, (ifjis even).

Finally, observe that 6 factors to give a derivation 0 of the DGAk ® Ak -1)A.
In this quotient DGA, the elements y?Y; ; are cycles. It follows from (4) that

éq(quNc,l) =1

and hence y?Y,. ., represents a non-zero homology class for each q. But if
chark=p or 0 then in k[Yy ], y'*P*P**P")(Y,.,) is a scalar multiple of
Yor1 ¥ (Yar1) - - - - ¥*"(Ya1). Thus this latter element also represents a non-
zero homology class, which contradicts part (i) of Proposition 1.

Case II. s =2k +2 (k=1). Again let A be a model for R as above with
switching degree 2k. By Proposition 1 (ii),

Ny =6€5_1> 0 and L (PT = Csr1 = 0. (5)

Let y1,..., ym €m represent a k-basis for » /=2 and consider the differential
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A-module (free as an A-module)
M=ABA-Y,D---BA-Y,; dY,=y,.

Now the quotient module M/A is isomorphic (as differential modules) with a
direct sum of copies of A shifted in degree by 1. Since H(A) = R is concentrated
in degree zero, H(M/A) is concentrated in degree 1. From the short exact
sequence A>—>M »M/A and that fact that y;,..., y, € Imd we deduce that
H(M) = Hy(M) @ H,(M), and that Hy(M) =k.

Using these facts we construct a derivation 6 of degree —2k from the DGA,
A, to the differential A-module M. (M is a right A-module via m-a=
(—1)%emdeeag . ) Indeed we set O(Ay ;) =0 and

Yq—lyzk,i i=1
0 i>1. ©6)

This defines 0 in A(2k).

Next, for each Y., we have 8(dY .., ;) €~ and hence 8(dY;41,) =dP;
for some @, € ®; R - Y. Extend 6 to A(2k + 1) by setting 0(Y o, +1,;) = P..

Now because of (5), A(2k + 1) = A(2k + 2). Assume we have extended 8 to
A(j—1), some j—1=2k+2. Then 6(dY;)e M;_ 5, and j—2k—1=2. Our
calculations above (H(M) = Hy(M) @ H,(M)) thus imply that 6(dY;)=d¥, and
we can extend 6 to A(j) by setting

0(r¥ar) = |

8(Y;) =¥, ifjis odd,
and
0(y'Y)=y""'(Yy)- ¥, q=1, ifjiseven.

Finally, we extend the projection A—>k®,or-1yA to a map p:M—
k®40k-1)A of differential A-modules by setting p(A - Y;) =0. The derivation
p° @ factors to yield a derivation 6 of the DGA k®,_1)4 and we obtain
a contradiction exactly as in case 1.
 This completes the proof. W
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