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The fondamental group of compact manifolds without conjugate
points

Christopher B Croke(1) and Viktor Schroeder(2)

I. Introduction

The purpose of this paper îs to prove the followmg

MAIN THEOREM Let N be a compact mamfold that admits an analytic
Riemannian metnc without conjugate points Then every abelian subgroup of

is straight

A Riemannian metnc is said to hâve no conjugate points if the exponential
map exp* TXN-* N is non-smgular for every x e N The straightness property of a

subgroup of a group is an algebraic property that we define below First however
we mention some conséquences of the main theorem

THEOREM A Let N be a compact mamfold that admits a Cx metnc without

conjugate points Then every nilpotent subgroup of nx(N) is abelian

THEOREM B Let N be as in the main theorem Then every solvable
subgroup Z of Jti(N) is a Bieberbach group In particular E has a finite index
abelian subgroup

Theorem A is sigmficantly easier to prove than Theorem B, as îts proof relies

only on the fact that cychc subgroups are straight (We prove the straightness of
cychc groups also in the CT-case, see Lemma 3 1

To define the notion of straightness we introduce the word norm | |r of a

finitely generated group F Let {yu yp) be a set of generators for F Then
for y e F, |y|r is defined as the length of the shortest word in the y/s and y,&quot;1^

representing y Of course, this norm dépends on the choice of generators
However, as ît is easy to see, différent sets of generators give ose to équivalent
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2 Research supported by M S R I
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norms. That is, if | |^ and | \2r are two such norms then there is a constant c such

that (1/c) \y\r^ |y|r^c \ï\r for ail y e F. A finitely generated subgroup F{)&lt;z Fis
called straight in F if | \F{) and | |r are équivalent norms on F{). (Note that this
notion is independent of the choice of generators on Fo or F.)

Thèse types of theorems hâve been considered under stronger assumptions on
the Riemannian metric. The case where M admits a metric of non-positive
sectional curvature (K^O) was considered by Lawson and Yau [L-Y] and by
Gromoll and Wolf [G-W] in the early 1970&apos;s. Among other things they prove
that a solvable subgroup of kx(M) must be Bieberbach and that M contains a

corresponding flat manifold (see [C-E], Theorem 9.1 and Corollary 9.7). This
was generalized by O&apos;Sullivan in 1976 [OS] to the case where M has a metric
without focal points. In [G] Gromov discusses the question of straightness of
abelian subgroups in the gênerai setting of convex length spaces.

Ail of the above assumptions and proofs involve the convexity or monotoni-
city of certain functions. If M is a simply connected manifold of non-positive
curvature and cu c2 geodesics of M with c^O) c2(0), then the distance function

f(t) d(ci(t), c2(0) is convex; if M has no focal points, then the distance function

/is monotone increasing on [0, °°), compare also the discussion in [E-OS]. The

assumption of no conjugate points is équivalent to the synthetic condition that

any two points of M can be joined by a unique géodésie. Note that either
condition &quot;non-positive sectional curvature&quot; or &quot;no focal points&quot; implies &quot;no

conjugate points&quot;. The converse is not true by a resuit of Gulliver [Gui].
Instead of using the convexity or monotonicity of the distance function we use

the concept of Busemann functions. Thèse functions are the main tool in our
argument.

A major open question about compact manifolds without conjugate points is

the following problem, which is often called the &quot;Hopf-conjecture&quot;:

CONJECTURE. Any Riemannian n-torus without conjugate points is flat.

E. Hopf solved this problem for the 2-torus [H], compare also the results of
Green [Gre]. The gênerai case of the n-torus is easy to see under the stronger
condition of non-positive curvature and was proved by Avez [A] under the

assumption of no focal points. If the conjecture is true (a question that is still very
much open) our theorems would imply that if N is a compact Riemannian
manifold without conjugate points such that nx(N) is nilpotent or x^N) is

solvable (and the metric is analytic) then the metric must be flat.
We remark thât the compaetness condition of the main theorem is crucial

even under the assumption of négative curvature. For example, let N be a

noncompact quotient with finite volume of the complex hyperbolic plane. Then
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the subgroup of jï\(N) coming from a parabolic end (cusp) of N contains the

Heisenberg group and thus a non-straight cyclic subgroup by Lemma 4.1.
We should say a few words about the analytic assumption in the main theorem

and in Theorem B. The full strength of the analytic assumption is never used and
the theorems should remain true assuming only a C°° metric. For our proof we
need only assume a weak rectifiability condition (condition *) on the set of points
which lie on shortest closed geodesics in a given free homotopy ciass. This
condition is defined precisely before Lemma 2.4, and is clear in the analytic
setting.

The paper is organized into four sections the first of which is this introduction.
In the second section we prove the main technical resuit, Proposition 2.5. This

says that in the universal covering M of N the Busemann functions associated to
two différent axis of the same élément of Jt\(N) differ by a constant. In the third
section we prove the main theorem. The fourth section contains the algebraic
results needed to prove Theorems A and B.

The authors would like to thank W. Thurston, S. Gersten, and M. Gromov
for conversations about Section IV, and R. Edwards for pointing out some

topological pathologies. We also thank V. Bangert, M. Berger and the référée for
information about the history of the &quot;Hopf-conjecture&quot;.

II. Technical lemmas

Let N be a compact CT-smooth n-dimensional Riemannian manifold without
conjugate points. We consider N as M IF, where M is the universal covering space
and F — jt^N) is the group of deck transformations, acting as isometries on M.

The exponential map expx:TxM—&gt;M is a diffeomorphism for every point
x e M. As a conséquence, any two points in M can be joined by an (up to
parametrization) unique géodésie. Because there are no eut points, the distance

function d:M xM—&gt;(R is smooth outside the diagonal. AH geodesics c:M-+M
will be parametrized by arc length.

For a géodésie c the Busemann-function bc of c is defined by

bc(x)-lim(d(x,c(t))-t).

Note that the function t*-*(d(x, c(t)) -1) is monotone non-increasing by the

triangle inequality. Therefore bc is well defined. We recall the following
properties of Busemann functions (cf. [E]).

(i) Busemann functions are C^-smooth.
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(ii) The gradient Vb( has norm equal to 1. In particular, bc is Lipschitz with
constant 1.

(iii) For given xeM, there is a unique géodésie g with g(0) x and

b&lt;(g(0) ft&lt;(g(0)) ~ L The géodésie g is determined by g(0) -Vbc(x).
(iv) It follows from (ii) and (iii) that for given x e M and r &gt; 0 there is a

unique point y with d(x, y) r such that bc(y) — b((x) — r. The point y equals
g(r) in the notion of (iii).

Remarks, (a) If c(t): c(t + a) is another parametrization of c, then bf(jc)
b((x) — a. Thus, using an orientation preserving reparametrization of c we can
normalize bt to be zéro for a given point x{).

(b) The géodésie g given by (iii) is called asymptotic to c. Thus through every
point x e M there is a unique géodésie asymptotic to c. The notion of asymptotic
dépends only on the oriented géodésie c and not on the particular parametrization
of c.

WARNING. It is not known in gênerai, whether the relation &quot;asymptotic&quot; is

symmetric (cf. [E]). The purpose of this section is to prove, in the spécial case

that both c and g are axes of the same isometry y, the even stronger statement
that bg — bt is constant.

For an isometry y:M-&gt;Mwe define the displacement function dy:M-+R by

dy(x):=:d(xf yx). Since d is differentiable outside the diagonal, dr is

differentiable, if y has no fixed points. A géodésie c : R —&gt; M is called an axis of y,
if there is a constant L &gt;0 such that yc(t) c(t 4- L) for ail t eU. For yefwe
define Ax(y) to be the set of ail points which are contained in an axis of y.

LEMMA 2.1. Let N - MIT be compact and y e F be a nontrivial élément.

(1) Then dr assumes a positive minimum, min dy.

(2) The set Ax(y) is equal to the set of critical points of dy. Furthermore Ax(y)
is the set, where dy assumes the minimum.

(3) For m ^ 0 we hâve min dY»&apos; m • min dy.

Remarks, (a) Note that (2) implies in particular that every axis of y is

translated by the same amount, namely by mindy.
(b) For every x e M and every y € F the displacement dy(x) is the length of an

essential (non-contractible) géodésie loop in N. Namely the projection of the

géodésie from x to y(x). Hence in particular min dy ^ sys (N), where sys (N)
represents the length of the shortest essential géodésie in TV. The proof of (2) also

implies that bc(yx) - bc(x) min dy ^ sys (N) for ail axis c of y and ail x e M.
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Proof. (1) Let x, e M be a séquence with dy(xt)-^ infX€A# rfy(jc). Since N MI
F is compact, F has a compact fundamental domain. Hence there are éléments

y, e Tsuch that the séquence yt{xt) is bounded. Choosing a subsequence, we can
assume that y,(x,) converges to yeM. Since drtyyr\{Yl{xl)) dy{xl) which is

bounded and dyiyYt-\{yl{xl)) *s approximately dyyr-i(j) for large i, we see

dyiYyr\(y) is bounded. Since F opérâtes discretely, there exists aeF such that
YiYY7l ~ ocyoc&apos;1 for a subsequence. Thus liml^ycdy(xl) daya-i(y) dy(a~1(y)).
Therefore dy assumes the minimum, mindy.

(2) We compute the gradient of dy. For xeM, let V+(x)(V~(x)) be the
initial vector of the géodésie from x to y(x)(y~l(x)). We claim that Vdy(x)
~(V+(x) + V~(x)). To see this let c:[0, dy(x)]-*M be the géodésie from x to
y(x). For weTxM let c^&apos;.R-^Af the géodésie with cw(0) w. Using the first
variational formula, we compute

(dyoCJ&apos;(0) (c(dy(x)), y*w) - &lt;c(0), iv&gt;.

By applying y*1, we hâve

Thus we see that (Vdy(x), w) -(F+(jc) -f V~(x), w) for ail w e TXM and the
claim follows. If x is contained in an axis of y, then clearly V+(jc) — V~(jc) and

x is a critical point of dy. On the other hand, if x is critical, then V+{x) — V~(jc)
and x, y(x) and y&quot;1^) lie on a unique géodésie c. Therefore y leaves c invariant
and c is an axis of y.

If dy is minimal at jc, then x is critical and hence contained in an axis of y. It
remains to prove that dy assumes the minimum on every axis. Therefore let
c : M -» M be an axis with yc(t) c(t + L) for L &gt; 0. Then, for ail jc € M,

lim (d(x, c(t - L)) -1)

bc(x)-L

Since bc is a Lipschitz function with constant 1, it follows that dy(x)^L
dy(c(0)). Thus dy assumes the minimum on c.

(3) An axis of y is also an axis of ym, hence min dy™ is achieved on Ax(y). On
an axis it is clear that dy&gt;* m • dy.
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Now let a e F be an élément which commutes with y. Then dr(a(x))
d(ya(x), ût(jc)) d(ay(x)y cx{x)) dr(x). In particular a leaves Ax(y), the

minimal set of dyy invariant. This observation implies that dy induces a well
defined function dy on M/Z(y), where Z(y) is the centralizer of y in F.

LEMMA 2.2. The function dy on MIZ(y) is proper.

Proof. Let a be a positive constant. We hâve to prove that Sa:={xeM/
Z(y) | dy(x) ^ a} is compact. Let x, be a séquence of points in Sn and let x, e M be

such that Jt(x() =x, where jt:M—*M/Z(y) is the canonical projection. Since Fis
cocompact there are y,eF such that y,(jO lie in a fixed compact set D (a

fundamental domain). Hence some subsequence converges to y e D. As in the

proof of Lemma 2.1 we see dy,yy(-i(y,0O) dy(xt) ^ a, hence dyyyri(y) ^ a +1 for
i large enough. Thus by the discreteness of F there are only a finite number of
YiYYT1- Passing to a subsequence we may assume yjy^1 YjYY^1* hence

y;lyteZ{y). Since diy^yfa), x;) d(yl(xl), y;(x7))^diameter (D), we see

d(xn Xj) ^ diameter (D). Hence some subsequence converges.

We dénote by Àx(y) the set jt(Ax(y)) c MIZ{y). Thus Â*(y) is the set of
minimia of dy and also the set of critical points. Since dy is proper, Àx(y) is

compact.

LEMMA 2.3. 7fte set Âx(y) cz M/Z(y) is connected.

Proof. Let (/ and V be disjoint open sets with Àx(y) œ UUV. Let « be the
infimum of dr on M/Z(y) - (UUV). Then a&gt;mindy and Ua:={xeM/
Z(y) \ dy(x) &lt; a} contains Âx(y) and is contained in UUV. Since dy has no
critical points outside Ua&gt; this set is connected by Morse theory. Therefore Ua and

hence Âx(y) is either contained in U or contained in V. D

We define a subset ^4 of a manifold V to be locally rectifiably path connected,

if for x e A and every 6 &gt; 0 there exists a &lt;5 &gt; 0 such that if y e A and d(x, y) &lt; ô,

then there is a rectifiable path in A from x to y staying in the e-ball around x.
For the rest of this section we make the assumption

(*) The set Âx(y) is locally rectifiably path connected.

Note that because Âx(y) is compact, we can choose &lt;5(e) uniformly for ail

x €Àx(y).
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Remark. If the metric on N is real analytic, then dy and dy are analytic and
the set Âx(y) is an analytic variety which clearly satisfies (*).

LEMMA 2.4. // we assume (*), then any two points x and y in Ax(y) can be

joined by a rectifiable path in Ax(y).

Proof. Let jt:M^&gt; M/Z(y) be the projection and choose e &gt;0 small enough
such that jï is a diffeomorphism on each e-ball in M. If x&gt; yeAx(y) with
d{xy y) &lt; ô{e)y then n(x) and Ji(y) can be joined by a rectifiable path in Âx(y)
contained in the e-ball around Jt(x). We can lift this bail to M and obtain a

rectifiable curve from x to y contained in the 6-ball around x. One checks easily
that Ax(y) Ji~l(Âx(y)), hence the curve is contained in Ax(y).

We now prove that Ax(y) is connected. Let L: mindy. Then for rj &gt;0 the

set ÛL+V := {Je € M/Z(y) \ dy(x) &lt; L + y]} is connected and diffeomorphic to
M/Z(y) by Morse theory. By lifting this set to M we see that UL+V {x e

M | dy(x)&lt;L + ï)} is connected for ail rj. For t] small enough, 0L+ri is contained
in the ô/2-neighborhood Tô/2(Âx(y)) and therefore UL+ri &lt;z Td/2(Ax(y)). Hère
ô ô(e) as above.

It follows that any two points in Ax(y) can be joined by a path, which is

contained in Tô/2(Ax(y)) and as a conséquence Tô/2(Ax(y)) is connected. Thus, if
Ax(y) is not connected, then there are two différent components of Ax(y) with
distance smaller than &lt;5 and hence there are points x, y eAx(y) in différent
components with d(x, y)&lt;ô. But this contradicts to the first part of the proof.

Thus Ax(y) is connected. Now, using the fact that nearby points in Ax(y) can
be joined by a rectifiable path, it is easy to prove that the set of points in Ax{y)
which can be joined to a given x e Ax(y) by a rectifiable curve is open and closed.
Therefore any two points in Ax(y) can be joined by a rectifiable path in

Ax{y).

PROPOSITION 2.5. We assume (*). Let c{ and c2 be axes of an élément y e F
and let bx and b2 be Busemann functions of cx and c2. Then bx — b2 is constant on

M.

Proof. Let c be any axis of y, then yc(t) c(t + L) for L mindy. By the

proof of Lemma 2.1(2) we see &amp;,(c(L)) &amp;,(yc(0)) 6f(c(0)) - L for i 1, 2.

Thus the properties (iii) and (iv) of Busemann functions imply c(0) —Vb,(c(0))
and hence V{bx-b2)^Q on Ax{y). Furthermore bt(c{t)) b,(c(0)) -t for
teU by property (iii). We now claim, that for ail x e M(b{-b2)(c2(0))^
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(6, - b2)(x) ^ (bi — b2)(cx(0)). To see this we compute for arbitrary s

&amp;,(*) Jim (d(jr,c,(0)-0

^ lim (d(x, c2(s)) + d{c2(s), c,(r)) -1)

The first part of the proof implies

,(^())-s
and thus

b^x) ^ (d(x, c2{s)) - s) + b {(c2(0)).

For s —» 3° we obtain

and because 62(c2(0)) 0 we hâve

(bl-b2)(x)^(bl-b2)(c2(0)).

By interchanging the rôles of cx and c2 we obtain the other inequality of the

claim.

By Lemma 2.4 we can connect c{{G) and c2(0) by a rectifiable path in Ax(y).
Since (b{ — b2) is Cl and V(61-fe2) 0 on Ax(y) and hence on the rectifiable

path from c{(0) to c2(0), it is not difficult to prove, that (b{- b^c^O))-
(bx - &amp;2)(c2(0)) and therefore (bY — b2) is constant.

Remark. We used (*) only to prove the existence of a rectifiable path from
c^O) to c2(0) in Ax(y). At first glance, it seems that the connectedness of Âx(y)
and the fact that V(fc, - b2) is identically 0 on ^4x(y) implies that {bx - b2)(ci(0))
equals (bx -b2)(c2(0)). But we only know that the function {bY -b2) is C1 thus

we cannot use Sards theorem to prove that this function is constant on the

connected components of the critical set. In fact, Whitney constructed a

Cl-function on U2 which is not constant on the components of its critical set.

For y e F we define br to be the Busemann function of an axis of y. By
Proposition 2.5 br&apos; is well defined up to a constant. Thus, if we normalize the

function such that by(xo) 0 for a given point xQeM, then by is well defined.

Proposition 2.5 has the following corollary.
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COROLLARY 2.6. // a commutes with y, then by(a(x)) - by{x) is independ-
ent ofx.

Proof. By définition by(x) bc(x) for an axis c of y. Since bc(ax) ba-\c(x)
and a~[c is also an axis of y, Proposition 2.5 implies that bc{ax) — bc(x) is

independent of jc.

III. Proof of the main theorem

In this section we prove the main theorem. But first, we prove the (easy)
lemma which will allow us to prove Theorem A.

LEMMA 3.1. If N is a compact manifold that admits a C°° metric without
conjugate points then every cyclic subgroup F0of r n\(N) is straight.

Proof. For any éléments oc&gt; /? € F we hâve d(a/3(x), x) ^ d(afi(x), a(x)) +
d(a(x), x) d(p(x), x) + d(a{x), x). Hence if {pl9 j8p} is a set of gener-
ators for T and y frf • 0*1 j8ff, we hâve rf(y(x), jc) ^ E; ^^(x), x) ^
q • (max {&lt;/(&amp;(*)&gt; Jt)}). Thus we see that d(y(x), x) ^ (max, {d(pt(x), x)}) • |y|r
for ail y e F and x e M.

Choose a set of gênerators {a, plf /3P} for Fcontaining a gênerator oc of
Fo. Since lo^lr^/i |arw|ro, we need only show that la^l^const. n. Fix xQeM.
Now d(an(x0), x0)** min da&quot; n -mind^ by Lemma 2.1.3. Hence we can take

const min d^/max, {d(/3,(*o)&gt; jc0)}.

For the remainder of this section we assume that the metric satisfies condition
*. We also choose, once and for ail, a point xoeM and normalize ail Busemann
functions (by adding a constant) to be 0 at jc0.

We will now consider an arbitrary abelian subgroup Fo of F jïi(N). Since

there are no torsion éléments in T(from Lemma 2.1.3), Fi} is isometric to Zk for
some k. We choose, once and for ail, a basis al} ock of FQ. Using this basis

we can identify Fo with the integer lattice Zk in Rk by the correspondence

LEMMA 3.2. For every yeF0 we hâve bY(aV • ocl1 ankk(x0))

Ef=i rtjftyCar,). In other words the induced map bY:Zk-*M is linear

(by(nu ...,nk)~ by{aV *
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Proof Let px and p2eF0. By Corollary 2.6 by(pxp2(x0)) - by(p2(x0))
bY(Pi(x0)). Hence by(Pxp2(x0)) by(pxp2(xQ)) - by(P2(x0)) + by(P2(x0))
by(px(x0)) + by(p2(x0)). Applying this repeatedly yields the lemma.

LEMMA 3.3. There exists a choice of y, e Fi)} i 1, fc and a constant
cx&gt;0 such that for every P e F() there is an i e {1, k} with \bYi(P(x{)))\ ^
ci |/3|r«.

Proof By the previous lemma fty acts linearly on F() Zk aMk. Hence we can
extend by to a linear map ry : Uk —» M. The lemma is proved by finding y i, y*
such that ryi, ryA are linearly independent.

Assume, for now, that we hâve found such a y,, yk. Then we can
construct a linear isomorphism r:R*-»IR* by u—&gt;(ryi(i;), rYk(v)). On the
domain Rk consider the norm \(xu xk)\D Ef=i |jc,|. On the range we take
the norm \{yXy ^Jl^ max, \y,\. Since r is a linear isomorphism and ail norms
are équivalent there is a constant c, such that for ail v e R\ H^U ^ ci \v\d- For
u a lattice point we see that this is exactly the conclusion of the lemma.

We now need to find yx, yk such that ry(, rYk are linearly independent.

Assume we hâve found y,,..., y, with j&lt;k and ryi, rY linearly
independent. We need to find yJ+l. Let K be the common kernel of ry,,..., rYi

(i.e. the intersection of the kernels). K has dimension ^1 (in fact, by the

independence of {ry }, dim K k — j ^ 1).

We daim that there is a constant c2 such that for every y e F() we hâve

lry(u)l ^C2 \v\e&gt; where \v\E represents the Euclidean norm in Rk. To see this let

v (au f ak). Then, using the fact that |&amp;y(y)| ^d(y, x()) (since |V&amp;y| 1), we
hâve

\rY(v)\ 2 k|)(max |fty(ar,

We now choose a lattice point yy+1 such that the distance in R* between y/+1

and K is less than sys(N)/2c2. Recall, as mentioned in the remark Lemma 2.1,
that |&amp;y(y(x0))| ^ sys (N) for a11 7 € r- Let uo 6 ^ be such that
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Then rY;+1(u0) rY;+1(y,+0 + rYy+1(u0 ~ y,+i), hence:

c2^ ^&gt;0.
2c2 2

In particular rY (i/()) =f 0, while rYi(i/0) 0 for ail / e {1, 2, /}. Hence

rYl, rr+] are linearly independent and the lemma follows.

Proof of the main theorem. Given an abelian subgroup F()aF with a fixed set

of generators or,, ak, extend this set to a set of generators {/?,} of F. Let
| |ro and | |r represent the word norms with respect to thèse sets of generators.
By the choice of generators, y e Fo implies |y|r,,^|y|r- Hence to prove F() is

straight in F we need only find a constant c^ such that for every y g Fl)t

\ï\r^c,\y\n,
To see this let c, be the constant from Lemma 3.3 and c4

max, {d(/?;(jt0), jc())}. By the first paragraph of the proof of Lemma 3.1 for y e F,

|y|r^(l/c4)d(y(jc0), x()). Fix y e F{) and let yp be the élément of F{), guaranteed
by Lemma 3.3, such that |6Y/,(y(jc0))| ^cx |y|r(). Combining thèse yields:

|y|r &gt;- d(y(jc«), *,») ^- iMrt*»))!^ |y|r«.
C4 C4 C4

Hence the theorem is proved.

IV. Theorems A and B

In this section we prove the algebraic results which are needed to prove
Theorem A and Theorem B. We need a slight extension of the concept of straight
subgroups. Let F be any (not necessarily finitely generated) group and F{)aF a

finitely generated subgroup. Then F{) is called straight in F if for every finitely
generated subgroup F&apos; with rocr&apos;c F, F{) is straight in F&apos;.

LEMMA 4.1. Let F be the Heisenberg group. {That is F is generated by two
éléments oc and /? andfurther the élément y [a, /?] commutes with a and with /?.)
Then the cyclic group generated by y is not straight.
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Proof. Let | |r be the norm of rdefined by the generators a and /?. Since (3

commutes with [a, /?], p also commutes with [/J, a~[]. Therefore we see:

y4=

a[a, fS][a&gt;

By induction we hâve y4&quot; [&lt;x2\ j82n], and hence |y4&quot;|r^4 • 2&quot;. It follows that

limm_^c(l/m) \ym\r 0 and therefore the group generated by y is not

straight.

Because every non-abelian and torsion free nilpotent group contains a

Heisenberg group, we hâve the following conséquence.

LEMMA 4.2. Let F be a torsion free nilpotent group. If every cyclic subgroup

of F is straight, then F is abelian.

We now focus on solvable groups.

LEMMA 4.3. Let F be a torsion free solvable group. If every abelian

subgroup of F is finitely generated and straight, then F is a Bieberbach group.

Before we prove the theorem, we recall some facts about crystallographic

groups. A group F is called crystallographic if F is isomorphic to a discrète

cocompact subgroup of the isometry group Iso (Un). A crystallographic group Fis
called Bieberbach group if Fis torsion free. Then a group Fis a Bieberbach group
if an only if F is isomorphic to the fundamental group of a compact flat
Riemannian manifold. Crystallographic groups can be characterized algebraically
(see [W], Theorem 3.2.9).

(**) A group F is crystallographic, if and only if F has a normal free abelian

subgroup F* of finite rank and finite index in F which is maximal abelian in
F. In that case, F* is unique.

Proof (of Lemma 4.3.). By induction on the length of the derived séries we

can assume that the commutator subgroup [F, F] is a Bieberbach group. By the
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characterization (**) there is a unique maximal abelian normal subgroup A of
finite index in [J\ F].

We first claim, that A is a normal subgroup of F. Since [r, F] is normal, any
conjugate subgroup yAy~x is contained in [r, F], Since A is the unique maximal
abelian normal subgroup of [F, F] and yAy~x satisfies the same properties, it
follows that yAy~l=A for ail yeF and hence A is normal. Therefore the
centralizer Z(A) of A in Tis also a normal subgroup. Since A is maximal abelian
in [r, F], we see that Z(A) n [r, r] -A. As a conséquence [a, [j8, y]] is trivial
for a, jS, y e Z(A). Thus Z(A) is nilpotent and indeed abelian by Lemma 4.2.

The group F acts by conjugation on Z(A). Let us consider the map
K:F—&gt; Aut (Z{A))y where K(y) is the conjugation a^&gt;yay~x. Note that the
kernel of K equals Z(^4). We will show that K(y) has finite order for ail yeF.
Assuming this resuit for a moment, we prove that Fis Bieberbach.

By our assumption, Z(A) is isomorphic to Zk for some k and hence

Aut(Z(^)) is isomorphic to SL* (Z). By Selbergs-Lemma, (cf. [B], p. 38),
SL* (Z) has a torsion free subgroup of finite index. Because every K(y) is torsion,
we conclude that K(F) is finite and Z(A) kernel K has finite index in F. Clearly
Z(A) is maximal abelian. By (**), ris crystallographic and because it is torsion
free, a Bieberbach group.

Thus it remains to show that K(y) has finite order or equivalently, that there
exists m € N with ym e Z{A). Let Z(A) be free abelian of rank k and choose

generators ocx&gt; ock of Z(A). We dénote by | |Z(M) the word norm with respect
to thèse generators. Let F&apos; be the group generated by ocXt. ak and y with
word norm | |r. The straightness of Z(A) implies that there is a constant C such

that for oc e Z(A).

Furthermore by the choice of the generators of Z(A) we hâve

Now let peF&apos; and a e Z(A). Then it is easy to check that [/?, a] e Z(A) D

[F,F]=A. Therefore a commutes with [/?, a] and hence also with [ar, jS&quot;1].

Hence we compute:
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and by the same argument [j8, a]m [j8, a&quot;1]. We now apply thèse formulas for
/? yp and a a,

m

m

Because this formula is true for ail m e N, we see \[yp, a&gt;/]|Z(i4)^2C. Since there
are only finitely many éléments in Z(A) with norm =^2C there are p &lt; q with

[yp, a,] [yq, a,] for ail / 1, k.

It follows that ym yc/-/&gt; commutes with ail generators an thus K(ym) is trivial.

Proof of Theorems A and B. Theorem B follows from the main theorem and

Lemma 4.3. To see this, one notes that our solvable subgroup I czF~ jt{(N) is

torsion free since Fis torsion free. Hence to apply Lemma 4.3 we need to show

every abelian subgroup FoczZ is straight. But the main theorem tells us Fo is

straight in F and it is easy to see, by choosing appropriate generating sets, that if
^cFc F and ail are finitely generated then Fo straight in F implies Fo straight in
F&apos;.

Theorem A follows similarly from Lemma 3.1 and Lemma 4.2.
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