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of finite group rings: V

Robert Oliver

We continue hère the study of

SKX{ZG) Ker [KX(ZG)-* KX{QG)]

for finite G: the group shown by Wall [26] to be precisely the torsion subgroup of
Wh (G). In earlier papers in this séries, SKX(ZG) has been studied via the
extension

0^C/1(ZG)^5A:1(ZG)~&gt; 2 5/C1(ÊpG)^0; (0.1)
P\\G\

where Clx{ZG) c SKX{ZG) is the subgroup of éléments described via K2 in
localization séquences.

This paper contains the last step in deriving a combinatorial aigorithm for
describing the odd torsion in SKX(ZG). By [17, Theorem 4.8], SKX(ZG)[%\ splits
naturally as a sum

SK1(ZG)[è]^C/1(ZG)[è]© 2 SKx{tpG).
p&gt;2

The groups SKx(tpG) (also for p 2) are described by [15, Theorem 3] and [16,
Theorem 2], in terms of H2(Zt) for certain subgroups Z, g G. On the other hand,
in [17], the problem of describing C/^ZG)^) for any odd prime p and any finite
G is reduced to the case where G is a p-group (see [17, Theorem 4.8], and the
discussion at the end of Section 3 below).

The following theorem is the central resuit of this paper, and gives a relatively
simple way of describing Clt(ZG) when G is a p-group (and p odd). Note that if
G is any group, and G acts on ZG by conjugation, then for any set S g G of
conjugacy class représentatives,

H^G; ZG) 2 Hx{ZG{h))®Z(h).
heS
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466 ROBERT OLIVER

(If X^G is any conjugacy class, and heX, then Z(X) lndzG(h)(Z) as

ZG-modules.) Thus, HX{G\ ZG) is generated by éléments g ® h for commuting g,
AeG.

THEOREM 3.6. Fû an odd prime p and a p-group G. Write QG Iïf=i Bl9

where each Bt is simple with center Ft and irreducible représentation Vr For each iy

let (jUF|)p be the group ofp-th power roots of unity. Define

where G acts on ZG by conjugation, by setting

VG(g ® h) [detF| (g, Vï)]t (g, heG,gh=hg,VÏ {xeV,:hx= x}).

Then C/^ZG) Coker (qG).

Examples of computations of Clx(ZG) using Theorem 3.6 for non-abelian G

are given in Section 4. For abelian G, the isomorphism SKX(ZG) Coker (tpG) is

proven in [1, Theorem 1.8], and some examples of calculations of SKX(ZG) using
that are given in Section 5 of the same paper.

Theorem 3.6 (and the other theorems referred to above) are stated, for
simplicity, as describing the components of SKX(ZG) as abstract groups only. But
the proofs also contain enough information so that one can take a spécifie
élément in S.K^ZG) (e.g., a spécifie élément in Coker (tyG) as described above),
and represent it by a matrix. The opposite problem, taking a spécifie matrix over
ZG and deciding how it sits in SKX(ZG) (if it does) is harder in gênerai; the study
in [20] of the Whitehead transfer homomorphism for oriented S^fiber bundles

gives one example where this can be done.

In gênerai, for any finite group G, Clx(ZG) is described by localization exact

séquences

*» CP(QG)^ Clt(ZG)w-+ 0

for each prime p; where for any maximal order 2JÎ ç QG:

CP(QG) Hm Coker [K2(m)~* K2QM/pnM)] lim C/^SW;pnW)
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The Cp(QG) are described by the work of Bak and Rehmann on the congruence
subgroup problem [3]. The remaining problem is then to find a set of generators
for #2op(lpG), or at least for its image in CP(QG). In the case of an odd prime p
and a p-group G, the formula

\\)G:Ht(G;ZG)^&gt;Y\ (juf)
1=1

can be explained by noting that norm residue symbols define an isomorphism of
CP(QG) with ïl(iiF)P&gt; and that H^G^ZG^H^G&apos;^tpC)) and K2(ZPG) both
are closely related to the cyclic homology group HCx(l.pG) (see [21]).

The key new resuit hère about generators for K2(Î.PG) is:

THEOREM 1.4. Let p be any prime, and fix a p-group G and an élément

z e Z(G). Then

Ker [K?*(tpG)T
&lt;{g, 1 + Â(l-zyh}:Xelp, i&gt;l,g, h eG,gh hg).

Since Coker [K?p(tpG)-^&gt; Kfp(tp[G/z])] is also known in the above situation
(see Proposition 2.1 below), it should in principle now be possible to inductively
construct a set of generators for KX2P(1.PG). Unfortunately, it&apos;s not always easy to
explicitly lift éléments from Kfp(ïp[G/z]) to K?P(ÏPG), even where they are
known to lift. But such an inductive procédure does work to give generators for
KX2P(Î-PGY whenp is odd, and this suffices when Computing Clx(ZG).

Another conséquence of Theorem 1.4 involves a comparison of Cli(RG)~
when G is any finite group and R the ring of integers is some number field
K c C - with the &quot;complex Artin cokernel&quot;

AC(G) Coker [^ (Rc(H):HcGcyclic}^4/?C(G)].

Natural epimorphisms IRG:Ac(G)^»Cli(RG) are constructed, for such R and G,
via localization séquences. Theorem 1.4 can then be applied to show that for any
G, 1RG is an isomorphism for R large enough. Thus, AC{G) represents the
&quot;largest possible&quot; Clx(RG) when G is fixed and R varies. This is the second

unexpected appearance of Artin cokernels when studying Kn(RG): it was shown
in [18] that D(ZG)^ ^AQ(G) when G is a p-group and p any odd regular prime.
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The obvious remaining question is: what about 2-power torsion in SKX(ZG)1
Unlike the case of odd torsion, this cannot be completely reduced to studying
CliÇLG) for 2-groups G, but the results in [17] show that the main problem is

with 2-groups. If G is a p-group (for any p) and [G, G] is central and cyclic, then
we can show that K2op(ï.pG) is gênerated by {—1,-1} and symbols {g, u} for
geG and u e(î.p[ZG(g)])*; and when p 2 this suffices to get a description of
C/j(ZG). But there are 2-groups G for which K2opÇ!L2G) is not generated by such

symbols, and there may not be any simple algorithm for describing C/a(ZG) in
gênerai. The best conjecture we hâve been able to make so far gives upper and
lower bounds for C/^ZG), bounds which differ by exponent two. The question of
whether the inclusion C/i(ZG)(2) £ SKt{LG)i2) ever fails to split is also still open.

The paper is organized as follows. Section 1 and 2 deal with the problems of
finding generators for Ker {K2(î.p(x))&gt; an(i of detecting Coker (K2(î.pa)),
respectively, when oc is a surjection of p-groups whose kernel is central and cyclic.
This is applied in Section 3 to prove that Clt(ZG) Coker (tpG) when G is an
odd p-group; and ways of using that to compute the odd torsion in C/a(ZG) for
arbitrary finite G are discussed. Examples are given in Section 4 to illustrate how
Theorem 3.6 works in practice for Computing C/a(ZG). Finally, in Section 5, the

relationship between Clt(RG) and the complex Artin cokernel is studied, and the

isomorphism Clt(RG) AC(G) proven for large R.
As for notation, Cn always dénotes a (multiplicative) cyclic group of order n,

and £„ a primitive n-th root of unity. If F is any field, then fiF dénotes the group
of roots of unity in F, and (jUF)p the group of p-th power roots of unity.

If R is a ôp-algebra or a Êp-order (e.g., R ÛPG or 2PG), then K2(R) always
dénotes the topological K2- The précise définition of thèse groups, and their
occurrence in localization séquences, is described in [20]: in Theorem 2.1 and the

preceding discussion (see also [3]). Hère we just note that if R is a J^-order, then

Section 1

If R is a ring, and / c R is a 2-sided idéal, we define hère

K2(Rf I) « Ker [K2(R)~* K2(R/I)).

A braid diagram analogous to that in [12, Remark 6.6] shows that for any ideals
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î ç.iç.R, there is an exact séquence

0-&gt; K2(R, Ï)^K2(R, I)^K2(R/Ï, ///)-4 K^R, 1)^ Kt(Rf /)-* • • •

The main resuit of this section is to describe a set of generators for
K2(Î.PG, (1 — z)); when p is any prime, G is any p-group, and z e Z(G). Three
lemmas will first be needed.

LEMMA 1.1. Fix a prime p, and a finite ring R of p-power order. Let J c R
be the Jacobson radical, and let {alf ak} ç/ be any set of éléments such that

{p, alf. ak) générâtes J {as an idéal). Then for any idéal I ç / of R such that

// // o, and such that I ç (alf. &lt;xk)R if p 2, K2(Rf I) is generated by
symbols of the form

{l-aiyl-x}:l&lt;i&lt;k, xel. (1)

Proof We use the notation and relations for pointed bracket symbols in [25,

Proposition 96-97]. By [17, Proposition 2.3], K2(R, I) is generated by symbols of
the form

{1-ûr, 1+Jt} &lt;ûr, 1

for a e J and xel (ax xoc 0). Write a=prQ+ axrx + - - - + ockrk\ so that

k

(a, x) (pr0, x) + 2 (&lt;Vi&gt; *)
1=1

k

1=1

É {1 - ûrt, 1 + rfAc} + (p, rox) + ^-p + (£)rox, r^ (x2 0)

0).

If p is odd, then \\)x =0, and we are done. If p -2 and /c (ûru cr*)^,

then the same procédure shows that for any x € /, (jc, jc) is a sum of symbols of
the form in (1).
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The following technical relation between symbols will be needed in the
calculations.

LEMMA 1.2. Let R be any ring. Fix a, ueR* and n &gt; 2 such that

[an, u] 1 [alua~l, aJua~J]

for any i, j. Then

{a, u(aua~~l)(a2ua~2) • • • (an~1ua1~n)}

{an, u} + {n- \){u, u} + 2; {alua-\ u}.

Proof In St(R), set x hl2(u), y h13(a), and

T (y*.y~1)O;2*);~2) • • • {yn~lxyl~~n).

Then

{a, u(aua~l) • • • (an~W~&apos;1)} [y, xT]

(yjy^Xyry&quot;1)^1*&quot;&quot;1 r(y&quot;jcy&quot;n)r&quot;&quot;1jc&quot;&apos;1 [T, ynxy~n][yn, x]

(diag (aua&quot;1 • a2aa&quot;2 • • • an&apos;luax&quot;ny ul&apos;n) * diag (w, w&quot;1)) + {ûn, m}

&quot;2 Wua~\ u} + {w1-&quot;, m&quot;1} + {an, u}.
1=1

Hère, for commuting matrices M, NeE(R), M*N eK2(R) dénotes the com-
mutator [M, iV] of liftings to M, TV e 5f(/?). D

The third lemma will be needed when constructing filtrations of group rings by
ideals. By a p-ring is meant the ring of integers in any finite extension of Qp.

LEMMA 1.3. Fix a prime p, a p-group G, and some z e Z(G). Let pn - \z\.
Then, for any p-ring A, there are isomorphisms

{1-zfAG ,,_1X
(l-z)k+1AG
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and

both induced by sending § to (1 - zf^for ÇeAG.

Proof. Note first that for any § € AG, and any k &gt; 1,

(1 - z)V§ * (1 - z)*(l + z + z2 + • • • + z^&quot;1)^ 0 (mod (1 - z)k+1AG).

(1)

Thus, (1 - z)kAG/(l - z)k+1AG has exponent at most pn for A:&gt;1; and is in
particular finite. So the map

(1 - z)k : (1 - z)AG ^ (1 - z)*

is an isomorphism: it is clearly onto, and the groups are free A-modules of the

same rank.
Thus, for 16 AG and k &gt; 1, if (1 - z)*£ (1 - z)*+1rç for some r\ e AG, then

(1 - z)(£ - (1 - z)r?) 0, and so

Together with (1), this shows that (l-z)^€(l-z)HUG if and only if
£ epnAG 4- (1 - z)AG. So /* is well defined and an isomorphism.

If 1 &lt; k &lt;pn - 1, and §&apos; € A/p[G] is such that (1 - z)*£&apos; € (1 - z)*+Wp[G]
then

(1 + z + • • • + zpn-1)? (1 - zf-1?&apos; € (1 - zYHA/p[G) 0;

and so £&apos; e (1 - z)A/p[G]. The converse is clear, and so f&apos;k is a well defined

isomorphism.

The main resuit of this section can now be shown:

THEOREM 1.4. Fix a prime p, an unramified p-ring A, ap-group G, and an
élément z e Z(G). Then

K2(AG, (1 - z)AG) Ker [K2(AG)-&gt; K2(A[G/z))]
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is a finite group, and is generated by symbols of the form

{g, 1 - A(l - z)lh) :g, h e G, [g, h] 1, A 6 A, is&gt;l.

Proof. Let //0 (z), and fix a séries of subgroups

such that for each i 1,..., n,

/f^G and [///./£_!]=/?

For each i, fix zt e H^H,^. Note that in G/H^, zt is central of order p.
m |z|. Define

&lt;m -

For each o (A:; r, i0,..., 4) e S, set fc(a) k, and

Define ideals /&apos;(cr) c /(a) s AG by setting

V(o) &lt;(1 - z)l0+1, p^^l - z)Sp&apos;(l -

and

The idea now is to use 5 as a bookkeeping System for filtering the idéal

(l-z)i4G into &quot;pièces&quot; small enough so thast the theorem can be proven
starting with Lemma 1.1. The following diagram gives a visual overview of this
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filtration in the case where p 3, m 2, and n 2 (i.e., \z\ 9 and \G\ 81):

(1 - z)AG
k(o) - 0 k(o) 1 k(o)

(\-zfAG-

(0; 1,1)

(0;0,2)

(l; 0,1,0)

(l; 0,1,1)

(l; 0,1,2)

(1; 1,1,0)

(1; 1,1,1)

(1; 1,1,2)

(1; 0,2,0)

(1; 0,2,1)

(2; 0,1,0,0)
(2; 0,1,0,1)
(2; 0,1,0,2)

(2; 0,1, 1,0)
(2; 0,1,1,1)
(2; 0,1,1,2)

(2; 0,1,2,0)
(2; 0,1,2,1)
(2; 0,1,2,2)

(2; 1, 1, 0, 0)
(2; 1, 1, 0, 1)

(2; 1.1, 0,2)

(2; 1, 1, 1, 0)
(2; 1, 1, 1, 1)

(2; 1, 1, 1, 2)

(2; 1, 1, 2, 0)
(2; 1, 1, 2,1)
(2; 1, 1, 2, 2)

(2; 0,2, 0,0)
(2; 0,2, 0,1)
(2; 0,2, 0,2)

(2; 0,2, 1,0)
(2; 0,2,1,1)
(2; 0,2,1,2)

(1)

The horizontal Unes represent ideals in AG, ordered sequentially with the
largest at the top. Each box représente some élément a e S; the horizontal Une at
the top of the box represents /(&lt;?), while the Une at the bottom represents I&apos;(a).

That the /(a) and l&apos;(o) actualiy do correspond with this picture will be shown in
Step 2A below.
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Step L We now show that for any aeS, there is an isomorphism

fa:A/p[G/Hk(a)]^&gt; I(o)/I&apos;(o) (2)

defined by setting /&lt;,([£]) [X(o) • §] for ÇeAG. This will be proven by
induction on k k(G). If k 0, so a (0; r, i) for some i &gt; 1 and 0 ^ r &lt; m - 1,

then

(1 - z)gAG/(l - z)l+

by Lemma 1.3; and so

- PrAlpm[GIH0)
I{O)/I (a)

p&quot;\l - z)-AG + (1 - 2)&apos;

Now assume A; s 1, and write a (A:; r, i0, ik). Set

d (k-\;r, i0&gt;... ,4_0e5.

By induction, we can assume that I(d)/I&apos;(ô) A/p[G/Hk-l]. By définition

/&apos;(a) I&apos;{ô) + X(d)(l - zk)*+lAG,

Thus, /(â) 2 /(a) 2 /&apos;(a) 21&apos;(à); and by Lemma 1.3:

(Recall that /4 =* (Hk-U zk), and that 0 &lt;^ &lt;p - 1.)

Sfep 2 We next show that for any oeS,

K2(AG/r(a), I(a)/If(a)) « &lt;{g, 1 - Z(a)Âfc} : [g, h] € Hk(a)t keA). (3)

This will be proven by downwards induction on k k(o).
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Note first that AG is a local ring with Jacobson radical

{p,l-g:geG). (4)

If aeS and k(o) n, then /fn G, and so I(o)/r(o)~A/p by Step 1. In
particular,

(/(a)//&apos;(a)) • J(AG/I&apos;(o)) 0 /(AG//&apos;(a)) • (/(a)//&apos;(a)).

So (3) follows in this case from Lemma 1.1 (applied using {l—g:g€G} for the
a/s).

Now fix some a (k; r, i0,..., ik) e S, where k &lt; n. For each 0 &lt; î &lt;p — 1,

set

Assume inductively that (3) holds for the ot.

Step 2A. We now show that the I(at) 31&apos;{ot) and /(a) 3 /&apos;(a) hâve the
relations implied by diagram (1) above. By définition, /(ao) /(a) (AT(ao)

Z(a)). For any 0 &lt; i &lt;p - 2,

/(al+1). (5)

Furthermore,

/&apos;(ap_0 l\a) + Z(a)(l - zk+,fAG /&apos;(a)

by (2): since X(a)(l - zfc+ly =/((l - zk+lf) and

(1 - zMy (1 - zS+1) 0 € Alp[GIHk\. (zUi e Hk).

We thus hâve a filtration

I(a) 7(&lt;j0) a /(aO 2 2 /(a^-x) 3 /&apos;(ap.O /&apos;(a); (6)

and I{ot) /&apos;(&lt;Ji-i) for 1 &lt; / &lt;p - 1.

Step 2B. For shortness in notation, we now write KX(I), K2(I) for Kt(Rf /),
K2(R, I): R is always a quotient ring of A G. We are assuming that (3) holds for
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the a,; i.e., that

K2(I(°,)/r(°,)) ({g&gt; l-X(o,)Xh}:[g,h]eHk+uXeA) (7)

for each 0^ i sp - 1. Let {Ax, Xs} be a Êp-basis for A. Let hu ,h,eG
be conjugacy class représentatives (modHk+l) for those éléments such that
[gh hi] e Zk+iHk for some g, e G; fix also such g,. Then (7) takes the form

K2(I(o,)/r(a,)) M, + {g,, 1 - X{o,)kfi,) :ls/sj,ls/s/); (8)

where

M, &lt;{g, l-A^(a,)/i}:[g, fcjeft, A€i4&gt;. (9)

Step 2C. Now assume that i &lt;p - 1; and consider the relative exact séquence

(recall that /&apos;(a,) /(a1+1)). By (2) (and [24, Corollary 2.6]):

^(/(a^O/Z&apos;^+i)) mp\Alp[GIHk+l\), (10)

where G acts by conjugation. Furthermore, for 1 &lt;; &lt;s, 1 &lt; 1 &lt; f,

1 - JT(a,)}AA) [g,, 1 &quot; *(*,)*,*,] 1 &quot; ^(^O^

(recall that [gt, ht] e zk+iHk). By (10), thèse éléments are ail independent in
&apos;(al+1)). So by (8) and (9),

Im [K2(/(,)()) 2(

Im [^(/(aO/ZX^,^))-* K2(I(o,)/I&apos;(o,))]

M, ({g,l-XX{o,)h):[g,h]eHk,XeA): (11)

ail éléments in M, lift (using (2)) to K2(I(a,)/r(a)) s K2(I(a)/I&apos;(a)).
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Step 2D. By (8) and (11) (and (6)),

K2(I(a)/I&apos;(o)) M + ({g,l- XX(o)(l - zk+xy~lh) : [g, h] e zk+lHk, XeA)
(12)

where

M=({g,l-kX(o)(l-zk+lyh}:0&lt;i&lt;p-l,[g,h]eHk,XeA)
{{g,l-XX(o)h}:[g,h]eHk,keA).

(Note that X(o)2 0 in I(a)/I&apos;(o).) We want to show that K2(l(o)U&apos;(o)) M.
Fix A e A and g, heG such that [g, h] e zk+xHk, and set u 1 - X(a)kh. Then

1 - Z(a)A(l - zk+xf-lh II (1 - X(o)kz&apos;k+lh) lî g&apos;ug-&apos; e ,4G//&apos;(a)
1=0 1=0

by (2) (I(a)/r(a) A/p[G/Hk]). So by Lemma 1.2,

{g, 1 -jc(&lt;j)â(1 -z^f-&apos;h} {g, w .gwg&quot;1 ¦ • -g*&quot;V&quot;P)

{gP&gt; «} + (P - 1){M, &quot;} + E (g^g&quot;7, M}.
y l

By définition, {gp, u} e M. For any 0 &lt;/ &lt;p - 1:

1 - X(o)kh)

(see [17, Lemma 2.2] for the last step). So from (12) we now get that
K2(I(a)/r(a)) M ; and this finishes the proof of (3).

Step 3. Now fix some i ^ 1. For any 0 ^ r ^ m — 1, (3) applied to a (0; r, *&apos;)

says that

K2{p&apos;{\ - zyAG/{pr+l(l - z)&apos;, (1 - z)&apos;+1»
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For any such g, h, and A, note that (in AG)

[g, 1 - Ap&apos;(l - z)&apos;h] m 0; 1 - Ap&apos;(l - z)7ï - (1 - A(l - z)lhY
(mod(l -zf

It follows that

A:2((l~z)/AG/(l-zy+1&gt;iG)=&lt;{g,l-A(l-2)&apos;ft}:[g,/ï]6&lt;z),AG&gt;l). (13)

4. The rest of the proof is analogous to Step 2B and 2C. Let Âx,..., A5

be a Êp-basis for i4, and let ht,..., ht e G be conjugacy class représentatives for
G/z. For !&lt;/&lt;*, choose gieG so that [g/, A/] z^, and l&lt;ç/&lt;pm |z| is

minimal. Then by (13),

K2((l-zyAG/(l-z)t+lAG)
/,l-Ay(l-z)l/i/}:l^/&lt;r,l^;&lt;j&gt;, (14)

where

Consider the exact séquence

For any/, /:

d({gh 1 - Ay(l - z)%}) fo, 1 - Ay(l - z)%] 1 +

By Lemma 1.3, thèse éléments are independent in

1 - z)&apos;+2AG) s H0(G;A/pm[G])

and hâve order pmlqt (qt is a power of p). Furthermore, for each j and /,
[gf&quot;&quot;, h,] 1, and so
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So by (14), and the exactness of (15),

Every élément of N, lifts to K2((l - z)&apos;AG) ç K2((l - z)AG). Thus, for any

K2((\ -z)&apos;AG) *2((1 -z)&apos;+lAG) + ({g, 1 - A(l -z)lh):gh hg,XeA).
(16)

By induction, for any N &gt; 1,

K2((l - z)NAG)

si&lt;N). (17)

Let pk exp (G), and recall that \z\ =pm. Then p(l — 2) | (1 — z)^, and so

1 + (1 - zf+1)&quot;*AG s 1 + p*+1(l - z)AG s {(1 + (1 - z)%Y :ÇeAG}.

Thus, for any commuting h, geG, any À e A, and any i s (fc + l)pm:

{g, 1 - A(i - z)&apos;M {g, (i - (i - z)£y*} {^, 1 - (i - zm 0.

(some ÇeAG).

By (16), for any N &gt; (k + l)pm, K2((l - z)(*+1)pm^G) /C2((l - z)NAG); and so

«2((1 - z)(*+1)O lim /i:2((l - z)(*+1&gt;*&quot;,4G/(l - z)NAG) 0 (18)

Equation (17) now takes the fonn

Furthermore, it suffices to take À belonging to some 2p-basis for A. This shows

that K2((l ~~ z)AG) is generated by a finite set of éléments of finite order, and is

hence finite.

With some more work, one can in fact show that K2(AG, (1 - z)AG) is
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generated by symbols {g, 1 - Â(l - z)h), where gh hg in G and À lies in any
fixed lp-basis for A.

One easy conséquence of Theorem 1.4 is:

THEOREM 1.5. For any prime p, any unramified p-ring A, and any p-group
G, K2(AG) is finite.

Proof. Fix some 1 ± z e Z(G). Then K2(AG, (1 - z)AG) is finite by Theorem
1.4. We may assume inductively that K2(A[G/z]) is finite; and so K2(AG) is also

finite.

In fact, using the results in [17], this can be extended to arbitrary finite G.
Whether it is true for arbitrary Zp-orders, we do not know.

Section 2

Theorem 1.4 gives a set of generators for Ker (K2(Acc)), when oc : G -*» G is a

central extension of p-groups with cyclic kernel. In this section, we study
Coker(£2(i4ar)) when Ker (ar) c Z(G). This problem was studied in [19]:
Coker (K2(Aa)) is described there for an arbitrary surjection oc, but only up to a

mysterious contribution by H3(G). What we show hère is that the H3(G)
contribution vanishes when oc is a central extension.

PROPOSITION 2.1. Letp be any primey let A be an umramified p-ring, and
let a:G-*&gt;G be any central extension of p-groups (Le., Ker (or) c Z(G)). Then
there is an exact séquence

O-» Coker (H2(a)) —=* Coker [K2(Aa) : K2(AG)-+K2(AG)]

-^-&gt; Hx(G;AG)l{g &lt;g&gt; kh :[a~lg, a-&apos;h] 1).

Hère, Ta is included by the usual inclusion H2(G)-+ K2(AG)/{-l, G}, and r|(ar)
is induced by the homomorphism

r2t(G):K2(AG)^H1(G;AG)/(g®kg&quot;:geG,XeA,neZ)

of [19, Theorem 3.6]. In particular, for any geG, H ZG(g), and any
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M e (AH)*,

n(«)({g,u})=g®rH(u)eH1(G;AG)/(g®kh:[a-1g,a-1h] l).

Proof. Define the group G and the order SI to be the pullbacks:

G -^ G S -*-* AG

G -^ G AG -^* AG.

Set

A Ker [AG^AG], /2 Ker [AG^AG], I Ker [AG ^&gt; AG].

Then SI sAÔ/(/, n I2); and so by Lemma 2.4 in [16],

Step 1. By [26, Theorem 4.1],

Ô (1)

where /u^ dénotes the group of roots of unity in A. We first claim that

Gab &gt;-&gt; K,(AGlhh) «i(«) (2)

is injective. To see this, let I(AG) dénote the augmentation idéal of AG. Then

I(AG)23liI2, and by [19, Proposition 2.2]:

AG/I(AG)2 s A x (A &lt;g&gt; 6ofc).

The isomorphism identifies geG&quot;6 with (1,1®g), and so Gab s ATi(/4G/
G)2).
Now set AT Ker (ar) Ker (rt), and consider the following diagram:

H2(G) &gt; //2(G) -^ K ^&quot;&apos;^C&quot;*
&gt; 0

AT » G&quot;&quot;
&gt; Gah * 0.

The rows are the five-term exact séquences for the extensions rx\û^*G and
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a:G-»G (see [8, Corollary VI. 8.2]). It follows that

Ker [#!(&gt;! x r2) : Gab -* Gab x Gab] s Coker (//2(ar)). (3)

Furthermore, &lt;5ri ôa°H2(a) 0, so Ker fo) H [G, G] 1, and

SKMn) : Stf^G)-» S/t^G) (4)

is injective by [15, Proposition 7].

Step 2. Now define

as in [20, Theorem 2.7], and recall that they are isomorphisms modulo torsion.
ByTheorem 1.1 in [19],

rAà{\ + hh) Im [hh-* H0(G;AG)l (5)

So rAô induces a homomorphism

Consider the following diagram:

0 &gt; nAxGuhxSKl(AG) *

/ UiCiX&apos;-j) IhoC.X&apos;:) (6)

0 &gt;[nAx Gab x SK^AG)]2 » [K.iAG)}2 ^* [H{)(G; AG)]2

The bottom row is exact since Ker (FAc) tors (K^AG)). The top row is exact at

KtÇH) since by (5), Ker(^ô)-*Ker(r«) is onto. By (3) and (4), Gab 3
Ker (/) Coker (#2(a)), and this injects into tf i(2l) by (2). So the top row in (6)
is exact, and there is an exact séquence

0-&gt;Coker (H2(a))-+ Ker (/C,(r, x r2))-* Ker (//0(r, x r2)). (7)

By the Mayer-Victoris séquence for a pullback square,

Ker (Kiin x r2)) a Coker [K2(Aa) : /f2(ylâ)-* /C2(&gt;IG)]. (8)
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Step 3. The extension 0—»/-»9l--*ylG-»0 is 6-equivariantly split by the

diagonal map. Thus,

and so

Ker (/fofo x r2)) Ker [H0(G;I)~*H0(G;AG)] (9)

Upon substituting (8) and (9) into (7), we get the exact séquence

Coker (H2(a)) -^&gt; Coker (K2(Aa)) — HX{G\AG)I

That r*(&lt;x) is the réduction of the map r2(G) of [19] follows since the
constructions are identical. By diagram chasing, Ta is seen to be the réduction of
the standard inclusion //2(G)-&gt;K2(AG)/{-l, G}.

In fact, in the above situation, Im (r*(a)) can be described precisely with the

help of Theorem 3.6 in [19].
Proposition 2.1 will be applied directly in Section 3, when describing C/i(ZG)

for odd p-groups G. But we first note one conséquence of particular interest. The

next theorem is useful when constructing maps

for non-abelian p-groups G (compare with [21]).

THEOREM 2.2. Let a:G-»G be any surjection of p-groups such that
Ker (a) n [G, G] 1. Then for any unramified p-ring A, the map

K2(Aa):K2(AG)-+K2(AG)

is onto, and its kernel is generated by éléments of the form {g, 1 -4- (1 - z)êh) for
z e Ker (a), i ^ 1, and commuting g, heG.
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Proof. Note first that

[Ker (&lt;*), Ô] s Ker (a) H [G, G] 1;

so that Ker (a) c Z(G). The exact séquence

H2(G)^l H2(G) — Ker (or) &gt;-? Gû* -+ Gab -* 0

(see [8, Corollary VI. 8.2]) shows that H2(or) is onto. By hypothesis,

commuting éléments in G lift to commuting éléments in G. So #2C&lt;4a0 is onto by
Proposition 2.1.

Now write oc as a composite

a:G Go—»Gi—» G2—» • • &apos;—»Gn G;

and so that Ker (ary) is cyclic for ail y. By Theorem 1.4,

Ker (K2(Aa,)) &lt;{g, 1 + (1 - z)lh) :z e Ker (*,), i &gt; 1, g, h e G,.lf gh fcg&gt;

for each y. But ail such symbols lift to K2(AG); and so Ker (K2(Aa)) is generated
as described. D

Section 3

We can now dérive algorithms for Computing the groups C/i(ZG)[£] and

SKX{ZG)[\] for finite G. The key extra tool when working witb odd torsion is the
standard involution on Kn(ZG) and Kn(î.pG); for example, this is what was used

in [17] to construct natural splittings

2&lt;p | \G\

Recall that for any group G and any commutative ring /?, an antiinvolution
x-*Jî on RG is defined by setting

¦,fteG).
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This extends to an antiinvolution on GL(RG) - defined by setting (atJ) (â;i) -
and hence an involution on K^RG). Similarly, an antiinvolution on St(RG) is

induced by setting xtJ(a) *;i(â) (aeRG); and this restricts to an involution on
K2(RG).

LEMMA 3.1. For any group ring RG as above, and any commuting units, u,
v e (RG)*t {u, v} {v, û}. In particular, for any g € G, and u e (RG)* such that

gu ugy {g, w} {g, û}.

Proof. Recall that {w, v} [X, Y], where Xy YeSt(RG) are arbitrary liftings
of diag (m, w~\ 1) and diag (v, 1, v&apos;1). Then

{u, v} [X, Y] Y-&apos;X-&apos;YX {v~\ u-1} {û, û}

The last statement follows since g g&quot;1.

The importance of the involution for simplifying the computation of C/^ZG)
follows from:

LEMMA 3.2. For any odd prime p and any p-group G, the involution on
#2(ôp[G])(p) is the identity.

Proof By [22, Section 2 and 3], for any p-group G and any irreducible
QG-module V, there are subgroups K&lt;HcG and a faithful Q[H/K]-
representation W such that V Indg (W), EndQf/ (W) EndQG (V), and H/K is

cyclic. Let A c Q/f and B c QG dénote the corresponding simple summands.
Then the induction map restricts to a Morita équivalence from A to B, and hence
induces an isomorphism of K2(ûp ®QA) to K2(QP ®Q B). Thus, if

S {(//, K):K&lt;Hçz G,HIK cyclic},

then the map

is onto. Hère, IngS/* is the composite

S/x: K2(ÙP[H/K]) ^+K2(ÙPH)^ K2(ÛPG);
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where the first map is induced by the inclusion of ÛP[H/K] as a direct summand

of ÙPH.
The lnd%/H commute with the involution, and so by (1) it suffices to prove the

lemma when G is cyclic. If G^Cpny write ûpG U^0Flf where Ft Ûp[^p&apos;] (a
field). For each i, the involution inverts éléments in juF(. So from the isomorphism
K2(Ft) juFj and its naturality with respect to automorphisms of Fn we get that
{m, v} -{u, v} {v, u) for m, v e F*. But {n, v} {vy u) by Lemma 3.1, and

so the involution on K2(Ft), and hence on K2(ÛPG), is trivial.

In fact, Lemma 3.2 also holds for 2-groups, and for arbitrary finite G if
K2(ÛpG)(p) is replaced by CP(QG) (see the définition in the introduction).

The main problem when describing CIXÇLG) for a p-group G is Computing the

image of K2(ÈPG) in K2(ÛPG). Lemma 3.2 shows that when p is odd, it is

enough to concentrate attention on K2(Î.PG)+; and (recall the formula {g, u}
{g, m}) on K^Gy.

PROPOSITION 3.3. For any odd prime p, any unramified p-ring A, and any

p-group G, FAG restricts to an isomorphism

Proof. By [20, Theorem 2.7], there is an exact séquence

b Fag &lt;o ab

where û&gt;(£ Algl) IIg7r(A&lt;). Thèse maps ail commute with the involution; and

(GabY 0 by définition. That SKX{AGY 0 follows from the définition of the

isomorphism

0AG : SKMG)-* H2(G)IH?(G)

in [15, diagram on p. 215]. So (1) restricts to an isomorphism

)+.

If A is an unramified /?-ring, and G is an abelian p-group, we can now define
for any keA and geG a unit w(Ag)€(AG)*+ sKX(AGY to be the unique
élément such that rG(u{kg)) \X(g+g~x). If G is an arbitrary p-group and

g € G, we let u(Ag) e (AG)* be the image of u(Âg) e (AH)*, when H (g).
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The results of Sections 1 and 2 can now be used to describe K2(Î.PG)+:

PROPOSITION 3.4. For any odd prime p, any unramified p-ring A, and any

p-group G,

K2(AG)+ &lt;{g, u(kh)}:keA, g,heG, [g, h] 1).

Proof. For any G, define an involution on HX(G;AG) by setting g®À/*
g®kh~l. Define

by setting Ac(g®\h{h + /1&quot;1)) {g, u(kh)} for any keA and commuting g,
heG.

Fix some G, choose z e Z(G) of order p, set // G/z, and let a:G-*&gt;H be

the projection. Assume inductively that A^ is surjective, and consider the

following diagram:

— Ker (//(/!*))+^ //(G;/lG)+^^V//,(WM//)+-^Coker (H,(^or))+-^ 0

U

-^ /C2(^G)+ ^^K2(AH)+ -&gt; Coker (K2(Aa))+-+0

(1)

Hère, /i and f2 are induced by Aq and 4#, and T^&quot; is the restriction of the
homomorphism of Proposition 2.1. For any keA and commuting g, heG,

g ® rAG(u(h)) g

and so/2 is injective. By Theorem 1.4,

Kei (K2(Aa))+

and so by Proposition 3.3 (applied to the Kx(A[ZG(g)\)+):

Ker(/C2(Aa))+S ({g, u(kh)}:keA, [g, h] 1) lia (Ac).

By diagram chasing in (1), AG is now seen to be onto.
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It seems quite likely that the homomorphisms AG defined above actually
induce isomorphisms

HCX{AGY « [Hx{G;AG)l{g ® kg)]+ * K2(AG)\

This is the case at least for abelian p-groups [21, Theorem 3.9].
It remains only to find a description of the image of any {g, u(h)} in

K2(ÛPG), when p&gt;2 and G is a /?-group. Recall that K2(ÛPG) is described in
terms of norm residue symbol isomorphisms

defined for any finite extension F of ûp [12, Theorem A. 14].

LEMMA 3.5. Fix an oddprime p and a p-group G; and let u(g) e (Î.PG)* for
g € G be defined as above, Write

where for each i, F, ÙPÇP»&gt; (a field) for some m ^ 0 (see [22]). Let

kG:K2(ÙpG)-*U.i^F.)P

be the product of the norm residue symbol homomorphisms

K&apos;a : K2(Bt) « K2{Mr,{F,)) * K2(F.) ^U (fiF)p.

For each i, let V, be the irreducible B,-representation. Then, for any commuting g,
heG,

AG({g, «(/»)}) [detf( {g, V*)]*.,. (V* {* e V; : for « *}).

Proo/. Fix some i, set 5 B,, V K, F F,, r rt; and let

.(V)«A#,(F)
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be the projection. Let m be such that F s ùpÇpm. Set pm exp (G), and let

be an inclusion. Note that taking norm residue symbols commutes (p is odd) with
inclusions of cyclotomic fields: this follows, for example, from the formulas in [2].

Fix commuting g, heG. Then (g, h is an abelian group of exponent dividing
pn\ and so/ar(g) and fot(h) are conjugate (simultaneously) to diagonal matrices:

u ur),fa(h)~diag(vu vr) (uh

with

so that

/=i

By the formulas of Artin and Hasse [2],

/=1 ^ y /F 1=1

where

Recall that rG(u(h)) \{h + h~l), where rG (l-(l/p)«î&gt;)°log, and

f. Thus,

-1

_x
1

p-i
&apos; 2Lvi+

&quot;

)4&quot;p(
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Hence, for 1 ^ / ^ r,

1

pn Vp-1 2

ri if v/ i
~~

10 if v, =É 1.

P -1 F/..r + V/-i 2) + - (vf + vTp - 2) + • • -1)

It follows that

A&apos;G({g, u(h)}) II &quot;/ detF (g, Vh). D

The main resuit can now be shown.

THEOREM 3.6. Let p be an odd prime, and let G be a p-group. Write
QG Ilf=i Blt where each B, is a matrix algebra over a field Ft with irreducible

représentation Vt. Define

1 1

by setting, for any cornmuting g, h e G,

VG(g®h) [detFi(g, V*)]*.,.

Then Clx(ZG) Coker (V&gt;G) and

SK^IG) Coker (xpG) 0 (H2(G)/H?(G)).

More precisely, there is a commutative square

i lproj

C/,(ZG) -4r&gt; Coker (i/;C/);

where kG is induced by the norm residue symbol, and d is the boundary map in the

localization séquence.
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Proof. By [20, Theorem 2.1 and 2.2], there is an exact séquence

K2(tpG) -^ Coker /

and an isomorphism

K2(l\ - \[G])-+ K2(ÛPG) s^(ôpG^-A fi (juFi)p.
\ LpJ / J l==i

(note that Z[l/p][G] is a maximal order). Consider the diagram

+ k

//,(G; ZG)+ -^* fi (Mf,)p ^ Coker (i/;G) »• 0
1 1

(1) 4. (2) K
CZ,(ZC) 0.

By Lemma 3.2, Im (&lt;po) Im (&lt;Pg); and Im (t/;5) Im (^G) since t^gC^ ® A)

^g(§ ® A&quot;1) by définition. So the rows above are exact. The map Aq, defined by
setting Ac(g ® h) {g, u(/*)}, is onto by Proposition 3.4, and (1) commutes by
Lemma 3.5. So there is a unique isomorphism

Coker (xpG)

which makes (2) commute.
The exact séquence

is naturally split by [17, Theorem 4.8], and

SKt(tpG)aH2(G)/H?(G)s Jf2(G)/&lt;g Ah:gf h eGf gh= hg)

by [15, Theorem 3]. So

S* i(ZG) Coker (^G) © (H2(G)/Hf(G)). D

In [17, Theorem 4.8], the computation of C/^ZG)^) for odd p and arbitrary
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finite G was reduced to the case of a p-group. More precisely, if Cx,... Ck are
conjugacy class représentatives for cyclic subgroups in G of order prime to p, and

Nt NG(Ct), Zt ZG(C(), and ^(zj is the set ofp-subgroups, then

(3.7)

Hère, the limits are taken with respect to inclusion and conjugation among
subgroups.

This direct sum décomposition is somewhat awkward, and hence a more direct
description of C/^ZG)^) seems also désirable. In fact, one can define

homomorphisms

; ZG)
1=1

for arbitrary finite G, such that Clx{lG)[\] Coker (t/JcHèL But alone the
définition of \pG become quite complicated as soon as we start working with

non-p-groups; and the most efficient way of describing C/i(ZG)[|] for concrète G
does seem to be by means of (3.7) above, together with Theorem 3.6. Some

techniques for calculating with the help of (3.7) are presented in [17, Section 5].

Section 4

Theorem 3.6 reduces the calculation of C/^ZG), for an odd order p-group G,
to a straightforward combinatorial algorithm. We now give some examples to
illustrâte how this works in practice. Examples of calculations for abelian G are
piesented in [1]; and for non-abelian G of order p3, C/i(ZG) is calculated in [19,
Theorem 7.5] using a weaker form of the theorem. So hère we take some
non-abelian groups of order p4 to give a sample of some of the techniques which
can be used. Throughout this section, p dénotes a fixed odd prime.

Note first that for any p-group G and any commuting g, heG,

(ifp+n);

and

&quot;1 ® aha~l) H&gt;G(g ® h) (any a e G).
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Thus, when describing Im (xpG)f it suffices to consider t^ds ® A) as A runs
through a set of Q-conjugacy class représentatives in G, and g a set of generators
for ZG(h)lh.

An irreducible représentation V of G will be described by listing eigenvalues
for the actions of various group éléments on V-or, when necessary, by
describing the irreducible components of V | H for some appropriate H c&amp;

Finally, note that when \G\ =p4, then SKx(tpG) 0 by [15, Proposition 23].
So SK^ZG) C/^ZG) in this case.

PROPOSITION 4.1. Assume G HxCpf where H is non-abelian, \H\ =/?3,
and exp (H) p. Then

SKX{ZG) (Z/p)(p2+3p~6)/2.

Proof. Fix generators a, b e H and c eCp; and set z [a, 6f Then Z(G)
(z, c), and for any g e G\Z{G)y ZG(g) (Z(G), g). Set £ Çp, and note that

Q[G] ^ Q x
&quot;

fTô[Ç] x f[

The foliowing table describes xp 1//C. Hère, (Hab)* dénotes the set of irreducible
complex characters of Haby and * for eigenvalues means that ail powers of Ç

occur.

Représentation
Indexed by
is&apos;val (a, b, c, z)

V(fl®cz-)
\p(b &lt;8&gt; cz~l)
xl&gt;(a 0(1- c))
tp(b ® (1 — c))
t/&gt;(c ® 1)
\j&gt;{G ® (1 — z))
t//(z ® gc~l)
\p(c ® gc~l)

V(c®f)

—
(C, 1, 1, 1)

1

1

1

1

1

1

1

1

vm

(r,
m&lt;p
C, i, i) (z

C

i
i
i
i
i
l [

i

v p= rf-tab\*

(a),x(b),t,

1

1

#(a)

1

1

l(ifx(g)#£&apos;

1

i) (v.r.c)
i
i
i
i
i
i

çn
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Hère, in the last Une, £ a(l + 6 + • • • + èp~1)-6(c + c2+ • • • +c/&gt;~1). By
inspection,

SKtÇLG) Coker (tp) s (Z/pY~l0 (Z/p[Cp x Cp]/I) 0 (Z/pY~2, (1)

where /cZ/p[CpxCp] is the idéal generated by éléments (Sge*:g) for
subgroups XcCpXCpof orderp.

Write Cp x Cp &lt;g&gt; x (A), and let / &lt;1 -g, 1 - h) cZ/p[Cp x Cp] dénote

the Jacobson radical. Then

Furthermore, for any 1 &lt; * &lt;p - 1:

(1 - glh) 1 - [1 - (1 -g)]l[l - (1 - h)] ss i(i - g) + (1 - h) (mod J2)

and so

k

The déterminant of [(~0*K*=i is invertible over Z//? (a van der Monde
déterminant), and so

But Z2*&quot;1 0, and hence this implies that / /p~1. So as a group,

Z/p[Cp x Cp]/I {Zlp)11^-^ with basis

The resuit now follows from (1). D

In the above example, the fact that [G, G] was central helped to keep the
description of Vg simple. The next example illustrâtes additional complexées
which can arise when this is no longer the case. First, a lemma is needed.

LEMMA 4.2. Let G be cyclic of order pn(n &gt; 1) with generator geG.
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Then, for any

0 * a P2 *** ^ Z/p[G] (a, e Z/p);
1=0

Z/p[G]/(ûr) (Z/p)* (a^ groups), where

r p^1 / «&apos; \ / 1
fc minjm^0: 2^ I ja^O in Z/pr.

Proof By direct calculation,

1=0 1=0 1=0 m=o V/n/

r - i)m- (i)

Recall that Z/p[G] is a local ring with maximal idéal generated by (g - 1). So if
k is defined as above, then a-(g- l)ku for some unit u in Z/p[G], and

r*[Z/p[G]/(*)] r*[Z/p[G]/(g - 1)*] *. D

PROPOSITION 4.3. Set H (a) x (b) x &lt;c) Cj, JC &lt;x&gt; s Cp, anrf to
G &amp;e any extension of the form

such that

x — ab, xbx~l 6c,

SKX(ZG) a C/^ZG) (Z/p)3(p-1)a.

Proof The action of x on Q// fixes Q[H/{b, c)], and permutes the other
p2+p summands freely. Thus,
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where £ £p. The following table présents \pG, where the nonabelian
représentations are described by their restrictions to H:

Représentation U
Indexed by
E&apos;val(fl,&amp;,c;x) (1,

ty{a ® c)
ip(x ® c)
xt&gt;(a ® (1 - c))
%p{x &lt;8&gt; (1 - c))

t/;(c ® ac&quot;1)

V(c®gA:)(g€i/)

i,i; C)

i
ç

i
i
i
i
i
i
i

0=£m&lt;p
K, i, i; r)

ri
i
i
i
i
i

i

—

1

1

1

1

1

1

c
1

1

x,
0

(1

il

&lt;m&lt;p

1

1

ç

Ç5(l&quot;m)

«(0 E {r: 1 srsp, \r(r- l)-i (modp)};

5(0 #{r: l&lt;r&lt;p, ^r(r - 1) -1 (modp)}.

Note that solutions to \r{r - 1) i corne in pairs {r, p + 1 - r} (unless

r (p + l)/2). This shows that for ail /,

R(i)=e~S(i)^^S(i) (modp).

Identify Uxm {£) with Z/p[Cp], by identifying Xm with gm for some generator g of
Cp. Then

10 (z/p[Cp]/(2 gm, 2 mgm, 2 SO1 - m)gm (any i
m m
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where / is the idéal generated by

m k=l

By Lemma 4.2, we will be done upon showing that

tor Osn&lt;£Ti

for «=-2~

But the sum is a polynomial in k (over Zip) of degree exactly 2«; and (1) follows
since

-l min |m&gt;0: 2 *m + ° (modp)}. D

The groups covered above turn out to be the most difficult cases for
Computing SKt(ZG) when \G\=p4. In fact, ail other groups of order p4 are
covered by the following proposition (this can easily be checked directly, but also

follows from the classificastion in [9, section III. 12]).

PROPOSITION 4.4. Assume that G is non-abelian of order p4, and that there

subgroup H &lt;] G such that h

SKt(ZG)-a
(Z

(Z

Proof. Write

QG Q[Gab]

\&lt;ZG)&lt;*(Z/py

x M and CM

î Cp&gt;orH Cp

-&apos; j/ Gab Cp

if Gab Cp-

if Gab Cp

V Q[H/[G,G]]

2 x Cp. Then

xCp

&gt;*CP

*CpxCp.

xAf&apos;;

where M is a product of rank p matrix algebras over fields. Then the inclusion
M&apos;cMisa sum of inclusions of the form

f[ Qtpr s Mp(QÇpr); QÇpr+&gt; s MP(QÇ,) (r 1, 2).
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In particular, K2(ùp ®Q M&apos;)^ surjects onto K2(ÛP ®Q M)^. Since Clx{ZH) 0

[10, Theorems 4.4.1 and 5.1.1], this shows that

K2(ÙP ®Q M)w s Im [Vg : K2(ÏPG)-+ K2(ÙPG)^.

In other words, if Q[Gab] nf=i /^, then

C/^ZG) Coker [proj « Vc: /^(G; ZG)-&gt; fi (/V.)J-
L l=i J

If Gab Cp x Cp, with basis {a, b}, then Im (proj ° %1&gt;G) is generated by the
images of a ® 1 and b ® 1, and so SK^ZG) hs rank 0? + 1) - 2 p - 1. If
Gflft ss Cp, then there are generators a, b, c such that c e Z(G), and the
computation follows from the table in the proof of Proposition 5.1. The proof
when Gab Q x Cp is similar.Cp

It is interesting to note that for each of thèse classes of p-groups, the rank of
C/i(ZG) is a polynomial in p. This has already been remarked in the case of
abelian p-groups (see [1, Conjecture 5.8]); but is harder to formulate as a précise
conjecture in the non-abelian case.

Section 5

As another application of Theorem 1.4, we now study the relationship
between the complex Artin cokernel

AC(G) Coker []£ {RC(H): HczG cyclic} -^ /?C(G)1

of a finite group G, and Clt(RG) for large R.

First, epimorphisms

are constructed, for G any finite group and R the ring of integers in any number
field KcC (the identification of K as a subfield of C is needed when defining
1RG). The lRG are shown to be natural with respect to homomorphisms and
transfer maps, and then shown to be isomorphisms for sufficiently large R.

The following lemma on norm residue symbols will be needed.
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LEMMA 5.1. Fix a prime p, fix extensions E 2 F 3 ûp, and let fi c E* and

\i c F* D fi be groups of roots of unity. Then the diagram

K2(E) -^ fi

jtrff Ufi ri (1)

commutes; where )# a«d )M are tfie norm residue symbol homomorphisms.

Proof Set n |jû| and m |ju|. Fix ueF* and v e £*, and let E(a)/E be an
extension such that ocn m. The diagram

£* -U Gai (E(a)/E)
\nh, 1res

F* -U Gai (F(an/m)/F)

commutes by [23, Section XL3]; where s and 5 are the reciprocity maps and res is

induced by restriction. By [23, Proposition XIV.6],

(&quot;, NE/F(v)),=s(NE/F(v))(an/m)/an/m

[s(v)(a)/a]n/m ((ufv)ty/m. (2)

Since trff({w, c}) {m, Ne/f(v)} for m € F* and u e E*, this shows that (1)
commutes on the subgroup {F*, E*} ç K2(E). Furthermore,

trff({F*, £*}) {F*, NE/F(E*)} K2(F):

the last equality is shown in [14, Lemma] when Gai {ElF) is cyclic, and follows
from [6, Chapter VI, §2.2] (NEIF is onto) when Gai {ElF) is non-abelian simple.
Since K2{E) nE and K2{F) fiF are cyclic [12, Theorem A.14], it follows that

{F*fE*}^K2{E)(p) for any prime p\\K2{F)\, and hence any p | |ju|. So (1)
commutes.

Now fix a finite group G, and let AT c C be any splitting field for G: i.e., KG is

a product of matrix algebras over K. As in [20, Section 2], we define for each

prime p :

CP{KG) Coker [a:2(2«[-])-&gt; K2{ÊpG)j {Êp Qp ®Q K)

Coker [
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where 2Rc KG is any maximal order. Then CP(KG) is a p-group for ail p (since
K2($lp) is ap-group). Finally, set

Write KG IIf=i Bi9 where Bt End* (Vt) for each i, and Vu...,Vk are the
irreducible XG-modules. By results going back to Bass, Milnor, and Serre [5],
C(KG) 0 if K has a real embedding. If K is purely imaginary, then there is an

isomorphism

such that for any prime pcfi, and any units ueK* and v e (KP[G])*&gt;

Hère, {m, v} dénotes the image of

and

(,),:(*„)• x (*„)•-&gt;,!*

dénotes the norm residue symbol with values in /%. See [20, Theorem 2.2] for
more détails.

Thus, when ^çCis a splitting field for G and has no real embedding and

KG ïlî=iBt as above, an isomorphism ÏKG from RC(G) to C(KG) can be

defined as the composite

k k j
*-»- lIM &quot;ST* C(XCr) (m -

In other words, for each 1 &lt; i &lt; A:, we set

where [Vt] e RC(G) dénotes the class of C ® K Vr
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If K is a splitting field for G but has a real embedding, we set ÎKG 0

(C(KG) 0). If K c C is a number field which does not split G, set n exp (G)
and L #(£„), and define

Ikg trf£g°/LG :/?c(G)-* C(LG)-+ C(KG).

(Note that L is a splitting field for G by [5, Theorem 4.1.1].) This définition of the
IKG seems rather artificial; but the following proposition shows that thèse maps do
hâve ail desired naturality properties.

PROPOSITION 5.2. For any number field KœC and any finite group G, ÏKG

is surjective. The ÏKG are natural in that for any homomorphism a:G-+G offinite
groups, for any HcG, and for any pair K cLçC of number fields, the followng
diagrams ail commute:

/?, (G) ^ Rt (G) -^ /?, (H)

/0)\ ]/«,. (2) ]/.„ (3) J/k/,

C(LG) ^* C(KG) C(KG) &apos;-^ C(KG) ^ C(KH)

Proof The proposition will be proven in four steps. For finite G and arbitrary
XcC, we regard K0(KG) RK(G) as a subring of RC(G) in the usual fashion
(identifying [V] e RK(G) with [C®K V] e RC(G)).

Step 1. By construction, ÏKG is surjective if K splits G. To see that ÏKG is

surjective in gênerai, we must show for any G, and any number fields KcL, that
the transfer map

liiLK%:K2{LpG)-+K2{kpG)

is onto for each prime p (Lp ûp ®Q L, etc.).
Write KPG Ilf=i Afn(Dl), where the Dt are division algebras. For each i, set

Ft Z(Dt), the center, and let Et g D, be a maximal subfield. By [3, Corollary
4.15], #2(A) is generated by symbols {Ff, D*}; and hence K2(Et)^K2(Dt) is

onto by [14, Proposition].
Consider the following square, for each 1 &lt; i &lt; k:

Kx{L®KEt) -2SU K2(L®KD,)

i&lt; !¦¦

K2(E,) » K2(D,).
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Hère t, and t[ are the transfer maps. The square commutes since the two sides are
induced by tensoring with the bimodules

The map t[ is the product of the transfer homomorphisms for the field summands
of L®KE» each of which is onto by [12, Corollary A.15]. So tt is also onto. But
trfj^G ÏS isomorphic to the sum of the tt, and is hence surjective.

Step 2. Fix K and G such that K is a totally imaginary splitting field for G. In
particular, K0(KG) RC(G). For any finite dimensional (left) Â&apos;G-module V,
define

fv:C(K)-*C(KG)

to be the homomorphism induced by the functor

&gt; KG-mod.

If V is irredicible, then fv is just the Monta équivalence identifying C{B) with
C(K), where B c KG is the simple summand with irreducible représentation V.
So by définition,

Ïkg([V)) =/v(A^1(exp (2*î/m))); (m |^|) (4)

where kK: C(K)^^K is induced by the norm residue symbol. Both sides of (4)
are additive (fvmw =fv +/w)» so (4) holds for arbitrary V.

Step 3. We can now show the commutativity of triangle (1) above: that
!KG trfkg°Îlg for any G and any number fields XcLcC. It suffices to do this
when K and L both are totally imaginary splitting fields for G. In particular,

By (4), for any finite dimensional KG-module V,

Ïkg([V]) -MAjftexp (2*i7m))), (m

(n
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and it remains to check the commutativity of the following diagram:

\iL 4^ C(L) ^&gt; C(LG)
Lm (5) Jtrffe (6) jtrffeg

t*K -^ C(K) -^ C(KG).

But (5) commutes by Lemma 5.1, while (6) commutes since the two composites
are induced by tensoring with the bimodules

KGLG ®LG(L ®KV)L KGV ®KLL.

Step 4. Now fix a homomorphism &lt;x:G^&gt;G of finite groups, and a subgroup
H çG. We must show that (2) and (3) commute for any number field K :s C. If
L 3 K is any pair of number fields, then the squares

C(LG) S&gt; C(LG) A C(LH)
I I

trffec trffcg trffcg

C(/CG) ^^ C(/CG) ^ C(KH)

commute (just compare bimodules). So by (1) (Step 3), it suffices to prove the
commutativity of (2) and (3) when K is a splitting field for G, G and H (and
totally imaginary).

Fix such a K; in particular, K0(KG) /?C(G) and K0(KG) RC(G). Fix finite
dimensional modules V over KG and W over KG. Set

Then, by (4),

C(Ka)°ïKÔ([V]) C(Ka)ofv(x);

and
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So we will be done upon showing that the following triangles commute:

C(KG) C(KG)
fv

C(K)

fw

C{K)

C(KG) C(KH)

But they are induced by the following pairs of isomorphic bimodules:

5 VK and KHWK s KHKG ® KG WK;

and we are done. D
Again fix a finite group G and a number field XgC, and let R c Kbe the ring

of integers. Then Clx{RG) is described by a localization séquence

rg
2 K2(RPG)-» C(KG) &gt; C
p

(see [20, Theorem 2.1] for détails). We now consider the composite

Uc(G)-^ C(KG)-^ Ch(RG).

Both maps are natural with respect to induction from subgroups of G. Hence,
since ChiRH) SKt(RH) 0 for any cyclic Hc G by [1, Theorem 3.3], 3rg°Ikg
vanishes on any élément of /?C(G) induced up from a cyclic subgroup. Thus,
dRG°îfCG factors through â homomorphism

where AC(G) is the Artin cokernel.

THEOREM 5.3. For any finite group G, and any number field KcC with

ring of integers R,

IRG*Ac{G)-»Clx{RG)

is surjective. The IRG are natural in that for any homomorphism a:G-*G offinite
groups, any HcG, and any pair R^S of rings of integers in number fields, the
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following diagrams ail commute:

AL(G) MG) ^^ A (G) -^U A

Clx{SG) ^&gt; Cl^RG) Cl{{RG) ^^ Clx{RG) -^-+ Clx{RH).

Proof. For any R and G, /kG is surjective since IKG and S^g both are
surjective. The naturality properties follow from the corresponding properties for
the ÏKG (Proposition 5.2), and the naturality of the boundary maps dRG in the
localization séquences.

Now that the IRG hâve been constructed, we can finally apply Theorem 1.4 to
show that they are isomorphisms for sufficiently large R. For any finite G, ac(G)
will dénote the complex Artin exponent: the order of 1 e i?c(G) in AC(G). By
Frobenius reciprocity,

ac(G) exp04c(G));

i.e., ac(G) x is induced from cyclic subgroups for any x eRc(G). By the Artin
induction theorem [7, Theorem 39.1], ac(G) | |G|.

THEOREM 5.4. Let G be any finite group, and set n ac(G) • exp (G). Let
K be any numberfield such that £„ € K, and let Rç.K be the ring ofintegers. Then

IRG is an isomorphism: Clx(RG) AC(G).

Proof. This will be shown first for p-groups, then for p-elementary groups,
and finally for arbitrary finite groups.

Step L Let G be a p-group, and set pk ac(G), pm exp (G), and q =p*+m.
By Theorem 5.3(1), it will suffice to show that IRG is an isomorphism when

Let Cq be a (multiplicative) cyclic group of order q with generator z. Consider
the pullback square

lp[CqxG] -iU lpq
i i &lt;»

Zp[(Cq/z&quot;&quot;+m-&apos;) XG]^ Z/p[(Cq/z&quot;—&apos;) x G};
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where a is induced by: a(z) Çq. Then K2(fi) is onto by [17, Lemma 1.7] if
p &gt;2; or if p 2 since the only torsion in K1(t2[(Cq/zp&quot; x G], 2) is (-1) (see

[15, Proposition 2]). So by the Mayer-Vietoris séquence for (1), K2{a) is onto.
Now consider the following commutative diagram:

K2(ZP[Ç, x G]) &gt; C(Q[Cq x G]),,,) R, (G) ® I/q
(2) \*M&gt; *.| y&lt;^u Y1&quot;&apos; (2)

» 0

where the bottom row is exact [20, Theorem 2.1]. By Theorem 1.4,

K2(lp[Cq x G]) K2{1PG) © K2(lp[Cq x G], (1 - z))

K2(ÏPG) &lt;&amp;({h,l-{l- z)&apos;g), {z, 1 - (1 - z)&apos;g}:

heG,geCqxG,hg gh, i

It follows that

where with Ç

and

Recall that pm exp (G). Then

exp (X) | pm and exp ((pRG(A:2(lpG)))

Furthermore, by définition,

&lt;pRG(Y) s Im [2 {C(QÇ,[/f]): // £ G cyclic} -&gt; C(QÇ,[G])].

So by diagram (2) (recalling that q =pk+m):

Ker (d°ïKG) &lt;=pkRc(G) + Im [^ {«c(//): H S G cyclic} ^ flc(G)]

Ker [
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Since pk ac(G) exp (AC(G)),

Ker [IRG: AC(G) h» Clx(RG)] czpkAc(G) 0;

and so IRG is an isomorphism.

Step 2 Now assume that G is p-elementary: G CmxH where p | m and //
is ap-group. Set n flc(G) • exp (G), fix a number field KcC containing £n, and
let R be the ring of integers of K. Then

AC(G) Coker [^ {*c(Cm) ® /?c(«o): ^o ^ H cyclic}

On the other hand, the identification K[G] Ilm K[H] (each factor correspond-
ing to a character of Cm) induces an inclusion RG ^ïimR[H] of index prime to

p; and hence an isomorphism

m m

C/xCKG)^ s fi ChiRH)^ s II ^c(H) AC(G).

(see [17, Proposition 1.2]). Since IRG is onto, it must be an isomorphism.

Step 3. Now let G be an arbitrary finite group, set n ac(G) • exp (G), and
let /? be any ring of integers containing Ç. Let be the set of elementary
subgroups of G. For any We?, exp (H) \ exp (G) and ac(H) | ac(G), so /## is an
isomorphism by Step 2. Consider the following square, which commutes by
Theorem 5.3:

—=*-» at(RG)

2 a («) ^* S &lt;

Hee

In the language of [10], Ac(—) is a module over the Frobenius functor /?c(—),
and hence is detected by restriction to elementary subgroups. So £ Res^ is

injective in the above square, and lRG is an isomorphism.

By [4, Theorem XI.4.7], for any finite G,

\[ac{Gp\
P\\G\
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where Gp is ap-Sylow subgroup. Thus, the description of

ac(G) exp (AC(G)) max (exp (Clt(RG)))
R

reduces immediately to the p-group case.

If G is a non-cyclic p-group, then there is a surjection G-*&gt;Cpx Cp and an
induced surjection of AC(G) onto AC(CP x Cp). This last group is easily checked

to be non-zero (see [1, Lemma 5.5] for détails). Thus, for any finite G, AC{G) is

p-torsion free if and only if Gp is cyclic, AC{G) 0 if and only if G is metacyclic,
and thèse in turn imply similar statements about the Clx{RG) (and SKX(RG)). In
fact, for fixed p and R such that £p e R (or Ç4 € R if p - 2), and any G,

CltiRG)^ 0 if and only if Gp is cyclic (see [1, Theorem 3.5]).
A gênerai description of ac(G) has been given by Gluck [27]. The formula is

much more complicated than that for the rational Artin exponent aQ(G) given by
Lam [11]. If G is non-cyclic, and abelian or of exponent /?, then ac(G)
ûq(G) (1/p) |G|. On the other hand, if G is a semidihedral 2-group, then
û&lt;c(G) 2 (aQ(G) 4); and if p is odd and G a non-abelian group of order p3 and

exponent p2, then ac(G) -p (aQ(G) =p2).
To end, we note that Theorem 5.3 allows a new interprétation of the foliowing

resuit in [13] (Theorem 1).

COROLLARY 5.5. Let G be a finite group, and let R be the ring ofintegers in
some number fteld. Then Cli(RG) is generated by induction from elementary
subgroups of G.

Proof. By the Brauer induction theorem, Rc(G), and hence AC(G) are
generated in induction from elementary subgroups of G. The resuit follows since

IRG: AC(G)~» Clx(RG) is natural and surjective.
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