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Bounded domains with prescribed group of automorphisms

Eric Bedford* and Jiri Dadok*

§0. Introduction

By an automorphism of a complex manifold Q we mean a biholomorphic
mapping /: fi—&gt; fi. A classical resuit of H. Cartan (see [9]) states that for a

bounded domain fi cz Cn Aut (fi) has the structure of a Lie group. This is also the

case if fi is a relatively compact domain in a Stein manifold.
Let Q d Q be a relatively compact domain in a Stein manifold with a C2,

strongly pseudoconvex boundary. It is known [11] that if Aut (Q) is not compact
then fi is biholomorphic to an open unit bail in Cn. Thus the automorphism group
of such a domain is either SU{n, 1) or a compact Lie group. It is natural to ask

whether every compact group can appear as the automorphism group of such Q.
For the case of the trivial group G {id}, there are triply connected domains in
C with smooth boundary but with no nontrivial automorphisms. Finding
contractible strongly pseudoconvex domains QcC&quot;, n ^ 2 with Aut (fi) {id} is

less easy, but it is possible to take fi to be a small, smooth perturbation of the
bail Bn (see [4]). The next simplest case is G T1, the circle group. There is no
smoothly bounded Riemann surface M with Aut (M) T1, but an appropriate
domain may be constructed in C2 (Proposition 1.3). In this paper (Theorems 1, 2)
we show how to construct a smoothly bounded domain fi in C whose group of
biholomorphisms is any prescribed compact group G. If G is connected our
construction (§ 3) is quite explicit:

THEOREM 1. Let G be a connected compact Lie Group and Gc its

complexification. Then there existe a strongly pseudoconvex domain QcGc (or
fi c Gc x C in case the center ofGis one dimensionaï) with real analytic boundary
so that Aut (fi) G, acting by left translations.

The object in constructing ficGc is to keep it invariant under left
translations by G while ruling out additional symmetries. If G acts on a complex
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manifold M =£ Gc by biholomorphisms it may happen that no such QaM exists

(see example 3.0).
The following two theorems were first obtained by Saerens and Zame [12]

independently of our Theorem 1, but the proofs we give in §4 are shorter and

more elementary in nature.

THEOREM 2. Let G be any compact Lie group. Then there is a strongly
pseudoconvex domain £2 d= C&quot; with real analytic boundary such that Aut (Q) G.

THEOREM 3. Let G be a compact Lie group. Then there exists a surface
Z cUn which is an arbitrarily small smooth perturbation of the unit sphère
Sn~l cUn whose group of isometries is linear and isomorphic to G. Moreover, if
for some affine map TofUn TI I then TeGcz O(n)

Remark, The dimension n in the above two theorems may be taken to be

n k2 if G has a faithful action on Uk.

Note that while Theorem 2 applies to disconnected Lie groups it only gives
existence of required domains Q (typically with dim Q » dim G). Its proof cannot
be used to actually construct Q without prohibitive calculations.
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Notation

Let G be a compact group and p its Lie algebra. We choose a faithful
imbedding of G into some unitary group U(n). Thusy c= °U(ri) is a subalgebra of
skew Hermitian matrices. We set ^c =^ © ip and Gc c GL(nf C) the connected
Lie group corresponding to ^c. If G itself is connected then G c Gc as a totally
real submanifold of the Stein manifold Gc. If co cp is a small neighborhood of
0 ep then Q G • exp iw « G x co is a tubular neighborhood of G in G€. Hère

exp is the matrix exponential function. The groups L(G)t R(G)c Aut(Gc) are
the groups of left and right translations by G. If g € G, X, Y €y we, as usual,
define, Ad (g)X gXg&quot;1 and ad (X)(Y) XY-YX (matrix multiplication).
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§ 1. Ton

In this section we give examples of domains whose automorphism groups are
Tn. First we consider a Reinhardt domain QczC, i.e. Q is invariant under

(zlf f zn)-+ (e&apos;eizlf..., el6nzn) for du...,0neR. It is obvious that F1 is

contained in the automorphism group of a Reinhardt domain. The logarithmic
image of Q is

œ Log (fi) {(§„ ...,!„): {e\ ...,e**)e fi}. (1)

The automorphism group for certain Q is given as follows (see [1]).

THEOREM 1.1. If Q is a Reinhardt domain, and if Log(Û) is a bounded

convex domain in Rn, then Aut (£2) consists of transformations of the form

,...)cnzm-) (2)

where the matrix M with rows mlf mn belongs to GL(n, Z).

It is évident that a mapping of the form (2) will map Q to Q if and only if
T% M£ + log \c\ is an affine self-mapping of co.

COROLLARY 1.2. Let (oc:Rn be a bounded convex domain, and let QczCn
be the Reinhardt domain with Log {Q) a). If co has no nontrivial affine
self-mappingsf then Aut (Q) Tn.

If n^2, then it is clear that a &quot;generic&quot; domain co in IRn has no affine

self-mappings. This is not true for n 1, since every interval in IR has an (affine)
inversion.

Let DcCbea smoothly bounded triply connected domain with Aut (D) id.
Let 0 &lt; rx{z) &lt; r2(z) be continuous fonctions on D and set

fl= {(z, w) e D x C:rx(z) &lt; \w\ &lt;r2(z)}.

PROPOSITION 1.3. Let DcC be a smoothly bounded triply connected
domain with Aut (D) id. If we choose rx{z), r2(z) such that rx{z)r2{z) is not the
modulus of an analytic function on D, then with Q as above, Aut (Q) Tl.

It is clear that we may arrange for Q to hâve real analytic, strongly pseudo-
convex boundary.

For the proof we will use invariant 2-forms, as in [2]. We may choose au
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a2 e C such that

are linearly independent cohomology classes. If [Tj] is the set of holomorphic
2-forms cohomologous to Tr then there exists a unique coTi which minimizes the
L2-norm ||a&gt;|| | !q(o a o&gt;|1/2 over [7J]. We may write

Since T} is independent of the rotation (z, w)-+ (z, el6w), so is cor/. Thus

(oT =^(z)w~1 Jz a dw.

IffeAut(Q), then

/*(^). (3)

By the arguments above, (oTï/a)T2 m(z) is a nonconstant meromorphic function,
and the left hand side of (3) is another meromorphic function, rh(z). Thus writing
/(z, w) (/i(z, w), /2(z, w)) we hâve

m(z) m(/i(z, h&gt;))

and so/i(z, w) dépends on the variable z alone. We conclude, then, that/induces
a mapping of the vertical fibers Û2o={(z, w)e£2:z z0) of Q. Thus /! is an

automorphism of D, and therefore /i(z, w) z.

We conclude from this, that /2(z, w) must be an automorphism of the fiber

Qz {weC:rx{z)&lt;\w\&lt;r2(z)}.

Therefore either

or

/2(z, w) c(z)/iv.

In the first case, 9(z) 0O is constant, since it must be real-valued and

holomorphic. In the second case, however, c(z) is a holomorphic function and

ri(z) \c(z)\/r2(z).

which is a contradiction.
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§ 2. Simple and connectée! groups

Given a simple compact group G we construct (in Lemma 2.3) a domain

QczGc in the complexification of G and prove (Proposition 2.6) that the
connected component of the identity Aut (fi)0 G. At first we shall assume that
G is compact connected and semi-simple. Simplicity of G is necessary only in
Proposition 2.6.

The Killing form k(x, y) Tr(adjt ad y) is négative definite on ^, the Lie
algebra of G. In this section we shall use — jc as the inner product on^. This inner
product on the left invariant vector fields gives a biinvariant metric on G.

Let Aut (y) be the Lie group of Lie algebra automorphisjms of p, and
Ad (G) c Aut (^) be the image of G under the adjoint représentation i.e. the
inner automorphisms of y. Recall [7] that Aut (^)/Ad (G) is a finite group (of
order &lt;6 if &lt;p

is simple) and that each a e Aut (^) préserves the Killing form
which we will write as Aut (^) c= O(^), the orthogonal transformations on ^. If
/ € O(y) is the identity map we readily observe:

LEMMA 2.1. -/
We proceed to construct the domain QcGc. Let {eu...,ed} be an

orthonormal basis for p and let xl9..., xd be coordinates with respect to this
basis.

LEMMA 2.2. On y\{0} we may find a smooth function ip(x) with the

following properties:

ii) xp og ^ g 6 o(^) implies g ±/.

Proof. Let t/&gt;0(*) Ef=1 xf. Note that the maxima of tp0 on the unit sphère
d~l

cp are at ±et i 1, 2,..., d. Set v (1, 2, 3,..., d) and

For small enough e &gt; 0 there will be local maxima of ij&gt;€ at ±ët with êt very close

to en and with

(enë,)&gt;0 foralle,/. (4)

Further, it is clear that for small enough € we will hâve

V«(«i)*V«(*,), tf&apos;^y- (5)
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Thus if we fix c &gt; 0 with above properties and assume that xp€ °g xp€, g e &lt;

we obtain, using (5), that g(ët) ±ët. Finally, using (4), we must hâve g{ët) ët

or g(êt) -ët for ail i 1, 2,..., d.

LEMMA 2.3. There exists a domain co czy such that

ii) Q G - exp (i(o)Gc is strongly pseudoconvex and smoothly bounded.

iii) If oe Aut (^) and o(co) co, then o /.

Proof. Let VK*) be as in Lemma 2.2 and set

v. 1 1 J

From Lemmas 2.1 and 2.2 it follows that for e, ô &gt;0 properties i) and iii) hold.
For e » ô &gt; 0 sufficiently small property ii) holds as well.

For the next lemma we observe that any group automorphism h of G extends

to (a holomorphic) automorphism of Gc, hère denoted also by h.

LEMMA 2.4. Let Qbe as in Lemma 2.3. Suppose h, an automorphism of G,
and Xeco hâve the property that

Then X 0 and h is the identity automorphism.

Proof The differential dh e Aut (^) c Aut (^c). We thus hâve

h(cxp iY) exp (i dh(Y)), Y e?.

In Gc consider the curve y{i) exp itX. Since dh((o) -dh(co) it follows that

{t e R : y(0 6 fi} (-a, a), a &gt; 0

is a symmetric interval. Next we observe that if X^O the set

{t e U : y(0 € /îexp^oh{Q)) {teU: y{t) exp (-riQ e h{Q)}

{t€U:(t-l)Xedh((o)}
is of the form (-b + 1, fc + 1) and thus not symmetric. This contradiction shows
that X 0 and Lemma 2.3 then forces d/i /.

COROLLARY 2.5. Suppose RZ(Q) Qy z e Gc. Then z e Z(GC), the center

ofGc.
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Proof. Write z g exp iX, g e G, X e^. Since Lg-\{Q) Q we hâve that

RcxptXoh{Q)- Q, where h(x) g~lxg is an inner automorphism of G. Lemma
1.4 then implies that ^ 0 and gx=xg for ail x e G and thus, by extending
holomorphically, for ail x e Gc. D

PROPOSITION 2.6. Let G be a simple connectée Lie group and QcGcas
constructed in Lemma 2.3. Then the connectée component of the identity is

Aut {Q) L(G).

Proof, Recall that d dim G. Since Q c Gc is a small tubular neighborhood
of G, we hâve Hd(Q, T) Z. By Lemma 2.3 of [3] there exists an orbit of
Aut (Q) in Q whose dimension is at most d. Since L(G) c Aut (û) that orbit
must be a finite union of G orbits, and any of thèse are stable under Aut (fi)0. So

suppose G - x0 is Aut (û)0 stable for some x0 e Q. Restricting the Bergmann
metric ds2 to the mainfold G • xQ — G we see that Aut (£2)0 is naturally a subgroup
of the connected component /0(G, ds2) of the isometry group. By Theorem 1 of
[10] it now foliows that any / e Aut (Q)o is of the form

f(g **o) &lt;*gb -x0&gt; geG
for some a, b e G. Extending holomorphically to g e Gc we see that / La °

/?,-w and hence R^x^Q) Û. By Corollary 2.5 6 e Z(GC), and so /

§ 3. Connected groups and proof of Theorem 1

PROPOSITION 3.1. Let G be a compact, connected Lie group. Then there
exists a piecewise strongly pseudoconvex domain flcGc, (or QczGcxC in case

the center of G is one dimensional) such that G Aut (Q).

One may contemplate constructing such cd domain Q inside other complex
manifolds that posses a natural G action. The following example shows that
achieving G Aut {Q) may be impossible.

EXAMPLE 3.0. Let G SO(3) act on the complex sphère

Every G orbit on I intersects the curve

a(t) (cosh t, i sinh t&gt; 0)
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at a(±s) for some s. Consequently the only G invariant pseudoconvex domains in

I are QR {z € 11 \z\ &lt; R}. Thèse domains are also O(3) invariant.

Proof of 3.1. Any compact connected Lie group G is of the form

G Tl x d x • • • x Gk/H where Gu Gk are simple,

1-connected and connected, H a Z(Tl x Gx x • • • x Gk) is finite, and H HT1
{e}.

In the following we will dénote Gx x • • • x Gk by Gs. Let Q° be a domain with
Aut (£?°) r&apos;, as constructed in Section 1. For each simple factor G; let Q1 the
domain constructed in Lemma 2.3. Moreover, we may arrange our choice of a&gt;/s

so that Qt is not biholomorphically équivalent to Q} if i #/. To see this, we need

only to note that if we shrink wJf then we obtain a biholomorphically inequivalent
Qj (see, for instance, Theorem 3.3 of [2]). Now set

D fl0 x Û1 x • • x fî*.
We note that D is biholomorphic to a domain in (Tl x Gx x • • • x Gk)c of the
form (T&apos; x Gs) • exp {i(co° x w1 x • • • x cok)}. By our choice of D and theorem of
//. Cartan [9]

Aut (D) Tl x Aut (&amp;1) x Aut (Q2) x x Aut (Qk). (6)

Next set Q D/L(H). Again, biholomorphically

Q=G - exp {/((o° x a)1 x • • • x a/} c Gc.

If / e Aut (fi)o then it is homotopic to the identity and may thus be lifted to

/ e Aut (D)o. By (6) and Proposition 2.6/ Ll,gefxG1x-«-xG/c and thus

/ Lg for some geG, Hence L(G) Aut (£2)0 is a normal subgroup of Aut
Therefore if h e Aut (Q)

hLgh~l Lx{g)&gt; x e Aut (G),

that is for any x e Q

Setting x e e G, h Rh{e)Q% on Gcû which gives /i Rh(e)°X on O after
extending holomorphically to x € Aut (Gc). By composing /i with a suitable left
translation Lg, g € G we may assume that h(e) exp iX, X e^. We write the Lie
algebra of^ as^0+^s where^ is the Lie algebra of Gs and^0 is the center ofy,
i.e. the Lie algebra of Tl. The differential of x must préserve this décomposition,
so dx dxo ° dXs - àxs ° dxo- Similarly we can write X Xo + Xs so

exp iX0 exp iXs exp iXs exp iX0. We conclude that translation by Xo followed by
dxo préserves o)° and thus by assumption on a)0 Xo 0 and dxo /. Finally as in
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the proof of Lemma 2.4 we must hâve Xs 0 and dxs(u&gt;1 x • • • x ms) co1 x
•••Xû)2. Our choice of thèse domains forces first dXsico1) œ1 and then

To complète the proof of Theorem 1 we now apply the semicontinuity
theorem of Greene and Krantz [6] to smoothen the domain Q. Let r(z) be a G
invariant strongly plurisubharmonic exhaustion function of Q. For large À

Qx {zeQ\r{z)&lt;k)

is strongly pseudoconvex with smooth real analytic boundary. Evidentiy Gc
Aut (ÛA). Lemma 3.2 below shows that Aut (Qk) is a normal family of groups in
the sensé of Greene and Krantz, and thus by their semicontinuity theorem
Aut (Qk) c G for À sufficiently large. The proof of the theorem is now complète.

LEMMA 3.2. Let (Â;) be a séquence converging to +&lt;» and let cp} e Aut (ÛA
Then there exists a subsequence {%k} converging uniformly on compact sets to an
élément cp e Aut (û).

Proof. Since Q is bounded we may assume: (by extracting a subsequence)
that {cpj} converges uniformly on compact subsets to a holomorphic t/&gt; € fl~» Q.

By a theorem of H. Cartan [9] either tp e Aut (Q) or tp(Q) c dQ. We now show,
arguing as in [3], that the latter case is impossible. Recall that by construction Q
is covered by a product of bounded domains. By lifting our maps we may assume
that Q itself is a product

Suppose q{Q) H dQ° x Q1 x • • • x Qk #0. Then, since 9Q° is strongly pseudoconvex,

%if{Q) c {p0} x fî1 x • • x £2* for some poedQ°. Now let (/ be a
contractible neighborhood of p0 in £2°, and let T be a compactly supported cycle
representing a nontrivial class in Hq(Q), where q dimc £2. For large j we hâve
&lt;p(T) c U x Q1 x • • • x Qk which is homologically trivial in dimension q. On the
other hand &lt;p; is a diffeomorphism and hence tpj(T) cannot be a boundary in Q
for; large.

§ 4. Existence proofs

In this section we prove Theorems 2 and 3.

PROPOSITION 4.1. Let G be a compact Lie group. Then there exists an
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orthogonal action of G on Un with the following properties
(i) If Ha O(n) is a subgroup such thaï Hx Gx for ail xeUn, then H G.

(ii) There exists a set F cRn consisting of finitely many G-orbits such that if
g € O(n) and gF F, then g e G.

Proof Let G be faithfully imbedded in O(k), and let G act diagonally on

(RW [R*©- • -©R* (Jttimes). (*)

First we show that (i) is satisfied for this action. By assumption, the

décomposition of Rn in (*) is also H-invariant. For vlt vk e Mk, we write
v (vu vk) e Un by the décomposition (*). For h e H, and u (u,. v) e

Un, there exists by assumption g e G such that

/iu=gw (w, w).

Thus we conclude that H acts diagonally on the décomposition (*). Finally, if
{elf..., ek) is a basis of R*, we set v (elf.. ek) to see that hv =gv implies
that h=g.

For part (ii), we construct a séquence of sets Fjy j -1, 2, 3, with the

following properties:
1. Fj is the union of y G-orbits.
2. If Hj {g e O(n):gFj F,}3 and if H; # G, then H} g#7+1.

Since the H} are compact and each contains G, we must hâve Ht G form some /.

Indeed, at each step either the dimension or the number of components must
decrease.

Now fix £&gt;0, pick xx of length 1-h e, and set F^-Gxi. We proceed
inductively, under the assumption that H; # G. By part (i) there exists a point xJ+1
such that HjXJ+1 # GxJ+1. We then set

Since we may take ||jt;+i|| &gt; ||*|| for ail x e Fp we see that Hj+xFj a Fp and thus

PROPOSITION 4.2. Let G be a compact Lie group. There exists an
orthogonal action of G onUn and a G invariant domain œ ci&quot; which is a small,
smooth perturbation of the unit bail with the property that gco cd and g affine
implies g € G.

Proof Let Gxt U • • • U Gxt dénote the set obtained in (ii) of Proposition 1.

For any ô &gt; 0, we may assume that 1 + ô &gt; \xt\ &gt; \x2\ &gt; • • • &gt; \xt\ &gt; 1. From Sn~l

we remove a small tubular neighborhood Vf of \Xj\~1 • Gx; such that the area of V}

is small and such that Vt (1 Vj 0 for i #/.
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Now we may make a small smooth perturbation of Sn~l of the form

I {r(x)x:xeSn-1}

where r(x) is a smooth function on Sn~l with r &gt; 1, and r(x) 1 for x $ UJ=1 Vr
Let us write

Before we specify r(x) more precisely, let us note that if h is an affine
transformation of Rn with h(I) Z, then h e O(n). To see this, write

a)1 {xeUn: \x\ &lt; 1, x/\x\ i V, U • • • U Vt).

Thus a&gt;! is a conical subset of co generated by the complément of Vt U • • • U Vh

Since h(co) co, h must préserve volume. And since the volume of w — a)i is

small, h{œx) H o)x contains an open set. It follows, then, that \h{x)\ 1 for x in an

open subset of Sn~l. We conclude, then, that h € O(n).
Let x € C*(R) be monotone decreasing with x(0) 1, #&apos;(()) &lt; 0 and ^ 0 on

[l,oo). Wedefine

r(x) 1 + (|jcy| - 1)X(M dist2 (x, ix^Gx,))
for jc e 1^ and r l elsewhere on Sn~l. For M sufficiently large, r is smooth.

Choosing ô &gt; 0 sufficiently small, we hâve r close to 1.

Now if h e O(n) and hl 2&quot;, then h must map Gx, to a portion of 2&quot; with
distance |jc;| to the origin. At the same time, h must map Gx} to a portion of X
where the distance to the origin takes a local maximum. Thus h{GXj) a GXj. We
conclude from Proposition 1, then, that h e G.

Proof of Theorem 3. We let co be the domain obtained in Proposition 2, and

let 2 do. If co is sufficiently close to the unit bail, then 2 is positively curved.
Thus 21 is rigid, and any isometry g of I extends to an isometry of Un (cf. [8]). It
follows that g eG, and thus G is the group of isometries of 2.

Proof of Theorem 2. Let co cz Un be the domain from Theorem 1, and let

where

We claim that Aut (Q) G. Since G cz O(n), it follows that Aut (fi) 3 G. On the
other hand, w is contained in a proper cône, and thus is biholomorphic to a

bounded domain. Thus any /e Aut (fi) extends to a holomorphic mapping

/ e Aut (a) + iUn). By the Corollary to Tbeorem 1 of [5] or by [13] f(z) is of the
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forai

where A e GL(n, (R), and b, c e Un. Since Az + b maps co to itself, it follows
from Proposition 2 that 6 0 and A represents an orthogonal transformation in
G. Thus A maps V to itself, but it is évident that V=tV + ic if c ^ 0. We
conclude, then, that / e G.

To complète the proof of Theorem 2, we now smoothen the domain Q, as in
the proof of Theorem 1. The only différence is that in the normal families

argument we now use the fact that Q cannot be retracted to F, since

Hn(V D Q, Z)=#0 but Q is contractible. We can then apply the Semicontinuity
theorem of Greene and Krantz [6] to smoothen Q.
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