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The topology of a moduli space for linear dynamical Systems

Uwe Helmke

1. Introduction

Several basic questions in linear control theory are related to problems
concerning the topology of spaces of linear dynamical Systems as e.g. the orbit
space Xn,m,P(F) of controllable linear Systems given by

y(t) Cx(t)

(with m inputs, p outputs and state space Fn) or the space Ratn&gt;mp (F) of ail p x m

proper rational transfer matrices

G(s)= C(sl- AYXB eFpxm(s)

with McMillan degree n.
To illustrate this point a bit, we recall (Hermann and Martin [17]) that any

rational transfer matrix G6Ratnmp(F) defines a unique holomorphic map
&lt;pG :Pi(C) -? Gm(Cm+p) into the Grassmann manifold Gm(Cm+p) which sends each

sgC to the graph of the linear map G(s):Cm -&gt;CP. Moreover, in this way the

space Ratnmp(C) is identified with the complex manifold of ail holomorphic maps

of degree n, which satisfy the base point condition &lt;p(°°) Cm-

By means of this construction, Hermann and Martin [17] proved that the

System theoretically defined McMillan degree of a transfer matrix G (s) is equal to
the first Chern class of a certain holomorphic vector bundle £G on Pi(C), hence a

topological invariant. Hère £G is defined as the pull back of the dual bundle 17* of
the universal vector bundle U on Gm(Cm+p) via the Hermann-Martin map

630
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(pG:P1(C)-&gt;Gm(Cm+p). Moreover, the Birkhoff-Grothendieck décomposition

turns out to be équivalent with Brunovsky&apos;s canonical form [5], which is of well
known importance in Systems theory; see [15], [17], [24].

We further note that the space RdLtnmp (C) of linear Systems and in particular
the manifold Ratnm&gt;1 (C) of based holomorphic maps from Pt(C) to Pm(C) arises
also naturally in physics, namely in the so-called &quot;nonlinear cr-models&quot; of
two-dimensional Yang-Mills theory; see e.g. Atiyah [1], Atiyah and Jones [2].

Despite the great importance of the moduli spaces Ratnmp(F) their topology is

still not sufficiently understood. Partial results hâve been obtained by e.g. Broc-
kett [4], Byrnes and Duncan [9], Delchamps [11], Segal [25]; see also [16] and
section 5 of this paper.

In this paper another natural class of linear dynamical Systems is studied: the
orbit space 2n&gt;m(F) of ail controllable linear Systems. This space 2n,m(F) has the

advantage to be easier to analyse than Ratnmp(F), furthermore the vector bundle
J£nmp(F) on Xn,m(F) (defined in section 5) may serve as a &quot;partial compactifica-
tion&quot; for Ratn,m,p(F).

To define 2n,m(F), recall that a linear dynamical System

(A,B):x(t)

with x(r)€Fn, u(t)e¥m, AeFnXn, BeFnXm, (F R or C) is controllable iff the

generic rank condition rk (B, AB,..., An~1B) n holds. This condition implies
that for any states x0, xx in Fn and times to&lt;tx there exists a control function u on
[f0, tt] and a solution x(t) of (A, B) with x(to) xo, x(t1) x1.

Let tn,m(F): {(A,B)GFnXnxFnXm|rk(B,AB,...,An-1B) n} dénote the

Zariski-open set of ail controllable Systems (A, B). Any linear change of coordi-

nates z Sx in the state space Fn transforms (A, B) into the équivalent System

(SAS~\ SB) :z(t) SAS^zd) + SBu(t).

This defines an algebraic group action on 5n,m(F)

a:GLn(F)xtn,m(F)-&gt;tn,m(F)

(S, A, B) m&gt; (SAS~\ SB),
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called the similarity action on Jïnm(F). Each two similar Systems (A, B),
(SAS&quot;1, SB) hâve the same systemtheoretic properties. Therefore the orbit space

of the similarity action should be viewed as the true space of ail controllable linear
Systems.

We always endow Xn,m(F) with the quotient topology.
Previous work of Hazewinkel, Kalman [13], [14], Byrnes, Hurt [7], [10] has

shown that £n,m(F) is a connected algebraic manifold of dimension mn; 2n&gt;m(F) is

non-compact and for n 1 or m 1 there are difïeomorphisms

5n,1(F)^Fn (1)

X1,m(F)^FxPm_1(F) (2)

In particular JSn&gt;m(F) is a generalization of projective spaces.
Byrnes [7] has shown that J£n&gt;m(F) is homologically nontrivial for m&gt;l by

finding lower bounds for the Betti numbers. In [6] the author constructed a cell
décomposition of 2nm(F) to détermine the Betti numbers. By a direct calculation
it was found that 2n,m(C) has the same homology groups as the Grassmann
manifold G^C™4^&quot;1). However the method of [16] worked only over the field of
complex numbers F C. In this paper a différent cell décomposition of £n,m(F) is

constructed which will enable us to compute also the mod2 Betti numbers of
2n,m((R). By combining thèse calculations with [16] we will show that again the
mod2 Betti numbers of 5nm(IR) coincide with those of the Grassmann manifolds
G.flR^-1).

One should perhaps remark that besides thèse computational coincidences of
the Betti numbers of Xn&gt;m(¥) with those of Gn(Fm+n~1), no direct relation to the
Grassmann manifold Gn(Fm+n~1) is known so far. Nevertheless it appears that the
orbit space 5nm(F) of controllable linear Systems shares many interesting topolog-
ical properties with the Grassmann manifold.

This paper is organized as follows: In section 2 we show that a well known set
of arithmetic invariants for the similarity action a - the Kronecker indices of
(A, B) - define a Whitney stratification o/2nm(F). The main technical resuit of this

paper appears in section 3 where we explicitly characterize those Kronecker strata
which are contained in the closure of a given one. Thèse are described by an

ordering on the set of combinations. To prove our main resuit Theorem 3.1 we
need an explicit description of the covers of this ordering; this is done in
Appendix A. The Whitney stratification of Xn,m(F) induces a cellular décomposition

of the orbit space 2n,m(F). Using a resuit of Borel and Haefliger we compute
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the Betti numbers of 5n&gt;m(F) and then prove that the mod2 Betti numbers of
^njn(R) are equal to those of the real Grassmannian Gn(IRm+n&quot;1). Section 5 deals
with the Betti numbers of Ratnm,p(IR). Using a resuit of [16] (where it is shown
that the spaces Ratnmp(F) and Xn,m(F) are homotopy équivalent up to a certain
degree), we apply our previous results on £n,m((R) to détermine the first
max (m, p)- 1 mod 2 Betti numbers of Ratnmp(IR).

This work was part of the author&apos;s doctoral thesis [16a] written at the

University of Bremen.
I like to thank the Forschungsschwerpunkt Dynamische Système, Bremen

University, for supporting this work and especially my advisors Prof. Dr. D.
Hinrichsen and Prof. Dr. H. F. Mùnzner for many helpful discussions and

comments. I like further to thank Prof. Dr. C. I. Byrnes for many helpful
discussions on &quot;the geometry of linear Systems&quot;.

2. Kronecker indices

We start by describing a well known class of arithmetic invariants for the

similarity a : GLn(F)xi!nm(F)-* £nm(F), introduced by Brunovsky [5], Popov
[21].

Let F dénote either IR or C.

Let (A, B) e 2n,m(F) be a controllable linear System and let bt,..., bm dénote
the column vectors of the rcxm-matrix B. Consider the following deletion

procédure on mn vectors of Fn:

Delete in the list (6^ bm, Abl9..., Abm,..., A&quot;&quot;1^,..., A^^J, while
going from the left to the right, ail vectors Alb} which are linear dépendent on
the predecessors.

Symbolically:

I TT! 7~, * m—1 i a h-1lL-^A bt—&gt;A b2—&gt;•••—&gt; A on
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After a suitable permutation of the remaining vectors one obtains a basis

(bl9 Abl9 • • •, A^,..., fcm, Abm,..., A^ GLn(F)

with certain non-negative integers K1?..., J£m satisfying Kx + • • • + Km n. The
m-tuple 1C K(A, B) (KU Km) is called the list of Kronecker indices of
(A, B). By construction, the Kronecker indices are invariant with respect to the

similarity action, i.e. for ail SeGLn(¥)

K(SAS~\ SB) K(A, B) (2.1)

Any m-tuple of non-negative integers (Kl9..., Km) with sum equal to n is called
a combination of n with length m ; let Knrn dénote the set of ail such combina-
tions. The number of thèse combinations is equal to the binomial coefficient

n + m-l

A combination (Kx,..., Km) of n can be visualized by a Young diagram of
appropriate size; for example the Young diagrams for (2, 3,1) resp. (1, 2, 3) are

(2, 3, 1) (1, 2, 3)

Figure 1. Young diagrams.

Remark 2.1. The set {Kl9..., Xm} of Kronecker indices of (A, B) coincides
with the set of minimal indices for the singular matrix pencil (sIn-A, B). Thèse
minimal indices were studied by Kronecker [20], extending earlier work of
Weierstrass [25] on regular matrix pencils. The System theoretic interprétation of
the minimal indices is due to Kalman [19].

The following lemma is proved in [16]:

LEMMA 2.2. For any combination KeKntm9 the set

KroK(F): {(A, B) e 2n,m(F) \ (A, B) has Kronecker indices K} is an analytic
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submanifold of ïn,m(F) of dimension

635

min Ktl, Kt,

We call the submanifolds KroK (F) the Kronecker strata of 2nm(F). They form a

décomposition

U KroK(F)
KeKnm

(2.2)

of 5nm(F) into non-empty disjoint submanifolds and each Kronecker stratum is

invariant under the similarity action on Jjn&gt;m(F).

There is a System theoretic interprétation of the Kronecker indices which is

useful in order to understand the décomposition (2.2) further.
In both Systems theory and its applications to automatic control, the concept

of feedback plays a central rôle in controlling the dynamics of a given dynamical
System.

input
dynamical System

output

feedback law

Figure 2 Feedback loop.

In linear System theory, state feedback is defined by a certain algebraic group
action on the space Sn,m(F) of controllable Systems. More precisely, the state

feedback group ^nm is the subgroup of GLM+m(F), consisting of ail
(n + m) x (n 4- m)-matrices

rs o-i
Lf ul

where SeGLn(¥), FeFmXn, L/eGLm(F).
The state feedback action is defined as the algebraic group action

((S, F, U), (A, B)) + BF)S\ SBU&quot;1).
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Brunovsky&apos;s theorem [5] classifies the orbits of this action &lt;£:they are in one to
one correspondence with the partitions d£x&gt; • • • &gt;âfm&gt;0 of n; see e.g.
Brunovsky [5], Byrnes [8], Hazewinkel and Martin [15] for this resuit and more
information on the feedback theory for linear dynamical Systems.

Instead of dealing with the full state feedback group $Fnjtn and the correspond-
ing feedback action 4&gt; we consider the restricted feedback group Fnm. Fnm is

defined as the set of ail (rc + m)x(rc-hm)-matrices with SeGLn(f),IF U\
FeFmxn, Ue GLm(F) upper triangular. Fnm is a parabolic subgroup of GLn+m(F)
and the restricted feedback action

((S, F, 17), (A, B)) ^ (S(A + BF)S~\ SBU1)

is an algebraic group action.

It is easy to check that the Kronecker indices K(A, B) are invariant under the
restricted feedback action:

K(S{A + BF)S~\ SBU1) K(A, B)

for ail SeGLn(¥), FGFmXn, UeGLm(f) upper triangular. Even more, thèse are
the only invariants.

THEOREM 2.3. The orbits of the restricted feedback action 4&gt; are precisely the

Kronecker strata KroK (F) of Xn,m(¥).

The proof is by a straightforward modification of the proof for Brunovsky&apos;s

theorem. We omit the détails.
Let Â dénote the relative topological closure of a subset A clttm(F).

COROLLARY 2.4. For K, LeKntn:

KroK (F) c: KroL (F) &lt;* KroK (F) H KroL (F) + 0.

By the closed orbit lemma, the topological closure KroK (C) of any Kronecker

stratum is an algebraic subvariety of &lt;£nm(C). Since the orbits of a semialgebraic

group action are semialgebraic again, Theorem 2.3 implies

COROLLARY 2.5. The décomposition of 2n,m((R) into Kronecker strata

KroK (R), KeKn,m, is a semialgebraic Whitney stratification of Xn)m({R).
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3. Combinatorics of Kronecker strata

In order to compute the Betti numbers of the orbit space &lt;£n,m(F), we need an
explicit characterization of those Kronecker strata KroK (F) which form the
boundary of a given Kronecker stratum KroL (F). To do this we study the partial
order on combinations Knm, deflned by the adhérence property

XçlO KroK (F)cKroL (F) (3.1)

Let ^ dénote the lexicographie order on n x m : {0,..., n) x {1,..., m}. For any
combination K e Knrn define

Yk &apos; {(U î)e n x m | 0&lt; i&lt;K, - 1}

and

r,, (K) : card {(k, /) e YK \ (k, l) &lt; (î, /)}, (h j)enx m.

Define the Kronecker order c on KHym by

K c L &lt;^&gt; rtJ (K) &lt; rtJ (L) for ail (i, j)efix m.

THEOREM 3.1. The Kronecker order c on Kn,m is the adhérence order for
Kronecker strata:

KroK (F) fl KroL (F) + 0 O KroK (F) ci KroL

In order to prove this, we need to know the covers of a combination K with
respect to the Kronecker order ç. Recall that for any partially ordered set (P, &lt;)

an élément y is called a cover for x g P whenever x &lt; y and x &lt; z &lt; y holds for no
zeP.

The covers for the Kronecker order hâve been explicitly characterized by
H. F. Mûnzner in an unpublished manuscript, see Appendix A, Theorem A. It
follows from Theorem A, that any combination LeKnm with K&lt;^L can be

obtained from the combination K by a séquence of successive transpositions

Ki,..., Kr:
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Hère a transposition is defined as follows:
Let KeXnm, i, je m with i &lt;/&apos;, Kx f K} + 1. A combination TtJX: K is called a

transposition of K iff:
(1) If Kt Kp Tt]K:=K&apos;,

(2) If K, &lt;1CJ:

(3) If JK1&gt;iCJ + l:
Ki^Xi for l^i,j.

For /&lt;î define TtJK:= TnK.

EXAMPLE

(1,2,6,3) (1,2,4,5)

Proof of Theorem 3.1. We hâve already seen that

KroK (F) c KroL (F) « KroK (F) flKroL (F) + 0

holds.

(a) &quot;KroK (F) n KroL (F)^
Obviously for any (i, j)enXm

çL&quot;. Let (A,B)e KroK (F) n KroL (F).

rk (B,..., A1&quot;^, Alblf..., A&apos;b,).

Since the rank function is upper semicontinuous, any (Â, É)e KroL (F) sufficiently
near to (A, B) satisfies:

rk (B,..., ÂlïB, Âlbt,..., M,) rlt(L)
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Therefore rt](K) &lt; rX](L) for ail (i, /) g n x m. q.e.d.

(b) &quot;KçL4&gt; KroK (F) &lt;= KroL (F)&quot;. Without loss of generality we can assume
that L is a cover of K, i.e. by Theorem A there exists (i, j)efixm with L Tt]K.
It is enough to find a pair (A, B) g KroK (F) n KroL (F).

CONSTRUCTION OF (A,B). There exists a unique (A,B)eKroK (F) satis-
fying:
(1) Albj erj(K) for ail (i, j)e Yk, where er dénotes the r-th standard basis vector

of F&quot;.

(2) AKj6, 0 for ail je m.
We show that for any e&gt;0 there exists (Â, B)gKroL (F) which is e-near to
(A, B).

CONSTRUCTION OF (Â, B). L TX]K for i&lt;j, K^Kj + 1; w.l.o.g. we may
assume Kt £ Kv

Case 1. KX&lt;KV Thus

Lt Kt for lîU]

For Kx 0 set

Â:=A and B := (bl9..., 6m), where
bs:=bs for s ^ i

For Kt &gt; 1 set

B : B, Ârbs Arfcs for ail r &gt; 0, s ^ î

Âbt := A6,,...,

In both cases (Â, B) is well-defined and s-near to (A, B). One easily vérifies that
(Â, B) g 5n,m(F) has Kronecker indices (Ll9..., Lm), i.e. (Â, B) g KroL (F).

Case 2. K^K^l. Hère

L^Ki for l±i,j
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For Kj 0 define

Â:=A and B := (bl9..., bm) with
bs:=bs for s^j
b, : 6,4- eAbt eAbx«

For K, &gt; 1 define

É:=B, Ârbs:=A% for ail r&gt;0, s^

Âb, := A6Jf...,Â^2^%
(Â, B) is well-defined, e-near to (A,B) and has the right Kronecker indices

(L1?..., Lm). This shows that

KroK (F) fi KroL (F) + 0. q.e.d.

It follows from Theorem 3.1 that the topological closure of KroK (F) in 5n,m(F) is

given by

KroK (F) {(A, B) e Xn,m(¥) \ rk (B,..., AllB, Alfc1?..., A%) &lt; rt](K) for
ail (i, j)enx m.}

Therefore

COROLLARY 3.2. The topological closure KroK (F) is an algebraic subvariety
ofXn,m(¥).

EXAMPLE. The Kronecker strata of 5nm(F) are linearly ordered by adhérence:

4. Kronecker celis

The spaces ln,m(F) and Xn&gt;m(F) are related by the principal fibre bundle

7r:Xn,m(F)-*2n,m(F)

(A, B)*-+[A,B] similarity orbit of (A, B).
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Since the similarity action a : GLn(F) x 5n,m(F) -* 2n,m(F) restricts to a free action
with a closed graph on each Kronecker stratum KroK (F) of J^m(F), each quotient

Kro (K) := 7r(KroK (F)) KroK (F)/GLn(F)

is an analytic submanifold of 5n,m(F) of dimension

m f 1 K&apos; &lt;T K&quot;

n(K) I min (K,, K,) + S K,,, Kv \
&apos;

&apos;; (4.1)

by Lemma 2.2.

LEMMA 4.1. For each combination KeKntn, Kro (K) is an analytic cell, Le.

analytically isomorphic to affine space Fn(K).

Proof. Let ^ dénote the lexicographie order on n x m. For each 1 &lt; / &lt; m and

(A, B)eKroK (F) there are uniquely determined c[j(A, B)e¥ with

AK&gt;bt= X cll}(A, B)A%

By uniqueness, cî/SAS&quot;1, SB) c!,(A,B) for ail SeGLn(F). Let q(A, jB)eFn&apos;(K)

dénote the vector consisting of the nt(K) card {(/, j)eûxm \i&lt; Kp (i, j) &lt; (kb l)}
components c^A, JB); c(A, B) := (d(A, B),... cm(A, B)). Since n(K)
^dO + &apos;-&apos; + MK), c(A,B)eFn(K).

The map

: KroK (F) -* GLn(F) x Fn(K)

Ï(A, B) := ((b1?..., AK-&apos;fti,..., bm,..., A^^bJ, c(A, B))

(«K(A,B),c(A,B))

is an F-analytic diffeomorphism. Since

USAS&apos;1, SB) (SRK{A, B), c(A, B)),

f induces the F-analytic diffeomorphism

t:Kro(K)-&gt;Fn(K)

[A,B]^&gt;c(A,B). q.e.d.



642 UWE HELMKE

We call Kro (K) a Kronecker cell and its topological closure Kro (K) a Kronecker
variety of £nm(F). By Corollary 2.5 the décomposition of Snm(F) into Kronecker
cells (Kro (K))KeJCnm is a flnite cellular décomposition.

It is in gênerai a difficult problem to compute topological invariants like the
Betti numbers of a space X from a given cellular décomposition (X,)ieI. Often one
has to impose additional assumptions on the cell décomposition, e.g. that (X,)ieJ
defines a CW cell complex; but even then the calculations can be quite compli-
cated.

Unfortunately the Kronecker cell décomposition of £nm(F) is not a CW cell
complex, since £nm(F) is non-compact. Therefore we hâve to look for a différent
concept. A décomposition (Xt)ieI of a real analytic manifold X into disjoint
submanifolds X, is called an analytic cellular décomposition, if the following
conditions are satisfied:
(a) (Xt)ieI is locally finite and each Xt is diffeomorphic to some affine space IR&quot;,

(b) the boundary of Xt in X is contained in the union of cells X, of strictly smaller
dimensions,

(c) the topological closure X, of X, is a locally analytic subvariety of X.
Hère a closed subset AcX is called a locally analytic subvariety if for any

aeA there is an open neighbourhood U of a in X and finitely many analytic
functions /, : [7 —&gt; R, j eJ, such that

AHU {xeU\f](x) o for ail jeJ}.

The adhérence order on the set of cells Xt, i e I, is deflned by

(X,)ieI is said to satisfy the frontier condition, if for ail i, jeI:

Not ail analytic manifolds admit an analytic cellular décomposition. The following
example has been suggested to me by D. Fried and F. Takens: For coprime
integers p, qeN let L(p,q) dénote the 3-dimensional lens space. L(p,q) is a

compact analytic manifold which has no analytic cellular décomposition, provided
p is odd. The reason is that in this case there is odd torsion in the intégral
homology of L(p, q).

A classical example of a space with an analytic cellular décomposition is the
Grassmann manifold Gr(Fn) of r-dimensional linear subspaces of Fn. Recall that
the Schubert cells S0(a) resp. the Schubert varieties S(a) are deflned for any
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séquence a := (al5..., ar) of integers at with

by

S0(a) : {Xe Gr(Fn) | dim (XH Vai+l) î, dim (XH V^-J î -1
for ail 1 &lt; i &lt; r}

resp.

S(a): {Xe Gr(Fn) \ dim (X H V^,) &gt; i for ail i &lt; î &lt; r},

where Oc Vjcz • • c Vn=Fn, dim Vi î, dénotes a fixed flag of subspaces of Fn.

S0(a) is a cell of dimension a1 + - • • + ar and dense in the algebraic subvariety
S (a) of Gr(Fn). The adhérence order on the Schubert cells is the product order

S0(a) c S0(b) o ax &lt; bl5..., ar &lt; 6r;

Stoll [24].
It is well known that the set of Schubert cells, endowed with this ordering, is a

graded lattice which is rank symmetric and unimodal. In fact, this lattice of
Schubert cells is isomorphic to the lattice of integer partitions; see Brylawski [6].

THEOREM 4.2. The décomposition of the orbit space 5n,m(F) into Kronecker
cells Kro (K), K e Kn&gt;m, is a finite analytic cellular décomposition which satisfies the

frontier condition. The adhérence order is the Kronecker order on combinations.

Proof. By Corollary 3.2, the closure KroK (F) of a Kronecker stratum is an
analytic subvarie ty of J£nm(F). Therefore the closure Kro (K) 7r(Kro (F)) is a

locally analytic subvarie ty of ^nm(F). The rest foliows immediately from Theorem
3.1.

Let (Xt)l6l dénote a finite analytic cellular décomposition of an analytic
manifold X, dim X n.

Borel and Haefliger [3] hâve shown the existence of a mod 2 fundamental class

[XJ€H£M(X;Z2) in the Borel-Moore homology of X. By Poincaré duality,
JFfqM(X; Z2) is isomorphic to Hn_q(X; Z2), the (n -q)-th singular homology group
of X (with coefficients in Z2 Z/2Z).
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For any non-negative integer q let

cq : card {i e I \ codim Xt q}

dénote the number of cells of (real) codimension q. The following resuit is due to
Borel and Haefliger [3]:

THEOREM 4.3. (Borel-Haefliger). Let X be a real analytic manifold and

(Xt)ieI a finite analytical cellular décomposition. Then for any q^O, the set

{[XJ | codim X, q} of fundamental classes is a basis for Hq(X;Z2) and conse-
quently

It foliows that cq is a topological invariant for X: the q-th mod 2 Betti number of
X.

Let cq(n, m) dénote the number of Kronecker cells Kro (K) of Xnm(F) of real
codimension q. By the Borel-Haefliger Theorem, Theorem 4.2 implies

COROLLARY 4.4. For any q&gt;0:

H&quot; V /ni\ 77 \ 77e (n,m)q(zn,m(F);Z2) /2q

More precisely, we hâve the following resuit which is analogous to the basis

theorem in the Schubert calculus for Grassmann manifolds [24].
For any Kronecker variety Kro (K) of £n,m(F) with codimension q, its

fundamental class [Kro (K)]eHqC£n,m(F);Z2) is called a q-Kronecker cycle.

COROLLARY 4.5. The q-th Kronecker cycles form a basis o/Hq(2n,m(F); Z2).

Furthermore, since Kronecker cycles are represented by algebraic subvarieties
(see Appendix B), H*C£n,m(F);Z2) is totally algebraic.

One would like to hâve a more explicit formula for the mod 2 Betti numbers
of 2n&gt;m(F) than the one given by Corollary 4.4 and the dimension formula (4.1).
In [16], a différent cell décomposition of J£nm(F) has been constructed by means
of &quot;Hermite cells&quot; Her(K), KeKn,m. Unfortunately, the corresponding
décomposition of 5n,m(R) into Hermite cells does not define an analytic cellular
décomposition: the real Hermite varieties Her (K) are only semialgebraic
subvarieties of £n,m(R)- However, for F C, the Hermite cell décomposition can be

used to effectively détermine the Betti numbers of 5n,w(C). A central resuit
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appearing in [16] is:

THEOREM 4.6. The intégral homology groups H*(2n^m(C);Z) are isomorphic
to the homology groups HH:(Gn(Cn+m~1);Z) of the Grassmann manifold.

By combining Corollary 4.4 with Theorem 4.6 we obtain our main resuit

THEOREM 4.7. The mod 2 homology groups of J£n&gt;m(lR) are isomorphic to
those of the Grassmann manifold Gn(Un+m~1):

H*C£n,m(R); Z^H^G^ffT^-1); Z2).

Observe that this resuit is obtained by a pure dimension count; no direct relation
between the spaces 2n,m(F) and Gn(Fn+w~1) is known till now.

Remark 1. It follows from Theorem 4.7 that the partially ordered set
(Knm, ç) of ail combinations of n endowed with the Kronecker ordering is rank
symmetric and unimodal. It is in gênerai not a lattice.

Remark 2. As a conséquence of Theorem 4.7 we see that the Hermite cycles,
introduced in [16], also form a bases for H*(2n,m(M); Z2). Therefore there are two
différent basis for H*C£nm([R); Z2): The algebraic Kronecker cycles constructed in
this paper and the semialgebraic Hermite cycles of [16].

It seems that they correspond to différent kinds of a Schubert calculus for the
cohomology ring H*(5nm(R); Z2)- The cohomology ring of 2n,m(F) will be studied
in a subséquent paper (joint work with C. I. Byrnes).

5. Topology of the spaces of rational maps

In this chapter the previous results on the topology of 2n,m(IR) are applied to

compute some Betti numbers of the space Ratn,m,p(IR) of ail real proper rational
matrices GeRpXm(s) with McMillan degree n. Recall that this space Ratnmp(IR)

can be identified with the manifold of ail base point preserving holomorphic maps
of degree n

which commute with complex conjugation.
Quite a lot is already known about the topology of Ratn,m&gt;p(F) for min (m, p)

1, due to work of Brockett [4], Byrnes and Duncan [9] and Segal [23]. The
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deepest results hâve been obtained by Segal [23] who shows that the inclusion

map i:Ratn&gt;mjl(C)~^f2^(Pm(C)) into the loop space of ail base point preserving
continuous maps ç :S2^ Pm(C) of degree n is a homotopy équivalence up to
dimension n(2m-l). The gênerai multivariable case, max(m, p)&gt;l, has been

quite intensively studied in the thèses of Delchamps [11] and Guest [12].
Delchamps [11] uses a Morse theoretic approach to study Rat^^p (F). He
computed the Betti numbers of Ratnmp(IR) (resp. Ratnmp(C)) up to dimension
min (m, p)-2 (resp. 2 min (m, p)-2). Even more, for n l he computed ail
singular homology groups of Ratlm&gt;p(F). However for n&gt;2 the necessary Morse
theoretic calculations become too involved to be carried out completely. Due to

our complète knowledge of the mod2 Betti numbers of 5n,m(IR), the first
max (m, p)- 1 mod 2 Betti numbers of Ratnmp([R) will be easily obtained. An
analogous resuit concerning Ratn&gt;m&gt;p(C) is given in [16].

For n, m, p ^ 1 let

ln,m,p(R) : {(A, B, C) € HTxn x RnXm x |RpXn | (A, B) controllable}

and

dénote the orbit space of the similarity action (A, B, C) •-» (SAS&apos;1, SB, CS&apos;1) on
Xnmp([R). Byrnes and Hurt [10] hâve shown that 2n^p(M) is a real analytic
manifold of dimension n(m+p) and

p : 2n,m,p(R) -&gt; Xn.m(R), [A, B, C] -&gt; [A, B],

an analytic vector bundle on 5n,m((R). In particular Xnm P(1R) is homotopy équivalent

to 2n,m(R).
For 0&lt;r&lt;n let

SUP: «A, B, C) € tn,m,p(m I rk (CT, ATC\ (ATr~lCT) r}

and SStn,m,p(IR):=S^m5P dénote the set of ail Systems (A,B,C) which are
controllable and observable. By [16], Thm. 5.1, S^m&gt;p is an analytic submanifold of
5n,m,pTO with codimension p(n-r) and the union S:= U?=o S^m&gt;p is a closed
analytic subvariety of £n,m,p(R). Note Ratn,m,p (K) 2n,m,p((R)\S.

Since the similarity action (A, B, C) ^ (SAS~X, SB, CS&apos;1) acts freely and with
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a closed graph on Srnmp and Ratnmp(IR), the corresponding orbit spaces

Snmp Srntn p/GLn (U)

Ratn mp(U) Râtn m p ORVGLhOR)

are analytic submanifolds of £nmp((R)

Remark It follows from the main theorem of reahzation theory for finite
dimensional linear dynamical Systems (Kalman [18]), Byrnes and Duncan [9]) that
the orbit space Ratnmp((R)/GLn((R) can m fact be identified with the space of ail
(stnctly) proper rational transfer matrices Ge(RpXm(s) with McMillan degree n

Ratnmp(!R) îs open and dense in Snmp(U) and S^mp has codimension p(n — r)
The set

S

îs a closed analytic subvanety of 2nmp(!R) with codimension p Thus the inclusion

map

i Ratnmp([R) -^Xnmp(U)

îs a homotopy équivalence up to dimension p-2 Smce the transposition of
transfer matrices G(s)»-» G(s)T defines a diffeomorphism from Ratnmp(IR) onto
Ratnpm(R), the homology groups Hq(Ratnmp([R)) are isomorphic to

Hq(Ratnpm(R))forall q
Therefore we get

THEOREM 5 1 For max(m, p)&gt;2 there are isomorphisms of (intégral)
homology groups

Hq(Ratn m p OR)) Hq(2nnnn (m P)(U))

for 0 &lt; q &lt; max (m, p) - 2

By Theorem 4 7 we conclude

THEOREM 5 2 Let l min (m, p) and max (m, p) &gt; 2 Then

Hq(Ratnmp(R),Z2) is isomorphic to Hq(Gn(Un+l l), Z2) for 0&lt;q&lt;max (m, p)-2
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Appendix A

In this appendix we prove a technical resuit concerning a characterization of
the covers for the Kronecker order c on Knm. The material in this section is due

to H. F. Mûnzner; I like to thank him for his help in thèse matters.
A useful description of combinations KeKnm is obtained by means of the

counting function z :Z x m —» Z, z(i,j):= im+j. z is monotone increasing

and shift-invariant, i.e. z (i ± 1, j) z (i, j) ± m. To any combination K
(Kl9..., Km) there is an associated m-tuple s(K) (sl9..., sm) defined by

for ail / e m. s, satisfies

(a)
(b) 1 - m &lt; Sj &lt; mn
(c) Sj j (mod m).

Conversely, for any m-tupel s (sl5..., sm) with (a), (b), (c) there exists an

unique K g Kn&gt;m with s s(K). For any real number jc, let [x] : max {i € Z 11 &lt; x}.
Let ç be the Kronecker order on Knm and for KeKnm set

Mr):= I M
SlSr L m

Then it is easy to check

K^LOhK(r)&gt;hL(r) for ail

We will make use of the following opération on combinations: Given i, / e m,
and K e Kn?rn with K, &gt; 1. Set ^K := K e Kn,m with

(1) K,:=K,for l+U j
(2) KI:=K, + 1

(3) K,:»^-!.
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Equivalently, in terms of (sl9..., sm) := s(K):

(1&apos;) Sl Sl tOTlti,]
(2&apos;) Sj st + m
(3&apos;) s^Sj-m.

Similarly, the effect of a transposition Tl}K (see section 3) can be described as

follows:
For a, bel, a&lt;b, define

0\l b-a (mod m)}

and d(b,a):=~d(a,b).

For st &lt; Sj let T^siK) : s be defined by

(4) Si: stfor l^Uj
(5) s, :=«,-&lt;*(s,, s})

(6) Sj-^^ + dis^Sj)

while for s^Sj&apos;.

st:= Si for lj= i, j

Then Tns Tt]s and
Consider for r g No and K,Le Knm :

Since h(0) 0 and hKX(r) 0 for r&gt;mn, we hâve
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Obviously, KçL&lt;^ hK,i»&gt;0 for ail r.

One easily shows

LEMMA Al. Let r lm+j for / &gt; 0, j g m. Then

forr&gt;Sj(K)
(a) AhK(r) \

{ 0

ForK} &gt;s &gt; 1 Jet tJK := t,,° • • • °tt](K)

s-times
For L tstJK, Lemma Al specializes to

Im, 1 1,..., s

+ Im,I l,...,s
0 otherwise

LEMMA A2. Let KgKnm and L
(a) Sl(

(b) S](

Proof. àhKtL(r)=l, resp. -1, resp. 0 for r Sj(L), resp. r s,(K), otherwise.
Thus sl(L)&lt;s1(K) implies nK,L(r)&gt;0, while SjCK^Xs^L) implies hK,L(r)-
0. q.e.d.

Analogously one obtains

LEMMA A3. Given KeKn,m, L TlJK, sl(K) + m&lt;sJ(K). Then

hKL(r)=
[o otherwise

1 forr Sl + lm + tA^l^[^~], O^f&lt;d(sw s,)-

Le.
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Suppose s,(K) + m &lt;s,(K), K := T^K. By Lemma A3, the size of the &quot;rectangle&quot;

measures how much the combinations K and K differ from each other. Therefore
one is led to conjecture that those combinations K TtJK will be covers of K, for
which Rt](K) is as small as possible. This is in fact true:

THEOREM A. Given K, Le Knm. L is a cover of K for the Kronecker order c
on Kn^m iff:
(1) L Tt]K for some (î, j)
(2) Sl(

(3)

Proo/. Clearly thèse conditions suffice. To prove the necessity, we introduce
Sj-^s.UC), s^.^s^L), s^^s^K), iem. Suppose KcL. It is enough to find an
(i, j)emXm with st + m &lt; sJ and K &lt;= T^çL. In fact, in this case there exists also

(ij) with Rl±(K) a Rl}(K) such that K^T^KçL and conditions (2), (3) are
satisfied for (/, /).

Let k:=TtJK.

CONSTRUCTION OF (î, j). Set

r+ : max{reN\ Ah^ir) 1}

Ahj^ir)^ -1}

By Lemma Al(b):

r+ max {st \ st &gt; s{} : s,

r_ max {st \ st &gt; st} : sr

Suppose r+&gt;r_. Then for ail r&gt;r+:

Thus hKL(r)&gt;l, contradiction to hKJ^(r) 0 for r&gt;mn. Therefore s^m^s
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Let

tj:= L Si
ll o&lt; t &lt;sd(sf, s,)].

Let j € m dénote the uniquely determined index such that
(a) SjePH
(b) d(s,, s,) min {d(s,, sk) | st + m &lt; sk}.

In particular ss
&lt; sr

*t r-

Remark 1. For !&gt;1 and l&lt;t&lt;d(sn s,) given, let s, + Im + t pm + q for
&lt; q &lt; m. Then either sq &lt; st 4- m or sq &gt; sq.

Froo/. Suppose sq&gt;sl + m and sq&lt;sQ. It follows from Lemma Al(b) that
P^ and d(slisq)&lt;d(sl,s]). Contradiction.
By Remark 1, for any 1&gt;1 and l&lt;t&lt;d(st, s,)

holds.
Since

s, + Im) + fi^fo + /m - 1)

for l^

holds for ail 1 &lt; {&lt; (S, - s,)/m, 0 &lt; r &lt; d(st, s,).

Let s^s^r^ Then for r+&lt;r&lt;r_

&gt;= -L AhKL(r)&gt;-AhKL{r_) 1.
l&gt;r
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For Sj&lt;r_ s} we hâve

for l^l-J^^l 0&lt;t&lt;d(sl,sJ).
L m J

Let K Tl}K. By Lemma A3, K^T^K and

f^klW- 1 for r s, + Im +1,1 &lt; l &lt; | ^-H 0&lt; t&lt;d(sl9 s})- 1 L m J

[fiKL(r) otherwise.

for ail r&gt;0. By assumption, hf^i^^O and the previous estimate gives JiklC&apos;&quot;) —0

for ail r&gt;0. Thus KçL and Theorem A is proved.

Appendix B

We show that the Kronecker cell décomposition of £n,m(F) is induced by the
Schubert cell décomposition of the Grassmann manifold Gn(F(n+1)m).

Let R(A, B) dénote the vectorspace spanned by the rows of the nx(n + l)m-
matrix (B, AJB,..., AnB). Then

R : Sn,m(f) -&gt; Gn(F(n+1)m), fA, B] -&gt; R(A, B)

deflnes an analytic embedding of 2n,mf called the Kalrnan embedding ; see Byrnes,
Hurt [10], Hazewinkel, Kalman [14]. Let et dénote the i-th standard basis vector
of F(n+1)m and Oc^c. cV(n+1)m F(n+l)m the complète fîag defined by
F, : span {e(n+1)m,..., e(n+1)m_l+1}. For any combination K e Kn,m,

YK: {(i, j)en xm | 0&lt;i&lt;K,-l} has exactly n éléments (i1? j1)&lt; ••• &lt;(in,jn),
ordered lexicographically. Define U(K) (ul9..., un), where

wt:=min_t+i + jn_t+1, l&lt;t&lt;n. Let aK:={a^ an) defined by

a, : (n + \)m - ut - i +1 for 1 &lt; i &lt; n.

Then 0^ax^ • •• &lt;an&lt;(n +l)m-n. Therefore aK is a Schubert symbol for
Gn(F(n+1)m) and satisfies:

(1) aK aLifï K L
(2) KçL &lt;^&gt; a.m^a.iL),..., an(X)&lt;an(L).
Let SK := S0(aK) dénote the Schubert cell of Gn(F(n+1)m) corresponding to aK, for
any combination KsKntm; let further JR :2n,m(F)-* Gn(F(n+1)m) dénote the
Kalman embedding.
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THEOREM B Leta (ax, ,an),1
(1) R \So(a))î0 iffa aKforsomeKeKnm
(2) Kro (K) R 1(Sk) for ail KeKnm
(3) Kro (K) R \SK) for ail KeKnm

Proof Suppose [A, B]eXnm(F) and R([A, B])e S0(a) Let K (KU Km)
dénote the Kronecker indices for (A, B) Set JR JR([A, B]) and

(ai, ân) aK The aK&apos;s are defined m precisely the way so that

dim (jR H V^,) i, dim (JR H V^, i)=ï-1

holds for l&lt;ï&lt;n Thus ReS0(a)nS0(aK)i îe S0(a)HSQ(aK)^ 0 This shows

a aK and Kro (K) c R l(SK) Suppose Kro (Kf) H R \SK) ± 0 Then SK SK,

î e aK=aK Therefore Kro (K) jR ^Sk)
To prove (3) let &lt; dénote the product order on n tuples a {ax, ,an),

b (bl, ,bn)

a^b o^sfc,, ,an&lt;bn

By Theorem 3 1,

R r(SD= U R 1(S()(a))= U R &apos;(Sl)

U R &apos;(Sl) U Kro (L)
LçK LcK

Kro (K)

The Schubert vaneties are irreducible algebraic subvaneties of the projective
vanety Gn(F(n+1)m) Since the Kalman embedding îs algebraic ît follows that the
Kronecker vaneties Kro (K) arc algebraic subvaneties of the quasi-projective
vanety Xnrn(¥) It seems înterestmg to study the smgulanties of the Kronecker
vaneties
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