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Classification and stable classification of manifolds: some exemples

M. Kreck* and J. A. Schafer

I. Introduction

Two closed n-dimensional diflferentiable manifolds M and N are called stably
diffeomorphic if there exists an integer reN such that

M#rS^N#rS

where

{SkxS\ n 2k 1

XskxSk+\ n=2fc + lJ

In the literature there are some cases of manifolds which can be classified up
to stable diffeomorphism, for instance 1-connected 4-manifolds [11] and manifolds

of type B(SO) [4]. The problem we want to discuss in this paper is how much
information about a diflferentiable manifold is lost if one passes to its stable

diffeomorphism class. We begin with the following observation about the stable
classification of even-dimensional manifolds. We use the notations of [14].

PROPOSITION 1.1. n^2. Let M2n and N2n be two normally bordant manifolds.

Then M and N are stably diffeomorphic. More precisely if n &gt; 2 and W is a
normal cobordism between M and N with surgery obstruction 0(W)eL2n+i

], wt) represented by a matrix A e SUr (/[tt^M)]) then

M # r(Sn xSn) N# r(Sn x Sn).

Proof. By ([14], Theorem 6.5) for n&gt;2 we can assume that W is the normal
cobordism constructed in the proof of this theorem. That means: W
MxJtjr(SnxDn+1)Ur handles of index n + 1. If one considers the dual handle

*The first author was supportée by SFB Theoretische Mathematik m Bonn (1981/82) and both
authors were partially supported by the University of Aarhus (summer 1981)
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décomposition starting from N we obtain the same picture. Thus

M # r(Sn x Sn) N # r(Sn x Sn).

In dimension 4 the same proof works after additional stabilization by the methods
of ([2], [8]).

Remark. The corresponding statement for odd-dimensional manifolds is false.
For instance a homotopy sphère 24k~1ebP4k is normally cobordant to S4*&quot;1 but
if 2#r(S) was difïeomorphic to S4k~x#r(S) then X would be contained in the
inertia group of r(S2k x S2*&quot;1) which is zéro or Z2 by [3].

For some manifolds M the set of diffeomorphism classes of manifolds which
are normally cobordant to M was computed and this leads to some non-
cancellation results.

EXAMPLE, n ^ 5. The set of diffeomorphism classes of manifolds which are
normally cobordant to Tn contains the non-trivial orbit space
H3(Tn;Z2)/H1(Tn;Z2) as a subset ([17], § 15 A). By the proposition above for n
even they are ail stably diffeomorphic to Tn. Thus for even n ^ 6 there exist many
fake tori which are stably diffeomorphic to Tn but not diffeomorphic.

Remark. For n^5 ail fake tori are homeomorphic to Tn ([17], p. 227).

In this example cancellation holds in the topological category. We will now
give some examples which show that in gênerai stably diffeomorphic manifolds
are not even homotopy équivalent. The easiest examples of this type are obtained
from stably parallelizable (2n-l) connected 4n-manifolds, n&gt;l. According to
Wall [12] two such manifolds with équivalent intersection forms differ only by a

homotopy sphère. Thus if M4n and N4n (n&gt;l) are two such manifolds with
non-equivalent intersection forms (which one can construct by plumbing, compare
[1]) then M#S2nx S2n and N # S2n x S2n hâve équivalent intersection forms [6]
and thus there exists a homotopy sphère S such that 2#M#S and 2#N#S
are diffeomorphic but 2#M and N are not even homotopy équivalent.

In dimension 8fc one can use the invariant consisting of the isomorphism class

of the triple (H4k(M;Z), °, Pk), where ° is the intersection form and Pk:H4k
(M; Z) ~»Z is the Pontrjagin class, to detect (4fc -1) connected 8fc-manifolds with
équivalent intersection forms which are stably diffeomorphic but not diffeomorphic.

Remark. In dimension 4 the cancellation problem for connected sum with
S2xS2 is much more difficult. By récent results of S. K. Donaldson (compare
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Atiyah&apos;s talk at the &quot;Bonner Mathematische Arbeitstagung&quot; 1982) the intersection

form of a 1-connectée! differentiable 4-manifold is always indefinite or the
standard definite form. Thus it is completely determined by its rank, signature and

type. This implies the intersection form can not be used to distinguish stably
diffeomorphic 1-connected differentiable 4-manifolds. Moreover it implies two
1-connected differentiable 4-manifolds are stably diffeomorphic if and only if they
are homotopy équivalent. By Freedman&apos;s resuit two smooth homotopy équivalent
1-connected 4-manifolds are homeomorphic [18]. Thus the existence of stably
diffeomorphic 1-connected 4-manifolds which are not diffeomorphic is équivalent
to the existence of a 1-connected 4-manifold which has two différent differentiable

structures. It should be remarked hère that Freedman&apos;s work implies that
there are many 1-connected topological 4-manifolds which are stably
homeomorphic but not homotopy équivalent.

The examples of non-cancellation results described above are of the following
type: (a) stably diffeomorphic manifolds of dimension 2n&gt;4 which are normally
bordant and modulo some indeterminacy are distinguished in L|n+1(Z[7r1]).

(b) manifolds of dimension 4k, k &gt; 1, which are distinguished by the intersection

form together with some stable tangent bundle information.
We will show in this paper that in odd dimensions also stably diffeomorphic

doesn&apos;t imply diffeomorphic and in dimension 0 mod 4 there are stably
diffeomorphic manifolds which hâve équivalent intersection forms and are stably
parallelizable but are not even homotopy équivalent. In particular this seems to
be the ftrst non-cancellation resuit in dimension 4.

THEOREM 1.1 (see also Theorem III.3). For alln^A with n + 2mod4 there

exist stably diffeomorphic manifolds with trivial stable tangent bundle, and équivalent

intersection forms if n 0 mod 4, which are not difteomorphic. In fact thèse

manifolds are not even homotopy équivalent.

We will give an explicit construction of such manifolds in the following
section. In it we will compute some basic invariants such as cohomology and
intersection form and deduce the theorem in the odd-dimensional case from a

non-cancellation resuit for some CW-complexes. The even-dimensional case is

comparatively more difficult. In Section III we will introduce the basic invariant
for this case and compute it for some examples in order to obtain the even-
dimensional resuit.

Remarks. (1) Our examples are not 1-connected, the smallest fundamental

group is Z5xZ5xZ5. The existence of 1-connected examples in dimension 4 is
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équivalent to the existence of a closed 1-connectée differentiable 4-manifold
which has two différent differentiable structures.

(2) It is perhaps interesting to note that even if our examples are not normally
cobordant they are distinguished within a L-group.

(3) Our construction also works in dimension 4fc + 2 but in this case the
invariant is too weak to distinguish.

II. Boundaries of thickenings

Our fc-dimensional examples will be the boundary of a thickening of a finite
[fc/2]-dimensional CW-complex X. More precisely, let X be a finite n-dimensional
CW-complex. Then there exists a thickening of X in Rk+1 for k^2n ([13]). This
means that there exists a compact fc + 1-dimensional submanifold with boundary
N(X) in Uk+l which is simply homotopy équivalent to X. The boundary of N(X)
is unique up to s-cobordisms and we dénote it by M(X)k. Moreover Wall has

proved that if X and Y are simply homotopy équivalent then M(X)k and M(Y)k
differ by an s-cobordism. Thus we hâve a map from the set of simple homotopy
équivalence classes of finite n-dimensional complexes into the set of diffeomorph-
ism classes (s-cobordism classes if fc =4) of fc-dimensional manifolds.

Remark. There are several ways to visualize a thickening of X in Rk+1. One
possibility is to consider X as subpolyhedron of IRk+1 and to take a smooth regular
neighborhood of it in (Rk+1. Another possibility is to construct N(X) as a handle
body whose handles correspond to the cells of X and the way the handles are
attached is determined by the fact that the resulting manifold is to be stably
parallelizable. We will discuss the conséquences of this description of N(X) later.

From ail constructions one can easily see the following property of M(X)k.

LEMMA II.1.

lM(X)k # Sn x Sn+\ fc 2n 4

Thus the construction X »-» M(X)k gives a connection between our problem
and the homotopy theoretical problem of the stable classification of n-
dimensional CW-complexes (X and Y are stably homotopy équivalent if XvSn —

YySn) and the classification up to homotopy équivalence. The first homotopy
theoretical results in this direction were obtained by J. H. C. Whitehead who
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proved that if X and Y are 2-dimensional CW-complexes with isomorphic
fundamental groups and the same Euler characteristic then X and Y are stably
homotopy équivalent. This resuit is also valid for n-dimensional complexes whose
universal cover is (n - l)-connected.

It took rather a long time until one could show there exist complexes of this

type which are stably simply homotopy équivalent but not homotopy équivalent.

THEOREM ([5], [9], [10]). For ail n^2 there exist finite n-dimensional
CW-complexes X and Y such that (i) the universal covers are (n - l)-connected, (ii)
XvSn and YvSn are simply homotopy équivalent (iii) X and Y are not
homotopy équivalent.

Thus if X and Y satisfy (i), (ii) and (iii) we know M(X)k and M(Y)k are stably
diffeomorphic for fc 2n or 2n + l. Furthermore we know they are stably
parallelizable and the intersection form of M(X)2n is completely determined by
the Euler characteristic. This follows since the signature of M(X)2n is zéro and
the intersection form is of even type as M(X)2n is stably parallelizable, hence it is

classified by its rank ([6]). Thus we would hâve examples of stably diffeomorphic
but not diffeomorphic manifolds if M(X)k =M(Y)k would imply X and Y are
homotopy équivalent. This is easy to show for fc 2n + l. In fact we hâve a
somewhat stronger resuit, which implies the odd-dimensional case of Theorem
1.1.

PROPOSITION II.l. Let X and Y be finite n-dimensional CW-complexes. If
M(X)2n+1 and M(Y)2n+1 are homotopy équivalent then X and Y are homotopy
équivalent.

Proof. The first observation is that if we hâve a thickening N of X in Uk then
Nx Jc|Rk+1 is a thickening in Rk+1. As X has a thickening N(X) in (R2n+1 we
know that M(X)2n+1 d(N(x) x I) N(X) U (-N(X)), the double of N(X). Since

N(X) has a handle décomposition whose handles correspond to the cells of X we
obtain a handle décomposition of M(X)2n+1 whose handles of index ^n form
N(X) and the handles of index &gt;n correspond to -N(X). This implies

A gênerai position argument implies Ht (dN(X); A)-AHi(N(X); A), where
A Z[ttx(x)] is the group ring, is an isomorphism for i &lt; n and surjective for i n.

This and the Mayer-Vietoris séquence imply

Hi(N(X);A)-^Hi(M(X)2n+1;A) for i^
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Now given a homotopy équivalence /:M(X)2n+1 -» M(Y)2n+1 one can deform
it so that N(X) is mapped into N(Y). Assuming this, f\N(x):N(X)-*N(Y) is an
isomorphism on 7rx and on ail homology groups with coefficients in A. Thus
N(X)=*N(Y) and the resuit follows as N(X) and N(Y) are homotopy équivalent
to X and Y respectively.

In the proof of the preceding proposition we computed the homology of
M(X)2n+1. It is easy to make a similar computation for M(X)2n but we also must
know the cellular chain complex with coefficients in A. For this we will show
M(X)2n can also be written as a double L(X)U-L(X) where L(X) is also a

thickening of X but in gênerai is not contained in IR2n.

PROPOSITION II.2. LetXbea finite n-dimensional CW-complex. Then there

exists a 2n-dimensional thickening L(X) (which in gênerai is not contained in U2n

and is not unique) of X such that

(i) M(X)2n L(X) U -L(X) and
(ii) the intersection form Hn(L(X);Z)&lt;8&gt;Hn(L(X);Z)-^Z is zéro.

Proof. We construct L(X) as follows. Let Y be the (n - l)-skeleton of X and

N(Y) a thickening of Y in R2n. Then N(Y) x I is a thickening of Y in R2n+1 and
we know that we can obtain the thickening JV(X) of X in R2n+1 by adding
n-handles to N(Y)xI which correspond to the n-cells of X. Given a characteris-
tic embedding f:Sn~x x Dn+l c—&gt; d(N(Y) x I) of such a handle we can isotope the
embedding such that g f\sn~ïxnn maps into d(N(Y)) and /
gxJd:SM&quot;1xDn+1-&gt;dNc:a(N(Y)xI).

For by a gênerai position argument we can find an embedding Sn~1(^dN(Y)
which in d(N(Y)xI) is isotopic to /Is^-mo}- Thus we can assume /|s*-ix{o} is

contained in dN(Y). This embedding has trivial normal bundle in dN(Y) so we
can extend it to an embedding g:Sn&quot;1xDn ^dCNCY)). As Trn^(SO(n))-^
TTn^iSOin +1)) is surjective we can choose this embedding so that gxld:Sn~lx
Dn+1 -+dN(Y)xIcz d(N(Y) x I) is isotopic to /.

If we choose characteristic embeddings with this property we see N(X)
L(X)xI where L(X) is obtained from N(Y) by adding handles with the g&apos;s. In
particular it follows that M(X)2n L(X)U-L(X).

For the proof of the second statement we use the fact that we are free to
choose the embedding Sn~1c=aN(Y) which in d(N(Y)xI) is isotopic to /|s«-mo}
arbitrarily within its isotopy class. Further, if we hâve chosen g Sn-1 x Dn ^+
d(N(Y)) we can twist this by an arbitrary élément of Ker (7rn_1(SO)(n)) —&gt;
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Now let g, : S&quot;&quot;1 x Dn &lt;-* dN(Y) 1 ^ i ^ r be the disjoint characteristic embed-
dings of L(X). Then HM(L(X); Z) Ker(Zr ^Hn_1(N(Y);Z)) where e,-»
(gi)*^&quot;&quot;1]- This kernel is a direct summand in Zr 7rn(X, Y) as Hn_!(Y;Z) is

torsion free (Y is a (n — l)-dimensional complex). Thus if we possibly change the
présentation of X as CW-complex we can assume that el5..., e, form a basis of

Dénote the corresponding éléments in (Hn(L(X); Z) by êu ës. It is a well
known fact that for ij=j

where the linking numbers of the null-homologous embeddings gl(Sn~1x{0}) and

gjCS^xjO}) in dN(Y) are given by Co(gJ)[Sn~1] where C is a chain bounding
gl(Sn~1x{0}). But for i&lt;j we can change this linking number by an arbitrary
integer if we add an appropriate multiple of g,({*}x S&quot;&quot;1) to gx(Sn~l x{*}) which is

allowed as it does not change the isotopy class. Thus we can change our
characteristic embeddings so that for i^j:

êt°êj 0.

For n odd we are finished and for k even we know êx°êx is even as L(X) is

stably parallelizable. We are allowed to change fx : Sn~x x Dn -&gt; dN(Y) by twisting
with any élément a in Ker (7rn_!(SO(n))-» 7rn_i(SO((n + l)). If we do this then
only èx°ëx changes, namely by the Euler number of the bundle over Sn

corresponding to a. Thus we also can achieve êx°êt =0 as there exist bundles over Sn

with arbitrary even Euler number.

Now we compute the cellular chain complex of M(X)2n. For a left module A
we dénote by A* Homz (A, Z) the A-module with (g • /)(x) f(g~l • x).

PROPOSITION IL3. Let M(X)2n L(X)U-L(X) as in Proposition 112.
With respect to the corresponding handle décomposition the cellular chain complex

of M(X)2n is given by

0 -&gt; C0(X; A)* ^U d(X; A)* -&gt;

Cn(X; A)* 0 Cn(X; A) iU&gt; Cn^(X; A)^ 1&gt; C0(X; A) -&gt; 0,

(the sign of d* is (-l)k) where A is the group ring Z(tt) and tt
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Proof. We recall that L(X) is homotopy équivalent to X and has a handle
décomposition corresponding to the cell décomposition of X. Thus for i ^ n -1
the left hand disks (notation as in [7]) of M(X)2n correspond to the i-cells of X
and up to dim n — 1 the cellular chain complex of M(X)2n is given by

Cn^(X; A) -&gt; &gt; C0(X;A) -* 0.

For i&gt;n the left hand i-disks of M(X)2n are ail contained in -L(X) and

correspond to the right hand i-disks of -L(X). From the duality between right
hand and left hand disks we know by ([7]) that Ct(M(X)2n; A)
C2n-l(-L(X); A)* C2n-l(X; A)* and that the cellular chain complex in dimensions

=^n + l of M(X)2n is given by

0 -* C0(X; A)* —1+ d(X; A)* -* &gt; Q-i(X; A)*.

There are two types of left hand n-disks in M(X)2n, those sitting in L(X) and
those sitting in -L(X) which again correspond to the right hand n-disks in
-L(X). Thus as above we hâve a splitting

Cn(M(X)2n ; A) Cn(X; A)* © Cn(X; A)

For the boundary operator Cn+1(M(X)2n; A) Cn_i(X; A)*-» Cn(X; A)*©
Cn(X; A) it is clear from ([7]) that it is of the form (±a*, On the other hand
the boundary of a left hand (n + l)-disk in Cn+1(M(X)2n ; A) which corresponds to
a right-hand (n + l)-disk of -L(X) is contained in -L(X)# so it has no compo-
nent in L(X) and thus is 0.

For the boundary operator Cn(M(X)2n; A) Cn(X; A)*©Cn(X; A)-&gt;

Cn__1(X; A) it is clear that it is of the form I. To show 0 in this

consider a left hand n-disk in M(X)2n which corresponds to an élément of
Cn(X;A)*. Geometrically it is given by a right hand n-disk of -L(X). The
boundary of it is zéro in Cn_x(L(X); A) as it bounds the same disk considered as

sitting in L(X).

Finally for tt^X) finite we need some information about the intersection form
of the universal cover M(X)2n. This form is invariant under the action of ttx. If we
consider Hn(M(X)2n;A) as a Z-module then

Hn(M(X)2n ; A) Hn(M(X)2n ; Z).

case we
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From Proposition IL3 we know that

Hn(M(X)2n;A)^Hn(X;A)®Hn(X;A)

or as Hn(X;A) Hn(X;A):¥ (X is (n - l)-connected) we hâve

Hn(M(X)2n ; A) Hn(X; A)* 0 Hn(X; A).

Thus 2

PROPOSITION II.4. Let ir^X) be finite. If we write M(X)2n as L(X) U - L(X)
as in Proposition IL 2 then with respect to the splitting above:

Hn(WX)2n ; Z) HM(X; Z)* 0 Hn(X; Z)

the intersection form is equal to

.(-Dn&lt;,&gt;

c. The splitting Hn(M(X)2n;Z) Hn(X;Z)*eHn(X;Z) corresponds to
the splitting of the exact séquence

0 ^ Hn+1(L(X) x f, d(L{X) x I); Z) -U JULW U -L(X); Z)

SU

HM(X;Z)
v

where p is the projection onto L(X)x{0}.
It is well known that for W an orientée 2n-manifold and a e Hn+1(W, dW; Z),

beHn(dW;Z) the intersection number da°b is equal to ±(A~~1a, i*b) where A is

Poincaré duality.
Thus in our case the intersection form vanishes on im (d) and corresponds to

the Kronecker product for aeir(X;Z) and beHn(X;Z).

Some final remarks. From the results mentioned before we know there exist
finite n-dimensional complexes X and Y such that X and Y are (n - l)-connected
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and X and Y stably simply homotopy-equivalent. Thus M(X)2n and M(Y)2n are
stably diffeomorphic. We will construct in the next section an invariant which for
n even shows that for certain X and Y, M(X)2n and M(Y)2n are not homotopy
équivalent. We hâve already mentioned that M(X)2n and M(Y)2n hâve équivalent

intersection forms. This will prove our Theorem 1.1.

There is an obvious question to be asked. Namely in the non-simply connected
case there is another invariant which one might use to distinguish stably
diffeomorphic manifolds: the intersection form of the universal cover considered
as a Z-valued form of A-modules. In our case it is not difficult to show that if
IttxCX)! is odd then the intersection form on HjM(X)2n;Z)==H%(X; A)*0
Hn(X;A) is équivalent to

&apos;

J under a transformation of the form
/1 0\

\&lt;, &gt; 0 /
I 1. Thus also thèse invariants agrée in our examples.

III.l. The 4n-dimensional case

In this section we will summarize the géométrie results of section II, translate
to algebra, and outline the procédure we will use to produce the examples of
dimension An. G will always dénote a finite group and A its intégral group ring.
Ail modules will be finitely generated.

Recall that if A is a A-lattice (i.e. free as an abelian group), A* Homz (A, Z)
is the A-module with (g • f)(x) f(g~1x). The function A-*A* is exact on
A-lattices and maps projectives to projectives since A —A* via the A-map which
sends 1 g A to irl9 projection on the identity component.

If A is a A-module H°(G, A) AG/NA will dénote the Oth Tate cohomology
group of G with coefficients in A. Since it is used often in this paper we will
sometimes dénote this group by A.

Let n ^ 1 and consider the foliowing catégories.
(i) ^ën((ën); the category whose objects are A-free (projective) chain

complexes C* of length n, exact except at Co and Cn, with H0(Qc) Z. (i.e. free
(projective) syzygies of Z). The maps are chain maps inducing the identity on Ho.
We will dénote Hn(C*) by Trn(C#) or irn or sometimes even ir if C* and n are
clear.

(ii) &amp;M2n(M2n): the category whose objects are pairs (D*, &lt;PD) where D* is a
free (projective) chain complex of length 2n exact except at Do, Dn, D2n with
Ho(D*)^H2n(D*) I.. cpD:Hn(DH£)^Hn(D*)* is a A-isomorphism i.e. is the
adjoint of a nonsingular A-equivariant bilinear form on Hn(D%). If A is any
lattice and (A, b) is a Z-valued A-form on A, then b induces forms (AG, bG) on



22 M KRECK AND J A SCHAFER

the fixed point set and (Â, 6) on the Tate group. The form 6 is a Z/|G|-valued
form.

The maps in the category 3FM2n(M2n) will be chain maps inducing the identity
on Ho and H2n and an isometry of (H°(G, Hn(Q)), 5C) with

(iii) 3^n(&lt;8n); the category whose objects are the objects of ^^CKJ. A
morphism C-*C consists of a pair of homomorphisms f:C—&gt;C and g:C —&gt; C.

Consider the functor M:&amp;*€„(%) -» &amp;M2n(M2n) defined as follows. M(Q)
(D#, &lt;PD) where

C*©C

sign of

If f:Q-^Ci and g : Ci -&gt; Q then M(/,g) h where h,=/l5 0^i
n +1 ^i^2n and f^ g*©/n. We will see in Section 5 that M(/, g) is a map in

Finally, let M be a A-module and a g Aut G. Dénote by aM the A-module
where g • am =a(g) • m. Note that if f:M-^N is a A-map, then / is also a

A-map /:aM-^aN. Hence if C* is a A-chain complex then so is aQc where

(«Q)n =«Cn and adn =dn.
In Section II we saw that the manifold MX2n had the following properties. (i)

ttxMX—ttxX, (ii) the chain complex C{MX\ A) is chain homotopy équivalent to
M(C(Xn;A)) (Proposition IL3) (iii) under the chain homotopy équivalence in (ii)
the intersection form bx on Hn(MX: A) corresponds to the form on

Hn(M(C(Xn ; A))) Hn(X, A)* 0 Hn(X, A) given by the matrix
° ^9J\ where

is the Kronecker product on Hn(X,A) (Proposition IL4), (iv) the form bx

when restricted to (HM(X, A)* 0 Hn(X, A))G is given by
° (^) ex. The

zéros follow from Proposition II.2 as over the rationals (Hn(X;A)*0
Hn(X; A))G®Q Hn(MX; Q)G =Hn(MX; Q) Hn(LX: Q)0Hn(-LX; Q), the
isomorphisms respect the splittings and the forms vanish on Hn(LX;Q) and

Hn(-LX;Q).
Our procédure is as follows. Let X and Y be two finite n-complexes with the

same Euler characteristic and (n - l)-connected universal cover together with
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isomorphisms of the fondamental groups to a given group G (polarized
complexes). We dénote the cellular chain complexes of X and Y with A-coefficients
for a moment by C and D. The cellular chain complexes of MX and MY are then
given by M(C) and M(D).

Let h : M(C) —&gt; M(D) be any chain map which induces the identity in dim 0
and 2n. The map Hn(h) : Hn(M(Q) -* Hn(M(D)) induces a map of Tate cohomol-

ogy groups, Hn(hf :H°Hn(M(Q) -» H°Hn(M(D)). We show that this map is

unique moduo composition with

Id)&apos; Where WC Split H&quot;(M(C)) as Hn(C)*©Hn(C). (Proposition III.4).

If MX and MY are polarized orientation preserving homotopy équivalent
then we can take the induced cellular map for the h. It induces a map
Hn(M(C))G-+ Hn(M(D))G which is an isometry of the restriction of the intersection

form to the fixed point sets. If \G\ is odd then ail maps _ XJ) on Tate
vu Id/

groups as above are induced by isometries of the fixed point sets (Lemma III.5).
Thus if MX and MY are polarized orientation preserving homotopy équivalent
then for every chain map h the map Hn(h) is induced by an isometry of the fixed
point sets.

We will use this information to distinguish certain MX and MY. For this we
study the maps and how they change if we choose différent polarizations more
systematically in the rest of part III.3.

To study the isometries of the fixed point set Hn (M(C))G we hâve to
détermine the restriction of the intersection form to them. As the forms are given
by évaluation this is a purely algebraic problem which we investigate in part III.2.

With this information we construct in III.4 some non-cancellation examples. It
is easy to see that if the complex is of the form XvSn then for every h as above
Hn(h)&quot; is induced by an isometry. Thus we only get informations if the Euler
characteristics of X and Y are minimal.

In some cases, for instance if G (Z/p)s, the isometries of the fixed point sets
détermine éléments in the Wall group L?(Z) (for the notation compare [15]). If in
addition X and Y hâve minimal Euler characteristic the Tate groups are the
réduction of the fixed point sets mod p, thus Hn(hY defines an élément in L?(Z/p).
The knowledge of thèse Wall groups and of the map between them leads to
non-cancellation results for some oriented manifolds MX and MY in every
dimension 0 mod 4 (Corollary after Theorem III.3). As MX is diffeomorphic to
~MX (by § 2 MX is a double) we can forget the orientations.
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III.2. The fonns eG and ê on O* © irn)G and (tt* © irf

The évaluation form e on Hn(M(C)) tt* ® tt (7r Hn(C*)) gives rise to
forms eG and ê on (tt* © 7r)G and (tt* © ir)* respectively. In this section we wish

to evaluate thèse forms. More generally we wish to détermine the forms
(Hn(D*)G, 4&gt;G) and (HJjD*), à) induced by (D*, &lt;P)eM2n. The form eG is not
quite the évaluation form since as we shall see below (tt*)g^ (ttg)* in gênerai.
However there is a close relationship between them.

PROPOSITION III. 1. If A is an A-module, there exists an exact séquence

0 -» (A*)G -=£&gt; (AG)* -&gt; I^ -&gt; 0 (1)

where LA is finite.

Proof. From the exact séquence 0-» AG -^ A -» A/AG-^0 we obtain the

séquence

0 -* HomG (A/AG, Z) -&gt; HomG (A, Z) — HomG (AG, Z) ~&gt; ExtG (A/AG, Z)

-* ExtG (A, Z) -^ ExtG (AG, Z)

Since HomG (A,Z) (A*)G and obviously HomG (AG,Z) Homz(AG,Z)
(AG)*. It is enough to show Homo (A/AG, Z) (0).

But this is obvious for if &lt;f&gt;:A/AG—&gt;Z is a G-map, then 0 &lt;PÇ£gx)

\G\ &lt;P(x) for ail xeA. Note that LA is finite since ExtG(A/AG,Z) is.

The usefulness of this proposition is due to the fact that the form eG on
(tt* © tt)g is obviously the restriction of the évaluation form on (ttg)* © ttg and

hence if we know the torsion coefficients of L^, say fil9..., ft, then we may
choose a basis {/,}, of (ttg)* so that {ft/,} is a basis of (tt*)g. If {x,} is the dual
basis to {/,}, then with respect to the basis {£/,, x,} of (tt*)g © ttg the form eG has

matrix

O
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In order to compute LA we hâve the following,

LEMMA III.l. IfAisa A-lattice, then in (1) rest (N(A*)) |G| (AG)* where

NA {£ ga | a e A} for any G module A.

Proof. We first note that for any finitely generated A-lattice A, A/AG is a

A-lattice since it is clear that naeAG, neZ only if aeAG.
If h e N(A*) then for x e A, h(x) £g h^g^x) for some Z-map h1 : A -» Z. If

xgAg, then h(x) |G| h^x) and so rest (h)e\G\ (AG)*. Conversely if h \G\ h1

for some h1 : AG -*Z then since A/AG is a lattice, A « AG © A/AG as abelian

groups. We may therefore define h : A -&gt; Z by h \ AG h\ h \ A/AG 0. h e A*
and for x e AG, Nh(x) £g hCg^&apos;x) |G| h\x) h(x).

Therefore we hâve the following diagram with exact rows and columns.

-sa* |G|(AG)*

i
&quot;

i
0 &gt; (A*)G -22L&gt; (AG)* &gt; LA &gt; 0

1 i 1- &lt;»

0 &gt; H°(A*) » (AG)*/|G| (AG)* * coker 0

I I
0 0

Hence to compute LA it is enough to compute the cokernel of the map
H0(A*)-»(AG)*/|G|(AG)*.

Since \G\ annihilâtes ail Tate cohomology groups of G, the torsion coefficients
of H°(G, A) must divide* \G\.

PROPOSITION III.2. If the torsion coefficients of H°(G, A) are rx |r2| • • • | rk
where fc=rankAG and we allow Tt l then LA has torsion coefficients

The proposition is an immédiate conséquence of the following lemma.

k

LEMMA III.2. If (P:©Z/sl-^(Z/s)k is an embedding where st\s for
i

i, then cokernel &lt;p « © Z/(s/s,).
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Proof. By considering the p-torison it is enough to assume s pl,sl p\ll^l.
Consider the generator ek of Z/p1* • p*kek =0 implies &lt;pek has order p^ and
therefore &lt;pek=pl~l* for some ye(Z/pl)h of order exactly p1. But any élément
of order p1 is part of a basis of (Z/pl)k since it must contain a component relatively
prime to p. Therefore there exists an automorphism /:(Z/pI)k -&gt;(Z/p!)k such that
/(y) £fc a generator of the last factor of (Z/pl)h. Since / is an isomorphism, coker

&lt;p, f°&lt;p(ek) p1&quot;^ and coker /°&lt;p — Z/pl~lk ©coker &lt;p

i
©Z/p1&apos; -t^ (Z/p&apos;)k * coker/°&lt;p

I)k~1 &gt; coker &lt;p

since ail the vertical maps split. Hence we are done by induction.

This computes the form eG on (tt* © tt)g. The form ê on (tt* © ir)* is induced
from cG and so has the same matrix but considered as a Z/|G|-valued form.

COROLLARY. Suppose Hn(G) is elementary abelian (Le. ail r, r, t) and
l)n+1. Then eG(ê) is a multiple of the hyperbolic form

1 on (7r*©7r)G ((7r*©7r)&quot;). More precisely there exists a basis {x,, y,} such

that xlyl beZ(Z/\G\) for 6 |G|/t. Hence by dividing through by b we may
consider eG to be the Z-valued hyperbolic form and ê to be the Z/r-valued
hyperbolic form.

Proof. Since Z —&gt; C* —»•••—&gt; C* —&gt; tt* —&gt; 0 is exact we hâve by degree shift-
ing H°(tt*) =* Hn+1(G, Z) which is in turn isomorphic to Hn(G, Z) since G is finite.
Moreover the same séquence (or its dual) shows rank (tt*)g - rank ttg
x(C*) + (-l)n+1. Since d(Hn)(G)) *(C*) + (-l)n+1 ail the torsion coefficients of
L^ equal b |G|/t by the proposition and the resuit follows.

We shall now proceed to show that if (D, &lt;f&gt;) is an arbitrary élément of M2n
then the induced form on Hn(D)* is non-singular.
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LEMMA III.3. Suppose h:Fr-*F2 is an embedding of a free abelian group in
another of the same rank. Suppose Fq^Fx is a subgroup such that h(F()) kF2 for
some keZ*. Let ttx:Fx —&gt;FJF0 and tt2:F2—:&gt;F2IF1 be the natural projections.

Suppose {/,}, {gj} are bases of FUF2 resp. such that h(/J) /3JgJ. Then {tt^} is a
basis of FJF0.

Proof. Clearly {i^g,} is a basis of F2/kF2. Since 7T1(fcgJ) 0, j3, | k.

(i) TTifj has order fc/0, since (fc//3j)tt1^ maps to the image of kg, =0 in F2/kF2.
Since FXIFO &lt;^&gt;F2/kF2, (fc/p,)^/, =0. If air^^O, then aftg, maps to zéro in

fc

F2lkF2 so fc | afy which is équivalent to saying —-1 a.

k
m,.(ii) If Y m-TTif. 0 then Y m-fte. maps to zéro in F2/kF2 so as above, —

ft

LEMMA III.4. Let A be a A-lattice and consider the dual of (1) from
Proposition IIIA,

0 -&gt; AG (rest)*
&gt; (A*°)* -&gt; Ext (LA, I) - LA -&gt; 0.

Then rest* ((NA)) |G| (A*G)*, where we haue identified A and A** by means of
the natural isomorphism.

Proof. Let x g A*g and y g NA, then (rest)*(y)(x) x(y). If y I hy for y g A,
then x(y) |G|x(y). If i:A*°-*A* is the inclusion, i*(y)G(A*G)* and
\G\ i(y)(x) \G\ y(ix) \G\ x(y). Hence rest* (y) g \G\ (A*g)*. Conversely if g

|G|/g|G| (A*°)*(ix), then since A/AG is a A-lattice, ï*: A -^(A*G)*(ix) is onto.
If i*(z) / and y gz g NA, rest* (y)(x) \G\ x(z) g(x) for x g A*g.

THEOREM III. 1. If (A, &lt;f&gt;) is a non singular A-form, then the induced form
(H°(A), 4&gt;) is non-singular.

Proof. Since 4&gt;:A-^&gt;A* is an isomorphism, A and hence A/AG are A-
lattices. Consider the following diagram.

NA -^ N(A*) —
f i

Ao -g, A- -L. A»&apos;

1 I I
H°(A) -=-»- H°(A*) &gt; Aa*l\G\ A°&apos;
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By Lemmas III. 1 and IIL3 we may choose bases {/,}, {g*} of AG, AG* respec-
tively so that (i) r&lt;&gt;&lt;t&gt;G(fJ) j8,g* (ii) {nj,} is a basis of H°(A). If we dualize
(r°&lt;f&gt;G)*(g,) ft/* and use Lemma III. 1 and III.4 we hâve {wig,} is also a basis of
H°(A). Moreover &lt;J(iri/p u^fo) 8jk&amp;k mod |G| since &lt;£ is induced by the form on
AG whose adjoint map is r°&lt;£G. Hence if x £ w^i/» e H°CA) has &lt;£(x, y) 0 for

ail y we must hâve j3kmk 0 mod \G\ for ail fc which is équivalent to — mk O
\c*\

x 0 since tt^ has order -—-. Hence the adjoint map |3&lt;/&gt; : H°(A) -»
Pk

Homz(H°(A),Z/|G|) is a monomorphism and hence an isomorphism since both

groups are finite and abstractly isomorphic.

III.3. The invariant

Let B*eM2n, consider the exact séquence 0-*Iman+1-i&gt;kerdn —&gt; Hn —&gt;0

and let
(a) K(D*) coker {H°(0 : H°(im dn+1) -&gt; H°(ker dn)}

(b) L(D*) ker {H\i) : H^im dn+1) -» H^ker an)}

so that one has the exact séquence

0 -» K0D#) -* H°(HM) ^ LCD*) -* 0 (3)

PROPOSITION III.3. Suppose D*9 E*eM2n and h:B*-*E# is a chain map
inducing the identity on Ho and H2n. Then (i) H°(h*) : H°(Hn(D*)) -&gt; H°(Hn(E*))
is an isomorphism. (ii) 1/ h iB*—^E* is another chain map (inducing identity on Ho
and H2n) then Ê^ih^H0^) Id + /Da • ttd /or some map a :L(B*) -

Since 0-»keran-»Dn -&gt; &gt;Do-^Z-^0 is exact and the DX are
projective, the chain map h induces a map from H1 (ker d%) -&gt; H1 (ker d^) which is

independent of h (since any chain map lifts the identity) and hence must be an

isomorphism for ail i. SimUarly the exact séquence 0 —» Z —&gt; D2n —? • • • -&gt; Dn+1 —»

imdn+1--»0 implies that fi induces a map from Hl(imd^+1)-*Hl(mid^+i) which
is also independent of h and hence also an isomorphism. From the définitions of
K and L we see h induces unique isomorphisms fx(O3|e,E^):iC(O^)-^K(E*) and

*, E#):L(O#)-»£(£#). (i) and (ii) are now immédiate.

Now suppose B* and E* are in the image of the functor M:^ -*M2n (see

Section III. 1), say B* M(B*), E* M(Q).
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The définition of M(D*) shows immediately that the map Hl(i) : H1 (im dn+1) -»
Hl(Keran+1) is zéro and we hâve K(B*) ^(ker dn) and L(B*) H1(iman+1).
Since 0 —» im dn+x —&gt; Dn —» coker dn+x —&gt; 0 is exact we hâve L (B*) —

H°(cokerdn+1) and we will think of v as being induced by the chain map on
coker cÇ+i —» coker d^+1. As Hom&lt;gn (B*, Q.) ^ &lt;£, there exists chain maps
h : M(/, g) : M(B*) -&gt; M(Q). Now we hâve

(i) coker d£+1 coker ((d*)*, 0) irn(B*)* © Bn.

(ii)

(iii)
and similarly for E*. From the définition of /ul and v and the form of M(f, g) we
see n is induced by Hn(g)*©/n, v by g*n®Hn(f) and Hn(h) Hn(g)*©Hn(/).
Since BÎ(Ct) and Bn(Q) are A-projective H°(Bn) H°(B*) 0 and we may
identify #°(cokerd?+1) (resp H°(ker a£)) with jft°(irn(B*)*) (resp. A°(irn(B*))) via
the projection and injection maps. Moreover using this identification the maps jul,

v are given by ÎP(nn(gf) and H°(Hn(f)) respectively.

PROPOSITION III.4. If D*, E* e M2n are in the image of the functor M : &lt;ën -»
ii2n, then (1) there exists a chain map hrB^—^E* such that ÊP(Hn(h))

v(D#, E^e). (2) TTie map is an isometry of the form êBdt: with êEitt. (3) If
*—&gt;E* is any other map in ^2n ^w H°(Hn(h)) _ where

\0 i^/vu Id/

T
1 is an isometry of (tt*(B) ffi &apos;

Id/

Proo/. We hâve already verified everything but (2). We hâve seen from the
above that the map jx © v a is given by H°(Hn(g)*) © H°(Hn(/)) where /: B* -&gt;

C* and g : C* —? B^ are chain lifts of id : Z —&gt; Z. Since /° g : C* —&gt; C^ is a chain lift
of the id:Z-*Z we hâve H°(Hn(gf H°(Hn(/)*)~1 (the map induced on H(n*)
is independent of the chain map). The form êB(êc) is induced by e^ej?) which is in
turn the restriction of the évaluation form eB(ec) on 7r*©irn. Hence if [f]e
H°(7rn(B*)*), C e (7rn(B*)*)G and [u] e HVn(B*)), u g it^B*)0 then

(Recall tt*g c-&gt;(7r^)*.) On the other hand
where Hn(/)*(£&apos;) £ with Ç&apos;e(7rn(C*)*)G and

H°(Hn(/))[u] [Hn(/)(u)] [ii&apos;]. Therefore ec([^&apos;], [m&apos;D C&apos;(m&apos;) mod Z/|G|
r(Hn(/)M)modZ/|G| jHn(/)*(^;)(M)rnodZ/|G| êB[^], [u]). Therefore a is an
isometry. (3) now follows since by définition any map heM2n induces an isometry
on H°(Hn).

Suppose one can show the isometry a jx © v of êOsle with ê^
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(O* MB#, E* MC*) cannot be lifted to an isometry of Co* with e^l then the

following lemma and Proposition III.4 (3) will show that there cannot be any
chain homotopy équivalence of MB% with MC* and which préserves the forms on
Hn(MB*) and Hn(MC*) providing \G\ is odd.

11 A\LEMMA III.5. If \G\ is odd, every isometry of ê of the form I

/ I 0\
\ a t) &apos;^s to an îsometry °fe&lt;3-

or

Proof. It is sufficient to prove it for J. Let B r
j bn \ - • • | bt and

H H°(&apos;7Tn) Zlt1X&apos; • • xZ/k where tx \ • • • | ^ By Proposition III.2, t,^ |G|.

The form eG is (ZnxZn, and the form ê is [HxH, the last

being considered as a Z/|G|-valued form. Dénote the basis of the first copy of H
by {xj and the second copy by {x*} so that the order of ^ and x* is *, and ê

fa, xt) bx mod|G|; ail other products are zéro. Let A.H-+H be given by
AXt =S «»j^T where at] are only defined mod tv Since the order of x, is f, we see

that for i&lt;j we may write a,, a^tjÇ1 where a&apos;t] is defined mod*,. The fact that

I is an isometry of ê is équivalent to

(i) lo.A-OCmodlGl)
(ii) for i&lt;U OjA + V^r&apos;^O (mod|G|).

Since (2, |G|) 1, (i) says au 0 mod — 0 mod ^. Since à | 6,, (ii) says

^^ii^r1—0 mod^ 0 mod tr But bjb,&quot;1 ^r,&quot;1. So (ii) implies an + a[j^
bi

0modtr Now define C:Zn-&gt;Zn by cu=0 and for /&gt;î let cn be any integer

congruent to an mod t,, Let clJ=-by1blcn for î&lt;; then clearly J is an

isometry of on ZM xZn. But ctJ -b^b^ -t&apos;1^ mod bt

a^t&quot;1 mod i,, i.e. C reduces to A.

In order to show &lt;r does not lift to an isometry of e% with e% it is easier to
collect the cr(D,E) into a group valued invariant. Let C1,C2€cën.

DEFINITION, (i) An isometry of ((ir?©^)&quot;, ^-^((Trf©^, ê2) is called

diagonal if there exists maps / : rrf —» tt^ and g : tt^ —&gt; Trf inducing isomorphisms
/: 7tx -&gt; &lt;fr2 and g* | (ttÎ)g : Trf -^ tt| such that p (g* |)A©/.
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(ii) An isometry A of ((*¦? © ttx)g, eG) -» ((ir$ © tt2)g, eG) is called diagonal if
it is of the form Z*&quot;11 7r*G ©/ for some isomorphism /: tt? —&gt; ttg.

Note that the isometry o* of ê1 to ê2 is a diagonal isometry.
We will dénote by Isom (êu ê2)(Diag Isom (ê1? ê2)) the set of isometries

(diagonal isometries) of ((tt* © ttx) êx) with ((tt* © ^2) » ê2) and by
Isom (cf, eG)(Diag Isom (ef, eG)) the subset of Isom fo, ê2)(Diag Isom (êuê2))
induced by an isometry (diagonal isometry) of ((tt*©ttx)0, eG) with ((tt2©

PROPOSITION III.5. Given C*, C^e^ such that *(C*) x(Ci) then there
exists a diagonal isometry &lt;p :((ir^*©&apos;7ri)G, 6&apos;G)-&gt;((7r*©7rn)G, eG) inducing a

diagonal isometry &lt;p : («* © &lt;)\ e&apos;) -&gt; (Or* © irn)A, e).

Proof. Recall from Lemmas III. 1 and III.4 we hâve commutâtive diagrams.

^-&gt;(irG&apos;)*/(iV7T)**&gt; ?(Tr*°)!|7|G|(&lt;n-*G)*&gt;--»- coker

î î I-
TT (7TO )* &gt; (7T » tiXt (L^, Z) (2

1 1 1
Nir [ *¦ (Nir)** * \G\ (tt*°)*

*) &gt; ttg7|G| • irG* —* coker

î î î-
*g v rest _G* ^ f /^X

1 1
*Ntt

There are similar diagrams for tt&apos;. Now since x(C*) x(C#) there exists an
isomorphism p.L^-^ L^. This follows since x(C*)= A:(Ci) implies by Schanuels
lemma and semi-local cancellation that tt(g) «=* 1T(G) (A(g) dénotes A localized at
those primes dividing the order of G). Since localization commutes with Ext and
\G\ Ext 0 for lattices we have

U - ker {Ext h (ttItt0, Z) -* ExtG (tt, Z)} -K,
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This isomorphism can be lifted to an isomorphism |3* : rrG* —&gt; tt&apos;g*. From (2) we
see that |3* | tt*g induces an isomorphism H°(7t*)—&gt;H°(tt&apos;*). Dualizing we see

that P : tt&apos;g -» ttg induces an isomorphism H°(tt&apos;) -» H°(tt). It is obvious that
(P*\ir*°)-1®P:(ir&apos;*®ir&apos;)a-»(ir*®ir)a is a diagonal isometry of e&apos;G to eG

and induces a diagonal isometry of ê&apos; to ê.

This proposition allows one to collect the invariants crCD*, E*) of Proposition
III.4 into a group valued invariant as follows. We fîx an Euler characteristic fc

and let Cn(fc) be the Ml sub-category of %„ consisting of objects of Euler
characteristic fc. Similarly M2n(k) will dénote the image of ^n(fc) under the
functor M. Fix an object C*G^n(fc) and dénote 7rn(C^) by II. From the above

proposition if M(C#) e M2n(k) there exists a diagonal isometry (pc:((I7*©
II)G,eG) -» (7rn(C*)* © iTn(C*), eG) inducing a diagonal isometry &lt;pc from ê to ê^.
For each M(C*)eM2n(k) choose such a &lt;pc and for D* M(BHe), E* M(C^)g
M2n(k) let I(O^,E*) ^c1o&quot;(û,E)&lt;pBeDiagIsom(ê). To obtain a well defîned
invariant we proceed as follows.

PROPOSITION III.6. Given f:iri—&gt;ir2 a homomorphism, there exists a unique

giTT^-^Tri such that êx(gy, x) ê2(y, fx) for yerrt, xe &lt;rtx.

Proof. Lift / to a map f :tt?—» irG. This restricts to a map /:
hence from (2&apos;) to a map \G\ irîG* -&gt; \G\ tt5g*. This last obviously lifts to a map
g* : (tt*0)* -&gt; (tt*0)* since thèse are free abelian. Note that if fis an isomorphism so

is g*. It is clear that

commutes.
Hence g g** : tt*g —» tt*g maps Ntt* —&gt; Ntt* and so induces a map g : tt2 —»

7T* so that g, / hâve the desired property. The uniqueness of g is a conséquence of
the fact èx is non-singular (Theorem III. 1).

COROLLARY. There exists a bijection (Diag Isom (êu ê2), Diag
Isom(cf,eG)) with (Iso (tiFfa), H°(tt2)\ Iso(irf,^)). If C1He C2*, this is an
isomorphism of group pairs.

Proof. If / : H0^) -» Ê°{tt2) is an isomorphism, then /&quot; : tt2 -^ ^&quot;1 gives rise
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to an isomorphism g:rr*—^tt* from the proposition and g©/ is diagonal. The
inverse map is given by g ©/—»/. Thèse clearly map the subsets into each other
and the last statement is obvious.

It is not difficult to see that if tt^Z/^x- • -xZ/f* with t1\t2\ • • * 1k and
ttg ^Zn, then Iso (ttg) is normal in Iso (tt) and Iso (tt)/Iso (ttg) - (l/t1)*l(±l) via
réduction mod tl9 and the déterminant map [17]. Note that we may hâve tx 1

and hence Iso (tt)/Iso (ttg) (0). If £,*^c€n then by taking fixed points we see

rfcz7rG=x(C*) + (-l)n+1. Also by degree shifting H°(7r)-H-(n+1)(G,Z)
Hn(G,Z). Hence if d(Hn(G,Z))&lt;*(C*) + (-l)n+1, where d(B) minimal number
of generators of B, then Iso (ir)/Iso (ttg) (0).

From the corollary we hâve Diag Isom (ê)/Diag Isom (eG) — Iso (tt)I1so (ttg)
which is abelian. Clearly Diag Isom (eG)ç Isom (eG) H Diag Isom (ê) which is

normal in Diag Isom (ê). Let F^(G) Diag Isom (ê)/Isom (eG) H Diag Isom (ê)
where n length of the complex and k Euler characteristic. F£(G) is indepen-
dent of C^G^k) by Proposition III.5 and is a quotient of (Z/fi)*/(±l) by the
preceding remarks. Let {/(B*, E*)} dénote the class of 10*, E*) in jT£(G).

This is well defined for if $B, $c are différent choices for the diagonal iso-

metry (ir*0ir)A-*(&gt;rr(B)*@&lt;7r(B)f then çc1a04t9fE^0B$tiar0^9 E^Vct
Isom (eG)n Diag Isom (ê) since this is normal in Diag Isom (ê).

PROPOSITION III.7. (i) {I(D*, E*)} • {I(E*, F*)} {10*, F*)}
(ii) {/(DHcE^r^UCE^D*)}.
(iii) If there exists a chain homotopy équivalence D*—»£# inducing an

isometry of (Hn(D*), eD) with (Hn(E*), eB) then {10*, E*)} 1.

Proof. (i) is obvious from the définitions, (ii) foliows from (i) and the fact that
{1(0^,0^)} If fi&apos;.D^-^E^ is the chain homotopy équivalence inducing the
isometry then since Hn(h)G is an isometry of eG to eG and by Proposition III.4
and Lemma III.5 a0*,E*) differs from É°(Hn(h)) by an isometry which lifts to
an isometry of eG with eg, {I(O#, E#)} 1.

From the remarks in Section III. 1 and Proposition III.7 (iii) in order to show
MX is not homotopy équivalent to MY we must show {I(MC*(X, A),
«MQ( Y; A))} f 1 for ail a g Aut G. Now if h : MB* -&gt; MC* is a chain map then
h : «MB*-^ JVfC is also a chain map for any a g Aut G. Since for any A-module
A, (XAG=AG we hâve a0*,E^ cr(Ji*,aE^. Consider the map g:AutG-&gt;
Fn(G) given by g(a) {I(C*&gt; aC*)}. The above remark together with 3.5 (i) shows
g is a homomorphism and {10*, «E*)} g(«)~1{^(û*, E*)}. Hence if we dénote by
Bn(G)cJ*(G) the image of g and by [I(D*,E*)] the class of {/(O^E*)} in
rn(G)/B*(G), we hâve the following theorem.
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THEOREM III.2. If [I&lt;P*,E+f]îler*(G)IB*(G), then for ail aeAutG
there does not exist an isometry inducing chain homotopy équivalence of B* with

m.4. The examples

From the first section and Theorem III.2 we see that in order to produce
examples where MX^MY it is sufficient to show rn(G)IBn(G) is non-zero and
that we may realize thèse non-zero invariants. From the remark after the
corollary to Proposition III.6, r£(G) (0) unless k d(HnG) + (-l)n. We will
after [10] say that a group G with the property that there exists C*e£*8n with
x(C*) d(HnG) 4- (-l)n Xxmn(G) satisfies the minimality hypothesis in dimension
n. It is shown in [10] that ail finite abelian groups and ail finite p-groups satisfy
the minimality hypothesis for ail dimensions n. We will from now on assume G
satisfies the minimality hypothesis in dimension n and that ail complexes consi-
dered hâve x(C*) Xn*n(G). We will dénote It(G)/(B*(G)) by rn(G)l(Bn(G)).

The corollary to III.6 shows there exists an epimorphism &lt;t&gt; : Iso (tt)IIso (rrG) —»

rn(G). If D* MB* and E* MC* and one defines {b(B*, C*)} g Iso (&lt;tt)/Iso (ttg)
where b is defined analogously to I using jll instead of cr, then the uniqueness part
of III.6 shows {IXD*, E*)} &lt;f&gt;{b(B*9 C*)} i.e., we hâve, somewhat loosely, a

commutative diagram

Clearly the map g : Aut G~*Fn (G) factors as &lt;f&gt; ° g where g : Aut G —&gt;

Isp tt/Iso irG is the map g(a) {b(B*, aB*)}.
The following two propositions may be found in [10]. Recall that if it —

Z/fx x • • • x Z/tr, ti | • • • | tr then there exists an isomorphism det : Iso (tt)I

PROPOSITION III.8. Let G be a finite abelian group with d(G) s and

Hn(G)^Z/txx • • • xl/tr, tt | • • • | ^ Then Image (det°g)c{Zlt^fl±\ equals
(Z/r1)*&lt;(nt3) for some integer e(n9 s).

The integer e(n, s) is defined as follows. Let M(n, s) set of zéro or odd
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partitions of n of length s i.e., n n1 + n2+* * * + ns, 0^nx^n2 &apos; * =1% and ail

^ are zéro or odd. Let N(n, s)^M(n, s) be those partitions where ail n^O. If
a e M(n, s), let l} number of n, /.

Define fn:M(n,s)-*Z by fn(a)=— &quot;,,,,&quot; where of course 0! l.2s lo\ Ii! • • •

Then

e(n,s)= I /„(&lt;*)+ £ UP).
aeM(n,s) 3eN(n-l,s)

It is not hard to see

e(2,s) s-l,
2if s&gt;2,

3 if s 2,

PROPOSITION III.9. Let G be finite abelian, say G^Z/m1x •• -xZ/ms;
| • • | ms. Giuen y g Iso (tt)/Iso ttg, fhere existe B*, C^g ^ën such thar

C*)} y. More explicitly, for each q such thaï (q, m^ 1 tfiere exists a chain
complex C(q)*e3Z€n and

Remark. Thèse chain complexes correspond to the chain complexes of finite
n-dimensional CW-complexes. For n 2, C(q) is the chain complex of the
standard 2-complex associated to the présentation {al9..., as \ a™x 1, (a?, a2)
1, (a,, a1) l,l^i&lt;j^s (i, j) + (1, 2)}of Z/m1 x • • • xZ/ms. For n &gt; 2,C(q)* corresponds

to the complex whose (n — l)-skeleton is the (n -1) skeleton of K(G, 1)

Ilï KiZ/m^ 1) but some of whose n cells are attached differently than those of the
n-skeleton of K(G, 1) (except of course forC(l)*).

We see from the above discussion that the non-zéro éléments of rn(G)/Bn(G)
(if there are any) may be realized as obstructions [1(0*, E*)] provided G is finite
abelian. Therefore we are left with showing rn(G)/Bn(G)£(0).

We shall restrict ourselves to the case of elementary abelian p-groups,
G (Z/p)s, where p is an odd prime. It is obvious that it is also an elementary
p-group and hence we see from the corollary to Lemma III.3 that we may assume

the form eG to be the Z-valued form 1 and ê to be the Z/p-valued form
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V The Wall group L?CR) detects équivalence classes of automorphisms of

déterminant 1 of the hyperbolic form 1 over R under stabilization [16].

Hence under the assumption G is p-elementary we obtain the following diagram.

Isom(eG)nDiagIsom(e) c—? Diaglsom(e) &gt; fn(G)

Lo(z) ^^ » L?(z/p) &gt; coker (red)

The following results may be extracted from [15].

PROPOSITION III.10. (I) L?(Z)=Z/2 generated by the class of (~^ _°\

(ii) L?(Z/p)=Z/2 generated by the class of A where r is a non-square
modp.

THEOREM III.3. Suppose G (Z/p)s is elementary abelian where p is a prime
congruent to 1 mod 4 and both n and e(n, s) are even. Then there exist finite
n-dimensional CW complexes X, Ysuch that (i) MX2n and MY2n hâve isomorphic
intersection forms (ii) MX#t(SnxSn) is diffeomorphic to MY#t(SnxSn) for
some t(t=l if n^ 4). (iii) MX is not homotopy équivalent to MY.

Proof. We hâve seen that it is sufficient to show rn(G)/Bn(G)^(0). Now the
above proposition shows &lt;pi and hence &lt;p is onto. Moreover the discussion relating
Bn(G) and the image of g : Aut G —» Iso tt/Iso ttg shows

cp(BnG) [class of [ Q
re(n,s)); (r, p) 1 j

in coker (réduction) which is zéro by IILlO(ii) since e(n, s) is even. Since

p 1 mod 4 the réduction map is zéro and hence rn(G)/Bn(G) maps onto coker
(réduction)

COROLLARY. There exist examples satisfying (i), (ii) and (iii) in every
dimension 0 (mod 4).

Proof. From the above theorem it is sufficient to show that for any n, there
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exists an s such that e(n, s) is even. Referring to the définition of e(n, s) given
after Proposition III.8 claim: If a is a zéro or odd partition of n of length s and

has s - k zéros, then /n(a) is an intégral multiple of 1. Accepting the claim

for the moment we see that if s &gt; n, e(n, s) L^MCn,*) /n(«) L* *&amp;( I and if

s -1 2N each binomial coefficient is even. To demonstrate the claim we hâve

/n(a)&quot;
n + s-(s-k) si n4-k

2s 2 (s- lr\

where /! k, n Hence

n-ffc (fc-1)! -l

and we must show y
fc k-1

2 l\\
implies n 4-fc 2

k!

is an integer. Smce n

• and hence

The term

k!
fc ltl Il k

where m, ^4-• • • f, + • • • +1. So

k! v

Kl

m,!

As expressions are integers y is an integer.

Since e(2, s) s -1 the simplest examples of such manifolds are as follows. Let
P 1 mod 4, s odd, and let X(q) be the finite dimensional complex based on the
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présentation

Then if qq&apos;~x is a non square modp, M(X(q))4 and M(X(q&apos;))4 are a pair of
examples.

REFERENCES

[1] Browder, W, Surgery on simply connectée, manifolds Spnnger (1972)
[2] Cappel, S E and Shaneson, J On four dimenswnal surgery and applications Comm Math

Helv 46 (1971), 500-528
[3] Kosinski, A, On the inertia group of tr-manifolds Am J of Math 89 (1967), 227-248
[4] Kreck, M, Manifolds with unique differenttable structure To appear in Topology
[5] Metzler, W Uber den Homotopietyp zweuiimensionaler CW-Komplexe und Elementartransfor-

mationen bei Darstellungen von Gruppen durch Erzeugende und definierende Relation J reine u
angew Math 285 (1976), 7-23

[6] Milnor, J and Husemoller, D Symmetnc bihnear forms Spnnger (1973)
[7] Milnor, J Lectures on the h-cobordism Theorem Notes by Siebenniann and Sondow Princeton

Math Notes (1965)
[8] Quinn, F, On the stable topology of 4-manifolds Prepnnt (1977)
[9] Sieradski, A A semigroup of simple homotopy types Math Zeit 153 (1977), 135-148

[10] Sieradski, A and Dyer, M L, Disttnguishing anthmettc for certain stably isomorphic modules
Jour of Pure and Applied Algebra 15 (1979), 199-217

[11] Wall, C T C On simply-connected 4-manifolds J London Math Soc 39 (1964), 141-149
[12] Wall, C T C, Classification of (n-\)-connected 2n~mamfolds Ann of Math 75 (1962),

163-189
[13] Wal|| C T C, Classification problems in differential topology, VI Thickenings Topology 5

(1966), 73-91
[14] Wall, C T C, Surgery on compact manifolds Acad Press, London (1970)
[15] Wall, C T C Classification of Hermitian forms VI Group Rings Annals of Mathematics 103

(1976), 1-80
[16] Wall, C T C, Foundations of Algebraic L-theory, Algebraic K-theory III Lecture Notes in

Mathematics, 343, Spnnger-Verlag Berhn-Heidelberg-New York
[17] Webb, P J, The minimal relation modules of a finite abehan group Journ Pure and Applied

Algebra 21 (1981), 206-232
[18] Freedman, M, The topology of 4-dimensional manifolds, J difl Geo 17 (1982), 357-453

Max Planck Institut fur Mathematik
Bonn, West Germany
and
Fachbereich Mathematik, Universitat Mainz,
Mainz, West Germany

University of Maryland
Collège Park, Maryland, USA

Received October 11, 1982


	Classification and stable classification of manifolds: some examples.

