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Some topologically locally-flat surfaces in the complex
projective plane

Lee Rudolph*

§ 1. Introduction; statement of résulte

THEOREM 1. For every integer n&gt;6, there exists in the homology class

n[CP1]eH2(CP2; Z) a topologically locally-flatly embedded surface of genus strictly
less than that of a nonsingular complex algebraic curve of degree n.

THEOREM 2. For every pair (m, n) of integers greater than or equal to 5,

(except possibly (5, 5)) there is a topologically locally-flatly embedded surface in the

A-disk with boundary a torus link O{m, n} of type (m, n) and genus strictly less

than the (classical) genus of O{m, n}.

Hère, a surface S topologically embedded in a 4-manifold M will be called
&quot;topologically locally-flatly embedded&quot; if S has a neighborhood N in M which is

homeomorphic to an open 2-disk bundle over S by a homeomorphism carrying S

to a section. This is evidently some kind of local homogeneity assumption on the

embedding of S in M. (For instance, if S is smoothly, or P.L. locally-flatly,
embedded in M then it is a fortiori topologically locally-flatly embedded. After
preparing this paper, the author learned of a new theorem of Akbulut - showing
that certain &quot;topologically slice&quot; knots very similar to |86 in §3, below, definitely
are not smoothly slice - which implies that not every topologically locally-flat
surface is just a smooth or P.L. locally-flat surface up to a global topological
change of coordinates.)

One construction will be used to prove both theorems. It is an instance of a

gênerai construction discussed in earlier papers by the author [7, 8, 9]; it now
proves the theorems because of a récent resuit of M. Freedman. The spécifie
construction is given below, following some motivating remarks and a short new
(and, I believe, improved) exposition of the gênerai construction.

* Research partiafly supported by the Fonds National Suisse at the Mathematics Institute of the

Univcrsity of Geneva.
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Remark 1. A conjecture frequently attributed to R. Thom(1) is that no
smoothly embedded surface in CP2 can hâve genus strictly smaller than that of a

homologous (smooth) complex algebraic curve. It is well-known [5] that, by being
willing to sacrifice local flatness, one can represent every homology class by a

piecewise-linearly embedded 2-sphere-for instance, up to orientation, by the
complex algebraic curve with affine équation w zn. But this sphère need not be

piecewise-linearly locally-flat - in the example, for n &gt; 3, there is a singular point
at infinity.

The point of Theorem 1 is that by making a global (or at least régional)
sacrifice of smoothness, one can salvage a weaker sort of homogeneity of normal
structure while &quot;chopping off handles.&quot;

Remark 2. Theorem 2 is vaguely related to the &quot;problem of Milnor&quot; on the
Gordian number (Uberschneidungszahl, or unknotting number) of the link of a

singularity (cf. [6], [2]). Indeed, O{m, n} is such a link, and the problem in this
case asks whether the Gordian number ù(O{m, n}) equals (m - l)(n -1)/2, which
is the classical genus of O{m9 n} (i.e. the least genus of a surface smoothly
embedded in S3 with boundary O{m, n}). If the answer is affirmative, then any
smoothly embedded surface in the 4-disk with boundary O{m, n} has genus at
least (m - l)(n -1)/2. However, even if a smooth surface existed with boundary
O{m, n} and small genus, no conclusion could be necessarily drawn about
u(O{m, n}); much less for the topologically locally-flat surface of Theorem 2.

Remark 3. Hère is a sketch of the strategy used to prove both theorems. &quot;By

hand&quot; we construct a smooth complex algebraic curve F of degree 6 in CP2, and a

piecewise-smooth 4-ball D in C2cCP2, such that (i) the transverse intersection
FC\dD is a &quot;topologically slice&quot; knot, i.e., bounds a topologically locally-flatly
embedded disk in D, while (ii) the smooth surface FC\D, with the same boundary,
has genus 1. Then replacing the surface of genus 1 by the disk, we produce a

topologically locally-flatly embedded surface homologous to F in CP2, of genus 1

smaller.
It is clear that by various expédients (most naively, doing essentially the same

surgery in k disjoint balls, on a curve of degree 6fc; or using a more complicated
topologically slice knot, which bounds a pièce of a curve of degree 5fc +1 that has

genus k) one can produce as large a gap as desired between the genus of a smooth
algebraic curve and that of a homologous topologically locally-flat surface.

However, I know of no construction which makes a proportional gap bigger than

1 Professor Thom has remarked (personal communication, November 19, 1982) that the conjecture
perhaps more properly belongs to folklore.
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10 per cent, which is already achieved by the example of degree 6 (where the

genus of the algebraic curve is 5(6-1)(6-2) 10 and one handle is chopped off).
In any case, the proportional gap can&apos;t be too big (whether the topologically
locally-flat surface is produced, as hère, by &quot;surgery&quot; - rather, amputation - or
not); for, as Shmuel Weinberger has kindly pointed out to me, Wall&apos;s topological
version [10] of the G-signature theorem fits into the proof of Hsiang and Szczarba

[4] to yield, for topologically locally-flat surfaces in 4-manifolds, exactly the
estimâtes given in [4] for smooth surfaces.

In particular, topologically locally-flat 2-spheres in CP2 occur in degrees 0, ±1,
±2 only (where there are smooth examples).

§2. A construction of closed braids

Fix an integer n ^2. For fc 1,..., n — 1, let rjk exp (2rr(k - l)i/(n -1)) (so

Th l), and let Jk r]k[0,1] be the line segment in C from 0 to r\k. Write
Qn_!={Tîk :k 1,..., n-1}. The fundamental group ^(CXOn-!, 0) is free of
rank n -1, with free basis xl9..., Xn-l9 where xk is represented by a loop based at
0 and running once counter-clockwise around the boundary of a convex région
containing r\k and no r\p j^k. This group is, of course, identical to ^((CU
{oo})\(Qn_1{oo})? 0). Represent it in the symmetric group on {1,..., n} by sending
xk to the transposition (fc fc +1). Let X be the corresponding n-sheeted branched

covering space of C U {&lt;*&gt;}, branched over Qn_i U{o°}. One readily vérifies that Xis
a 2-sphere, with a single point over 00. Thus the covering map &quot;is&quot; a polynomial
of degree n, with n-1 critical points, and critical values i\k (k 1,..., n-1);
further requiring the polynomial to be monic and hâve constant term 0 will
specify it completely. We assume this is done, and call the resuit p(w)
wn + an_1wn~1 + * • • + a1w. Write Cw for X-{oo}, C2 for the base space C, so

p:Cw-*Cz.

Remark 4. Except for n 2,3,1 hâve been unable to find p(w) explicitly. It is

not in gênerai the élégant wn-aw, where a n(l-n)1~1/n; this (like the even
simpler vvn - nw, which only difïers by rotation and homothety in the base space)

corresponds, apparently, to the représentation xk—»(lfc + l). (Of course the
construction could be adapted to thèse polynomials, at the expense of complicat-
ing the braid theory a bit.) For n 2,3, the two représentations are équivalent.

Now consider p&quot;1^). This has n-1 components, each a simple arc; let Ik be

the one containing the critical point with critical value r)k. Then the endpoints of

4 are two of the preimages of 0, call them wk and wk+1; it is easy to see that they



Some topologically locally-flat surfaces in the complex projective plane 595

may be numbered so that Ik H Ik+1 {wk+1} for k 1,..., n - 2, while wx belongs
only to Il9 wn only to In.u and Ik HIx 0 if \k - l\&gt; 1. Let / Uk=i h- Then I is

a simple arc in Cw.

Next consider the configuration space En\A of unordered n-tuples of distinct
points of Cw ; that is, form the symmetric product En C£/S?n, and delete from it
the multidiagonal A of n-tuples with at least one pair of equal éléments. The
n-string braid group is by définition the fundamental group of the configuration
space.

Specifically, we will take p~1(0)eEn\A as our basepoint. In the usual
description of Bn, the basepoint is taken to be {1,..., n}, and for k 1,..., n -1,
the loop !k:S1-&gt;En-Zi:z-&gt;{l,...,fc-l, fc + 2,...,n}U{k+è(l±zè)} (where
S1 ={z eC:|z| 1}) represents an élément of ai(En\A, {1,..., n}) called the
standard generator o~k. Hère, let h:Cw—»CW be an orientation-preserving
homeomorphism with h(I) [1, n] and h(wk) k, k 1,..., n. Then h enforces

an identification of tt^E^A, {1,..., n}) with Bn tt^E^A, p&quot;1^)), giving a

meaning to the standard generators o~u o-n_x e Bn.

Finally, note that p~l is well-defîned as a continuous map Cz —&gt;En, and that
by construction p&quot;11 (C2 — Qn_!) has image in En\A.

PROPOSITION. The induced homomorphism p&quot;11 (Cz - On_!)* from the free

group tt\(^z — Qn-i, 0) to Bn carries the free generator xk to the standard generator
crk, for fc l, ...,n-l.

Proo/. Recall that xk is represented by a loop which traverses (counterclock-
wise) the boundary of a convex région - call it Dk - in C2, and that 7]k e

Int Dk, ^ ^ Dk 0V fc), and 0 g dDk (fc 1,..., n -1). As with Ik ci Dk, the preim-
age p~1(Dk) has n —1 components; n —2 of them are carried to Dk homeomor-

phically by p, and one-call it Dk-is a 2-sheeted buanched cover of Dk via p,
branched at wk g Int Dk; so Dk is again homeomorphic to a 2-disk. No component
of p~1(Dk) other than Dk contains any critical point Wj of p. The loop in En, with
domain the simple closed curve ôDk, which takes zedDk to p~1(z) g En, clearly
has image in En\A. It can easily be homotoped (respecting its basepoint p&quot;1^)),

in En\A, to a path of n-tuples each containing the n-2 points of p-1(0) not in
Dk, together with two points on dDk which exchange positions (by a counter-
clockwise &quot;rotation&quot;) as the loop is traversed; but such a path clearly represents

°V

Recall that an oriented (closed) 1-manifold L in the open solid torus S*xC
is a closed braid (on n strings) if prx | L : L —? S * is an oriented covering projection

(of degree n). A braid &amp;eBn yields a closed braid |3czS1xC (unique
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up to isotopy respecting prt) by taking a loop l:Sl-*En\A representing (3

and considering its &quot;graph&quot; (as an n-valued complex function) gr /

{(z,w)eS1xC:wel(z)}.

COROLLARY. If xf^V • • • x?$ is any word in the free group tt1(C2 - Qn_x, 0),
and y : S * —» Cz - On_i, y(1) 0, is a loop representing it, then the set

{(z, w) : 7(2) p(w)} is a closed braid 0 on n strings in SxxCw, where /3

§3. Freedman&apos;s theorem; proofs of theorems 1 &amp; 2

The profound researches of Michael Freedman into the topology of 4-
manifolds hâve recently led him to the following improvement [3a] of a theorem
published in [3] (the original theorem applied only to a knot K which was an
untwisted double of a knot with Alexander polynomial 1).

FREEDMAN&apos;S THEOREM. Let KaS3 dD4 be a (smooth) knot with
Alexander polynomial âK(t) identically 1. Then K bounds a topologically locally-
flatdiskS^D4.

It is not important for the following proofs to know what an Alexander
polynomial is; it is enough to believe that the knot K pictured in Figure 1A,
where it is shown as the boundary of a punctured torus in IR3, has AK(t) 1. (This
K is in fact an untwisted double of a trefoil knot; from that fact, or calculating
directly from the obvious Seifert matrix of the visible surface, those in the know
will see that AK(t) 1. As readers of [8] will hâve guessed, this particular K was
chosen simply as being about the easiest &quot;quasipositive&quot; knot with corresponding
&quot;braided surface&quot; of genus 1 and Alexander polynomial 1.)

Figure 1B shows an isotopic surface, punctured by a line in IR3; the boundary
knot is a closed braid in the open solid torus complementary to the line, and is the

Fig.l
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Fig.2

same type of closed braid as in Figure 2A. (The surface is less explicit but still
visible.) Call the pictured braid j36eB6. If we abbreviate aba&apos;1 by ab, and crk by fc

(fc 1,..., 5), then we may write p6 345 • 123 • 34 • 1 • 45 • 1234 • 1. (The raised
dots are for clarity only.)

Fix integers n ^2, m &gt; 1. Let p :CW —»C2 be the nth degree polynomial of §2;
let /(z, w) p(w)-zm; and let Fe(m, n) {(z, w)gC2:/(z, w) e}. Then
prx | ro(m, n) : ro(m, n) —» Cz is an n-sheeted branched covering branched over

Let 7:S1~&gt;C2-Qi/!n1 be a loop with y(1) 0. Then in SxxCw the set
{(z, w):(y(z), w)ero(m, n)} is a closed rc-string braid, and it is easy to see which
one it is: compose 7 with z -» zm to obtain ym : S1 -^Cz - Qn_!, 7m(l) 0; then
look at the élément of Bn corresponding to the class of 7m via the proposition of
§2 and its corollary.

In particular, if JR is a closed région homeomorphic to a disk in Cz, with
OedR, Qn^\r\dR 0, then we may take 7 to be a (counterclockwise) paramet-
rization of dR ; we find that L {(z, w) : z e dR, (z, w) € ro(m, n)} is a closed braid
in dR x Cw. Being compact, L lies in some closed solid torus dRxD, D c Cw a
closed disk; finally, then, L lies in the 3-sphere (with corners) d(RxD). In fact
(by, say, the maximum principle), L ro(m, n)nd(R xD), that is, L is the
complète boundary of ro(m, n) n R x D. Also, it is easy to calculate the Euler
characteristic of the surface ro(m, n)DRxD, for it is the branched cover of R
branched over Oi^
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THEOREM 1. For every integer n&gt;6, there exists in the homology class

n[CP1]GH2(CP2;Z) a topologically locally-flatly embedded surface of genus
strictly less than that of a nonsingular complex algebraic curve of degree n.

Proof. In Figure 2B is sketched a simple closed curve in Cz\Qs/5 which gives
the braid |36. (The 25th roots of 1 are indicated by dots, the 5th roots among them
by larger dots; 0 is the basepoint.) Let JR be the région it bounds. Then (for a

suitably large disk DcCJ the surface F0(5,6)n.RxD has Euler characteristic
-1 and a connected boundary (of type |36), so it is of genus 1. (It is essentially the
surface of Figure 1A, &quot;pushed in.&quot;) Now, Fo(5,6) is nonsingular in C2, but has a

singular point at infinity in CP2; but for sufficiently small e^O, Fe(5,6) will be

nonsingular when completed in CP2, while re(5,6)ORxD will still be a punc-
tured torus with boundary in d(R x D) of type |36. The homology class of the

completion of Fe(5,6) is of course 6[CPX].

By Freedman&apos;s Theorem, the smooth surface S&apos; Te(5,6) H JR x D, of genus 1,

shares its boundary with a topologically locally-flatly embedded disk S in RxD.
Replace S&apos; by S on the completion of Fe(5,6); the resulting surface is still in the

homology class ôfCP1], is topologically locally flat, and has genus 1 smaller than
the genus of Fe(5,6). The theorem is thus proved for n 6.

For larger n, one may apply the same technique, starting with the braid
(3n 06cr6 • • • o-n_x € Bn and taking the appropriate simple closed curve in

C\Qi7ii; for |3n is of the same knot type as /36 (and 5 replications of Qn_x still
suffice to write the whole word properly).

THEOREM 2. For every pair (m, n) of integers greater than or equal to 5,

(except possibly (5, 5)) there is a topologically locally-flatly embedded surface in the

A-disk with boundary a torus link O{m, n} of type (m, n) and genus strictly less

than the (classical) genus of O{m, n}.

Proof. Follow the proof of Theorem 1 up to the final paragraph.
Without loss of generality, we may assume n &gt; m &gt;5 and n &gt;6. Then we may

apply the same technique as above, starting with /3n and taking the simple closed

curve to lie in CXQ^; again, 0n is the correct knot type, and extra replications of
On_x do no harm. So F0(m, n) can hâve a handle surgered away inside C2, in the

topologically locally flat sensé. But for ru r2 sufficiently large, the intersection of
ro(m, n) with the boundary of the bidisk {(z, w) : \z\ &lt; rl9 \w| &lt; r2} is a link of type
O{m, n} (in fact it is the closure of the mth power of the n-string braid
o&quot;i&lt;72

&apos; * * «Tn-i)* and the intersection of ro(m, n) with the whole bidisk has genus
(m - l)(n -1)/2, the classical genus of O{m, n} (by direct calculation).
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