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Nilpotent complétions and Lie rings associated to link groups

Sadayoshi Kojima*

§1. Introduction

The nilpotent completion and the Lie ring associated to a group with finitely
generated abelianization are nilpotent invariants derived from its lower central
séries. In classical link theory, several authors hâve studied those for a link group,
the fundamental group of the complément of a link, since it is much more
practical rather than studying a group itself.

On the other hand, Sullivan gave a cohomological and infinitésimal method to
compute thèse invariants when the group is the fundamental group of a polyhed-
ron. Thus as he suggested in [17], Problem 5, it seems interesting to apply his

theory to the link theory. In this paper, we are concerned with this vague
question. Of course it is hopeless to expect complète algebraic characterization of
thèse invariants for link groups, however it is possible to obtain some gênerai
results from infinitesimally computable cases. Such computations are attained in
§4 and §5.

In § 4, we construct a minimal model for a polyhedron which is cohomologically
équivalent to a bouquet of circles. We establish, as Corollary 6.3, the équivalence
between the freeness of the nilpotent completion of its fundamental group and
the vanishing of every Massey product on H1. Now, a link complément can never
be cohomologically équivalent to a bouquet of circles since H2 is non trivial. However,

to apply this construction, we do not need trivial H2, but we do need just
non-existence of decomposable éléments in H2, and it still has some significance
in the link theory. Actually, Milnor [10] proved that the nilpotent completion of a

link group is isomorphic to that of a free group ifï ail the jx-invariants vanish, and

Porter [15] succeeded in expressing the jd-invariant in terms of the Massey

product. In particular, we get the équivalence which is eventually a spécial case of

Corollary 6.3.

* Partially supported by Sakkokai Foundation
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In § 5, we explicitly construct a family of minimal models for polyhedra which

are cohomologically équivalent to the product of a bouquet of circles with a circle.
In the spécial case where the polyhedron is the complément of a link, this
cohomological condition is a condition on the linking numbers. Our construction
asserts that the structure of the Lie ring associated to the fundamental group of
such a polyhedron is very simple while the nilpotent completion is not. Corollary
6.4, which has been conjectured by K. Murasugi, came up as an application of the
construction.

Besides thèse, several corollaries of the constructions are established in § 6.

We review nilpotent complétions and Lie rings associated to groups in § 2, and
Sullivan&apos;s theory in § 3.

The content of § 4 is from my thesis supervised by Professor John Morgan. I
would like to express my great appréciation for his constant encouragement.

§ 2. Nilpotent complétions and lie rings

Let G be a group and let G Go ^ G1^&gt; G2 =&gt; * • • be the lower central séries

of G where Gp =[G, Gp_x] for ps^l. Hère are two invariants of G which corne
from the lower central séries. The first one is the nilpotent completion of G. It is

the tower of nilpotent groups:

We will simply dénote it by Nil(G). Nil(G) is said to be isomorphic to Nil(H) of a

group H up to the pth stage if there is an isomorphism: G/Gp —» H/Hp. Then it
induces an isomorphism: G/Gq-*H/Hq for each q^p and we get isomorphic
towers up to the pth stage. We might say that Nil(G) is isomorphic to Nil(H) if
thèse are isomorphic up to any stage.

Now, each G/Gp is a nilpotent group of index p and a central extension of
G/Gp_! by the abelian group GP-.JGP. The second invariant is formed by thèse

abelian groups. Let i?p(G) Gp_i/Gp and &amp;(G) ®p^l&lt;£p(G). Then, the

commutator opération détermines a well defined bilinear mapping, [ ]:«S?P(G)®
&lt;£q(G)-&gt;&lt;£p+q(G) su&lt;* that

(1) [a, j3] -[&amp;&lt;*] and
(2) [[a,p]7] + t[ft7]«]+[[7,«]p] 0.

Hence #(G) admits a graded Lie ring structure generated by #i(G). See [7].
Both concepts hâve rational versions. Say, the rational nilpotent completion of

G, which will be denoted by Q-nil(G), is the tower of Q-nilpotent groups:

G/G2 ® Q~* GIGX
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where each G/Gp &lt;8&gt; Q stands for the Malcev completion [8] of the nilpotent
group G/Gp. Also taking tensor product by Q in usual sensé, we get a graded Lie
algebra t£{G) ® Q associated to G.

The first important resuit concerning the structure of ££{G) may be one for a
free group by Witt [18]. See also [7].

PROPOSITION 2.1 (Witt). Let Fn be a free group of rank n. Then &lt;£(Fn) is a
free Lie ring generated by n éléments. Hère, free means that there are no relations

except those generated by (1) and (2). Furthermore, ££p(Fn) is a free abelian group
of rank

-X
P d\p

where ix(d) is the Mobius function.

W(n, p) is called the Witt number.

In gênerai, the nilpotent completion is a stronger invariant than the associated

Lie ring, however,

LEMMA 2.2. For any p^l, if &lt;£(G) is isomorphic to &lt;£(Fn) up to the pth
stage, then Nil(G) is isomorphic to Nil(Fn) up to the pth stage.

Proof. Since G/Gp is a nilpotent group for any p^l, it is generated by n
éléments (see [7], Lemma 5.9) and hence we hâve an epimorphism &lt;f&gt;:Fn -» G/Gp
which induces an isomorphism: S6{Fn) -&gt; &lt;£(G/GP) up to the pth stage. Looking at
the commutative diagram for

^q(Fn) -^ FJ(Fn)q -» FJ(Fn)q-x -&gt;

i i i
&lt;eq(GIGp) -* G/Gq -» G/Gq^ -* 1,

we notice that &lt;t&gt; induces an isomorphism: FJ(Fn)q —&gt; G/Gq until q becomes p by
the five lemma and the induction on q.

LEMMA 2.3. For any p^ 1, if &lt;£(G) ® Q is isomorphic to £(Fn) ® Q up to

the pth stage, then Q-nil(G) is isomorphic to Q-niKFj up to the pth sfage.

Proof. Since for any p^l, there is a homomorphism &lt;t&gt;:Fn-* GIGP which
induces an isomorphism: Se(Fn) ® Q--&gt;.#(G/Gp) ® Q up to the pth stage, the
same argument can be applied.
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The next lemma will be used in § 5.

LEMMA 2.4. Suppose that i?i(G) is generated by gl9..., gn+r such that
(1) [&amp;, &amp;]^0 in &lt;£2(G) for ail ij^n and
(2) [a, &amp;+,] &lt;&gt; in 22(G) for ail i,j^l.

Then ££P(G) is generated by at most W(n, p) éléments. If ££P(G) is a free abelian

group of rank W(n, p) for ail p^2, then S£(G) is isomorphic to Se(FnxZr), where

T is a free abelian group of rank r

Proof Let hu...,hn be a basis of SEi(Fn) and define the homomorphism
^&gt;:i^1(Fn)-^if1(G) by &lt;^(hl) gl. Then &lt;f&gt; naturally induces a homomorphism
&lt;l&gt;p:££p(Fn) —» J£p(G) for each p. What we want to show then is that &lt;t&gt;p is onto for

Now, any élément of ï£p(G) can be written down as a linear combination of
simple p-fold brackets of g1?..., gn+r&gt; Hke [[• • -[[g^gjgj- • -]glpl Let us simply
dénote it by (gH • • • glp). Suppose that ï1} ip^n, then this is the image of
C1*! &apos; &apos;

&apos;&apos;O by 4&gt;v K iq&gt;n for some q&lt;p, then (gla • • • glq) 0 by induction
hypothesis and therefore (gH • • • glp) 0. When ip &gt; n, We hâve the Jacobi iden-

tity,

(gtl &apos; * * &amp;p)= -((g»p_1glp)(gi1 * • * ghj)-((gh(&amp;l &apos; &apos; • SpJSp-,)-

The both terms of the right side are zéro in J£P(G), and we get (gtl • • • glp) 0.

Hence &lt;f&gt;p is an epimorphism for p^2. If 5£P(G) is a free abelian group of rank
W(n, p) for ail p^2, &lt;\&gt;p must be an isomorphism and we are done.

The rational version of this is also established.

LEMMA 2.5. Suppose that SEX(G) ® Q is generated by gu gn+r such that
(1) [a, &amp;] + 0 in S£2{G) ® Q for ail ij^n and
(2) [a, gn+J] 0 in &lt;£2{G) ® Q for ail ij^l.

Then £€P(G) ® Q is generated by at most W(n, p) éléments. If dim &amp;P(G) ®Q
W(n, p) for ail p 2*2, then se{G) ® Q is isomorphic to Se(Fn xZr) ® Q.

§3. Differential graded algebras

A differential graded algebra si is a graded vector space A=@P^OAP over a

field (always Q in this paper) with differential d:Ap-*Ap+1 and associative

multiplication a : Ap ® Aq -&gt; Ap+q so that
(1) d2 0,
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(2) d(xAy) dxAy + (-l)deexxAdy and

(3) xAy (-l)degxdegyyAx.
A d.g.a. is minimal if d is decomposable. This means that the image of any
élément by d can be written down as a sum of decomposable éléments. A Hirsch
extension of a d.g.a. si is an inclusion si —» 38 of a d.g.a.&apos;s which, when we ignore
the difïerentials, is isomorphic to si -» si ® A(V)P and where the difïerential of
S8 sends V—&gt; Ap+1. The integer p is the degree of the extension. From now on,
we consider a séries of Hirsch extensions:

of degree 1. We should point out hère that a d.g.a. generated by éléments of
degree 1 is always minimal, so is si. The séries is called canonical if si1 is

generated by ail closed 1-forms of si and sip+1 is generated by sip and ail 1-forms
jc such that dxesip for each p. The following lemma, which is an immédiate

conséquence of the définition, characterizes a canonical séries.

LEMMA 3.1. I/iiûc^c^C&quot;. is canonical, then

(1) H1(ip)&quot;^H1(ip+1) is an isomorphism for ail p and hence Hx(si)
H\six), and

(2) H2(sip) —» H2(sip+1) is a monomorphism if we restrict it to the image of

Let us now consider the 1-minimal model of Sullivan. Let X be a polyhedron
and let e(X) be Q-polynomial forms on X. The 1-minimal model for X is a

minimal d.g.a. Mx with a mapping p:Mx—&gt; e(X) of d.g.a.&apos;s such that
p*:H(Mx)-^H(e(X)) is an isomorphism in degree 1 and injective in degree 2.

We can find for instance in [11] §5 how to construct Jix and its several

properties. It turns out to be generated by éléments of degree 1 and to hâve a

canonical séries:

Dualizing the part of degree 1, we get a tower of Q-Lie algebras:

Each of the Lie algebras ©, is nilpotent and hence the Campbell-Hausdorflf
formula defines a group structure C.H.(©,) on each ©,.

THEOREM (Sullivan). If X is arcwise connected and Hl(e(X)) is finite
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dimensional, then the tower of nilpotent groups:

{e} &lt;- C.H.C©!) «- C.H.(©2) &lt;

is isomorphic to Q-niH

Thus knowing the rational nilpotent completion of tti(X) is équivalent to
knowing the 1-minimal model for X. The proof of this theorem can be found in
[2].

Let 4^QC•/#!&lt;= Ma^ • • • be the 1-minimal model for a polyhedron X and

suppose that Mp is isomorphic to Mv-X &lt;8&gt; A(VP) as a vector space. Sullivan&apos;s

theorem implies

When dimH1(e(X)) n, the number above is bounded by the Witt number
W(n, p). Since &lt;£(ttx(X)) ® Q is free up to the pth stage if and only if
dimSeq(rrt(X)) ® Q= W(n,q) for ail q^p, we hâve by Lemma 2.3 that

LEMMA 3.2. // dim Vq W(n, q) for ail q^p, then O-nil^X)) is

isomorphic to Q-nil(Fn) up to the pth stage.

This can be also proved by constructing isomorphisms for extensions of each

stage.

LEMMA 3.3. If SBiiiT^X)) is a free abelian group of rank n, then dim Vq

W(n,q) for ail q^p iff Nfl(ir1(X)) is isomorphic to Nil(Fn) up to the pth stage.

Proof. Since J£x(tti(X)) is generated by n éléments, i£q(&apos;jr1(X)) is generated by
at most W(n, q) éléments by Proposition 2.1. Thus if dim Vq W(n, q) for each

q^p and hence dim&lt;eq(7r1(X))®Q=W(n,q), then ^(tt^X)) must be a free
abelian group of rank W(n, q), which means that ^(tt^X)) is isomorphic to S£{Fn)

up to the pth stage. The resuit follows from Lemma 2.2.

The next lemma will be used in § 5.

LEMMA 3.4. Suppose that ^(iTxCX)) admits a System of generators as in
Lemma 2.5. Then if dim Vp W(n, p) for ail p s» 2, then £(G) ®Qis isomorphic
to ^(FZr)®Q

Proof. Since dim Vp ditn ^p(tti(X)) ® Q, this is a corollary of Lemma 2.5.
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LEMMA 3.5. Suppose that ££1(17-1 (X)) is a free abelian group of rank n + r and
admits a System of generators as in Lemma 2.4. Then if dim Vp W(n, p) for ail
p^2, then ^(tt^X)) is isomorphic to &lt;£(FnxZr).

Proof. Since dim Vp W(n, p) means that &lt;£p(iri(X)) is a free abelian group of
rank W(n, p) in this case, this is a corollary of Lemma 2.4.

§4. The 1-minimal model for S*v vS1

Our goal of this section is to construct the 1-minimal model for a cohomology
bouquet of n circles.

Let Ap be the vector space over Q generated by the np éléments, xh lp&apos;s

where ix • • • ip ranges over ail séquences of integers of length p such that 1 ^ i} *s n

for ail 1 ^ j ^ p. Consider the exterior algebra of the direct sum A ©p5Bl Ap. We
define the difïerential d by

on a basis of A and extend it linearly to ail of A and then extend it to ail of A(A)
by the Leibnitz rule. Then

LEMMA 4.1. d2 0

Proof. It suffices to check this for a generator.

d(dxll lp) dy X *n

p-1 k~l

p-1 p-1

C&gt;-1

m-1 p-1 p-1 \
Z Z&quot;I I K
l l k i k i m=k +l/

0.

Let Ip be the subspace of Ap (p ^ 2) inductively defined by {m € Ap ; du 0 in
A2(A1©A2//2©- --©Ap-î/Ip-i)}, dénote Ap/J^ by Âp and also dénote At®
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Â2© * * * ©Âp by Ap. Then, Mp A(ÂP) with the induced differential (we use the
same symbol d) produces a séries of Hirsch extensions of minimal d.g.a.&apos;s:

..c U MP=M

of degree 1. Our first claim is

LEMMA 4.2. The inclusion induces an isomorphism: H1(MP^1) —» H1(MP) for

Proof. We use the induction on p. Suppose that this is true for p —1, which
means that any closed 1-form of Mp-X is contained in Mx. Now, Mp
^P_1®A(ÂP) as a vector space and since Ip is nothing but the kernel of
d|Ap:Ap-&gt; A2(Âp_!), the induced differential d|Âp:Âp —? A2(ÂP_!) is injective
The image of this is contained in ©I+/=PÂ aÂp however the image of Al(Âp-1)
by d is contained in ©1+/&lt;p Â, aÂp and they hâve no common points except zéro.
In other words, the Hirsch extension Mp-X&lt;=-Mp does not produce new closed
1-forms.

Let Wp be the image of Ap by d in A2(ÂP_!). That is to say, Wp is a subspace
of A2(AP_!) generated by the closed 2-forms, Ek=i x^ lkA\+1 ^&apos;s. Since the

subspace of exact forms in A2{AP^ is contained in ©1+j&lt;pÂiaAj, Wp can be

identified with a subspace of H2(MP-^), and also since Wp is the image of Ap by d,

it is mapped to 0 in H2(MP) by the inclusion.

LEMMA 4.3. dim Âp ^ W(n, p).

Proof. Define the multiplication • on A by

Then, A becomes an associative but not commutative graded algebra. The usual
bracket opération on A:

[x, y] x -y-y • x,

defines a graded Lie algebra structure on A. Let L be the graded Lie subalgebra
of A generated by xl5..., Xn. Then, Lp, the intersection of L and Ap, is the set of
Lie éléments of degree p.

The symmetric group ©p, which consists of the permutations of integers

1,..., p, naturally acts on Ap by oxll h xl&lt;r(l) W) for a e ©p. This extends to the
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action of the group ring Q[©p] on Ap. We now define a spécifie élément
flp e Q[©p] in terms of the cyclic permutations or, (12 • • • j) for / 2,..., p, by

Op then détermines a linear mapping: Ap —» Ap.
It is known that l£p(Fn) îs generated by simple brackets (gh glp), where

gi&gt; • • • &gt;&amp;n are generators of Fn, and the mapping:

is an isomorphism. See for instance [7], Theorem 5.12. In particular the linear
mapping flp maps Ap onto Lp and we hâve

(1) rank (2P dim Lp W(n, p).

Take an élément u =Xh ip
a&apos;1 Ip^a Ip

of Ap where the summation ranges over
ail séquences of length p, and let us compute a necessary condition for du 0 in
A2(AP_!), i.e. uelp. Suppose that du 0 there. Then since

du= Yé ah lvdxH h

(the terms contained in © Â, aÂ),
\ 1,J5*2 /

if we let

u^ must be an élément of Ip-X for ail 1 ^ ip ^ n. Repeating the same procédure
p -1 times, we eventually obtain the condition that Opah l*

(l-cr2)(l-cr|) • • • (l-o**1)^ lp =0 for ail séquences ix • • • ip.

We now think of the conjugate élément Ùp of flp €Û[©P] by the conjugation
&quot;1. Again f5p détermines a linear mapping: AP-*AP which can be iden-
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tified with the induced mapping of ilp on the dual space A* Hom (Ap, Q), and

we hâve

ti iP

I(npa^ s*, lp.

Suppose that dÙpu 0 in A2(ÂP_1), then recalling the formula Ù2P pilp in Q[@p]
(see [7], p. 365) and the necessary condition above, we get

for ail séquences ix • • • ip. This means nothing but Ûpu being zéro itself and hence

the restriction of d to the image of Ùp, d\âp(Ap) : ÙP(AP) --» Wp ci A2(AP_!), is injec-
tive. In particular we hâve

(2) dim Âp dim Wp ^ dim XÎP(AP).

On the other hand, we hâve

(3) dim ÙP(AP) rank Ûp — rank Qp.

Combining (1), (2) and (3), we complète the proof.

The main resuit of this section is

THEOREM 4.4. Let X be a polyhedron whose cohomology nng with rational
coefficients is isomorphic to H^(S1v • • vSx;Q). Then J.&apos;Qc^cM2c: • • • is

isomorphic to the canonical séries of the 1-minimal model Mx for X.

Proof. We prove this by induction on the length of a séries. Suppose that
Q c Jii c: M2 &lt;= • • * c ^p-i is isomorphic to the p - lst stage of the canonical séries

of Mx- Then we hâve a d.g.a. mapping pp_x :Mp-X —» e(X) such that pp~1(xlx lq)

o)h lq for q ^ p -1, and H2(Mp-2) ~* H2(Jép_!) is a zéro map by the property of a

canonical séries, Lemma 3.1, (2). Also since dimH1(^£1) n and H2(Jép_!) is

generated by decomposable éléments, Sullivan&apos;s theorem implicitly says that

p_!) cannot exceed dim &lt;3?p(Fn) ®Q W(n,p), that is

(1) W(n, p) ^ dim H2{MP-X).

To see that Mp-i&lt;^Mp is isomorphic to the pth stage of the canonical séries of
Mx, we need to construct a d.g.a. mapping pp:^p -* e(X) and to show that the
restriction of H2(JCp) -* H2(e(X)) to the image of H^Mp-J is injective. First of
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ail, since ft,-i(Ifc=i *i. «kA\+1 lp) lk~=\ &lt;»ix lkAwlk+1 lp
is a closed 2-form of

e(X) and H2(e(X)) 0, there exists a l-form ù)ti lp of e(X) so that

We define pp:Mp -» e(X) as an extension of pp_x by mapping x^ lp to co,, Ip.
Since

d|Ap:Â,—» Wp is an isomorphism and Wp can be identified with a subspace of
H (Mp-x), by Lemma 4.3 we hâve

dim H2UP_!) ^dim Wp dim Âp ^ W(rc, p).

Thèse inequalities become equalities by (1) and Wp can be identified with
H2{MP-X) itself. Since Wp was the image of Ap by d, H2^^) -» H2(MP) turns
out a zéro mapping, and we are done by induction.

Remark. Since dim Âp W(n, p), Q-niKTr^X)) turns out to be isomorphic to
Q-nil(Fn) by Lemma 3.2. This conséquence also follows from the resuit of [16].

§5. The 1-minimal model for (S&apos;v -vS^xS1

In this section, we consider a family of minimal models for polyhedra which
are cohomologically équivalent to the product of a bouquet of n circles with a

circle.
We define the vector space Bx over Q by adding one more gênerator, xn+1, to

At and let Bp be equal to Ap for p^2. The spécifie basis, xh lp&apos;s, of Ap
détermines a homomorphism: Ap-* A* Hom(Ap, Q) and let /* be the image of
Ip by this mapping. Consider the subset zlp={xeAp; /(x) 0 for ail /el*}.
Choose n éléments from Ap for each p^3 to form a set S which will be called a

System of twisting coefficients. Let us dénote by 0J1 l» the coefficient of the

xH lp-component of the jth élément of degree p in 0. The System of twisting
coefficients with 6]* l* 0 for ail 1^/^n, l^i1- • - ip^n and p^3, will be

denoted by 0. We now define the difïerential de by

p —1 p—mI I
on a basis of B ©p5si Bp first of ail and extend it to ail of the exterior algebra
A(B) by linearity and the Leibnitz rule. Notice that d0 is the same as d in § 4 for
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LEMMA 5.1. dl 0

Proof. It suffices to show this for a generator.

de^ h=de(doxll J
n p~l p—m-II I «Y W^eU, .k ,,.t.m+1

j l rn=2 fc l
Since do 0 by Lemma 4.1, the first term of the right side becomes

p—1 n / s —1 s—m

11(1 ls l i \m=2 k l
p—s —1 p—m

+ 11 0Î&quot;

m=2 k=s + l

On the other hand, since

Ik_lJlk+m+1

/k-1/k-1

\ 2-T ^1 ls A ^ts + l ik-iJlfc+m + i lp

Z

the second term of the first identity becomes

n p—1 p—mIII 0jk l|t+mde(xll »k_lJIk+m+1 .pA^)
n p—1 p—m /k —1

y y y 01* i—( y x. aiLé L* la ul y Lt *i\ h /N &quot;^s+i »k-iJ»k+

p-1

Thus since

p—1 s —1 s—m p—1 p—m p—1I I 1=1 I I
s lm=2k l m-2 k l s~k+n
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and

p—1 p—s —1 p—m P~~l p—m k —1II I =1 I Z.
s l m 2 k=s + l m=2 k l s l

both are cancelled each other and we are done.

Let Jp be the subspace of Bp (p ^ 2) inductively defined by {u g Bp ; d0w 0 in
A2(B1©B2/J2©-• •©Bp.x/Zp,!)}. We simply dénote it without 0 because Jp

actually does not dépend on S as we will see in Lemma 5.3. Again dénote Bp/Jp

by Bp and 8^62® • • • ©Bp by Bp. Then Mep A(BP) with the induced differential
(we use the same symbol de) produces a séries of Hirsch extensions of d.g.a.&apos;s:

of degree 1. Let us dénote UP^i^p by M0. Then

LEMMA 5.2. The inclusion induces an isomorphism: H^^p-i) -* H1^) for
allp^l.

LEMMA 5.3. Jp is equal to Ip. In other words, dou 0 in A2(Bp for some

ueBpiff dQu 0 in A2(BP_!). In particular, dim Bp dim Âp W(n, p) for p $= 2.

Both lemmas are obvious when p 2. We prove thèse by mixed induction on p.

Let us assume that both are true for p-1.
Proof of Lemma 5.3. Suppose that u is an élément of Bp so that dou =0 in

A2(BP_!). By the définition of de, we can décompose deu as

deu dou + VAxn+1

where V is an élément of A^Bp-x). Since dl 0 and dou =0, we have

which implies that doV 0. Because V was in A1(BP^1), we get deV 0 by
induction hypothesis. Since we also assumed that Lemma 5.2 is true for p-1, any
closed 1-form of J/Q-i is contained in M\, in particular so is V. Therefore if we let

Gj^L, t,^1 Hx v then V Yï=1u*(6»)xr However since u*€lp* and 6»eâp,
u*(0f) must be zéro for ail 1^/^n, which means that F 0 itself. The converse
is obvious and we are done
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Proof of Lemma 5.2, Let LJjc A2(Bp_i) be the image of Bp by de. Wp of the
last section can be naturally identifiée with a subspace of ©,+,^5, aBp and we
hâve the commutative diagram:

12/

&lt;V
B,Afî,

1+1

where the vertical line is the projection to the direct summand. Then since Jp is

the kernel of de|Bp:Bp -» A2{BP^ and Jp is equal to Ip by Lemma 5.3,

wp

becomes the commutative diagram of isomorphisms. In particular, l/p and

©^^p^aBj hâve no common points except zéro. And since Ml Mev-i ®
A(BP) and the image of A1(BP^1) by de is contained in ©l+J&lt;p Bl aB,, the Hirsch
extension Mep-i^M^ produces no new closed 1-forms.

LEMMA 5.4. The image of H2{M6^ -&gt; H2(J^) is injectively mapped to
H2(Me).

Proof. l/p and ©i+j^^aBj hâve no common points except zéro, and hence
the new exact 2-forms of AQ hâve no common points with ©l+J=2 Bt aB, except
zéro for p5*3. Since the image of H2(Mi) -» H2(M%) is actually generated by
x, AXn+i&apos;s by the définition of de, thèse do not become exact in Ml for any p^3
and hence in Me (JP^i -^

The main theorem of this section is

THEOREM 5.5. Let X be a polyhedron whose cohomology ring with rational

coefficients is isomùrphic to H*((S1v • • v S1) x S1; Q). Then there exists a System of
twisting coefficients $ so that Me:Q&lt;^Mi&lt;^Ji2^ • * • is isomorphic to the canonical
séries of the l-minimal model Jix for X.

Proof. By the assumption, there are 1-forms &lt;ou..., &lt;on+1 of e(X) which
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generate Ha(e(X)) such that
(i) [co, aWj] 0 for ail i,j^n and

(ii) [cut Acon+1]&apos;s form a basis of H2(e(X)).
The dual basis gi,..., gn+i of «^(tt^X)) with respect to û)1s &lt;wn+1 satisfies the
conditions of Lemma 2.5. We then prove this theorem by induction on the length
of a séries.

Suppose that Qc^c- -^Mep-i is isomorphic to the p-lst. stage of the
canonical séries of Jix for some 0. Notice that since ^_1 A(BP_1), we only
need a System of twisting coefficients up to degree p-1. Then we hâve a d.g.a.

mapping pp_1:J(p_1—» e(X) so that pp-i(xlx iQ) &lt;*&gt;lx
1q

for q^p — 1, and the

image of H2(Ml-2) -* H2{M^^ is equal to the image of H2{M\) -&gt; H2(^p_x) by
the inclusions because of Lemma 3.1, (2), Lemma 5.4 and the structure of
H2(e(X)). Also by Lemma 2.5 and Sullivan&apos;s theorem, we hâve

(1) W(n,p)^
where n means the dimension of H2(e(X)).

To see that M%-x^Jitv for some 6 is isomorphic to the pth stage of the
canonical séries of Mx, we need to flnd appropriate n éléments of Ap for 6, to
construct a d.g.a. mapping pv:M6v-&gt; e(X) and to show that the restriction of
H2(Ml)-&gt;H2(e(X)) to the image of H2{Ml-x) is injective. First of ail, since

Pp-
/p

i(

n /p-1 p-m /fc 1 and\\1(1 I-L_n JK k+m^ ^— •¦

j \m=2 k=i \m-p-l//
ACOM

is a closed 2-form of e(X) for each ix • • • ip, and H2(e(X)) is generated by
a)t A&lt;on+1&apos;s, it is cohomologous to

n

for some {$)* l4jn=i- For each /, Xn ip^î1 Ipacn iP€A&gt; must ^e contained in A]

because pp_! is a d.g.a. mapping. Adding 0J1 vs to 0, we get a System of twisting
p
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coefficients

&quot;y

tmJ il

n

up

P-1
Z

to degree

^ik+i iP

p—nt

P.
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Then

becomes an exact form and there exists a 1-form œlx lp
of e(X) such that d&lt;ûlx

lp
is

equal to it, where d is the difïerential of e(X). Mapping xH lp to &lt;oti v we define

pp:J(p-»e(X) as an extension of pv~x.
We finally show that the image of H2{M6v^i) -» H2(J0 is equal to the image of

H2(Ml) -&gt; H2(J0 because if so, the proof is completed by Lemma 5.4. Since Uev

can be identified with a subspace of H2(Jil-i) and has no common points with the
image of H2(Jil) except zéro, we hâve by Lemma 5.3 that

dimH\Ml^)-n^dimUep dimËp W(n, p).

Thus by (1), the inequality becomes an equality and H2(Jép_i) can be identified
with the direct sum of the image of H2(Jil) and Lfp\ Since UBP is the image of Bp

by de, the image of H^Ml^-^H^MD turns out the image of H2(M\)-^H2{Mep),
and we are done.

Hère are corollaries of Theorem 5.5, Lemma 3.4 and Lemma 3.5.

COROLLARY 5.6. LetXbea polyhedron such that H*(X; Q) is isomorphic to

©) as a ring. Then ^&gt;(ir1(X))®Q is isomorphic to

COROLLARY 5.7. LetXbe a polyhedron as in Corollary 5.6. If
is free abelian for p 1 and 2, then ^(tt^X)) is isomorphic to S£{Fn xZ).

Proof. Since ^(itjXX)) is free abelian, we can choose a set of generators of
SE^TTiCX)) as in Lemma 2.5. Furthermore since ^2(^iW) *s also free abelian, it
satisfies the conditions in Lemma 2.4. Thus this is an corollary of Theorem 5.5

and Lemma 3.5.

Remark. The condition of this corollary seems équivalent to saying that X is

an intégral cohomology (S1v • -vS^xS1 while I hâve no proof for this.
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§6. Applications

To state corollaries of Theorem 4.4, following Kraines [6], let us define the
Massey product on the first cohomology group. Given éléments 7i,.. 7P e

H1(e(X)), suppose that a collection of 1-forms S {a)tJ e s(X); l^i^/^p,
/ — i &lt; p — 1} satisfies the conditions

(1) o)u is a closed form representing 7, for l^i=^p, and
(2) dù&gt;x] YàT=i %Aû)k+l!j if i &lt;j.

Then the Q-polynomial 2-form Xk=\ &lt;*&gt;ik ^cuk+1 p turns out to be closed. We call S

a defining System. The Massey product (yl9..., yp) is defined as a subset of
H2(e(X)) consisting of ail éléments produced by such Systems. When p 2, it is

nothing but the wedge (cup) product. The Massey product (7^ 7P) will be
understood as a cohomology class if it contains a single élément. It is known that
if any (p-l)-tuple Massey product on H1(e(X)) vanishes, that is, contains only
the zéro élément, then every p-tuple Massey product contains a single élément.
See [9], Proposition 2.4 for the proof. We now hâve équivalent conditions for the
vanishing of every p-tuple Massey products.

LEMMA 6.1. Every p-tuple Massey product vanishes iff every q-tuple Massey
product for any 1 &lt; q ^ p vanishes.

Proof. If every p-tuple Massey product vanishes, then for each 1 &lt; q ^ p, every
q-tuple Massey product must contain the zéro élément. Thus any binary Massey
product vanishes because it has no indeterminacy. Assume by induction that every
(q-l)-tuple Massey product on H\e(X)) vanishes, then every q-tuple Massey
product contains a single élément which is zéro and we are done.

Hère are corollaries of Theorem 4.4.

COROLLARY 6.2. Let X be a polyhedron of dim H\e(X)) n. Then, every

p-tuple Massey product on H^eCX)) vanishes iff Q-nîI(iri(X)) is isomorphic to

Q-nil(Fn) up to the pth stage.

Proof. To construct the 1-minimal model for X, we can use the vanishing of
Massey products instead of the vanishing of H2(e(X)). Actually, the closed

2-forms in Mq were generated by Yï=\ ^ ikAX,k+1 lq&apos;s for q^p which are

mapped to Z2=\û&gt;h lkAculk+1 lq
of e(X) by pq. This is nothing but the Massey

product (&lt;0h,..., o^&gt;.

Conversely, suppose that, for some q^p, some q-tuple Massey product does

not vanish while every r-tuple Massey product does vanish for ail Kr&lt;q. Then
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p*:ff(Mq)-*H2(e(X)) is not a zéro map and rank ifq(ir1(X)) dimKer p* is

strictly less than dim H2(Mq) W(n, q). Thus Q-niKir^X)) cannot be isomorphic
to Q-nil(Fn) at the qth stage.

By virtue of Lemma 3.3, we hâve

COROLLARY 6.3. Let X be a polyhedron such thaï S£1(7r1(X)) is a free
abelian group of rank n, then every p-tuple Massey product on H1(e(X)) vanishes

iff NiKTTiCX)) is isomorphic to Nil(Fn) up to the pth stage.

Remark. If we start with the Massey product on H1(7r1(X)), this has been
known by Dwyer [4], Corollary 4.5. I would like to thank the référée for pointing
out this référence. For the link complément, there are much more detailed studies

by Milnor [10] and Porter [15].

Remark. In [14] and [5], some higher intersectional properties of compact
4-manifolds hâve beçn detected by the nilpotent completion and the Massey
product respectively. This corollary shows that thèse results are équivalent.

Let L KxU • • • UKn be a link of n components in S3. Then H1(S3-L;Q) is

generated by the Alexander duals £ to the component Kx for î 1,..., n, and
H2(S3 -L ; Q) is generated by the Lefshetz duals ytJ to the path which connects Kt
with Kr Thèse are subject to the relations in H*:

fi a i
and

The next corollary has been conjectured by Murasugi.

COROLLARY 6.4. Let G be a link group, tt^-L). If ïfc(JK,, K,) 1 for ail
i^j, then 5£{G) is isomorphic to «^&gt;(FM_1xZ). In particular, rank&lt;£p(G)

W(n-l,p)forallp^2.

Proof. Let co, fi — £n for i 1,..., n — 1 in this case. Then co, a to, 0 for ail

i,/&lt;-n-l an(j ^ Afi/s form a basis of H2(S3-L: Q), and hence S3-Lis clearly
a rational cohomology (S1 v • • vS1) x S1. Also ^(tt^X)) and ^2(^iffl) are free
abelian because of Alexander duality and Chen&apos;s computations [3], Corollary 2,

respectively. Thus we can apply Corollary 5.7 to this case.
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COROLLARY 6.5. Let L be a link of 3 comportent such that linking numbers

of any two components are zéro. Then 5£{G) ® Q is isomorphic to S£(F2x.7L) ®Q.

Proof. Let a&gt;x= lk(K2, KMi~lk{Kx, K2)Ç3 and co2 lk(Ku K3)Ç2-
lk(Ku K2)Ç3. Then ûi1aû)2 0 and c^a^, a&gt;2A^3 form a basis of H2(S3-L;Q)
and hence S3-L is a rational cohomology (S1vS1)xS1. Applying Corollary 5.6,
we are done.

SE(G) is nilpotent if SEP(G) O for some p. This is équivalent to G/G^ being
nilpotent, where GOi=f]p^1 Gp.

COROLLARY 6.6. Let G be the link group of a link L. Then
(1) SE{G) is nilpotent iff either L is a knot or L is of 2 components whose mutual

linking number is equal to ±1.
(2) J£(G) ® Q is nilpotent iff either L is a knot or L is of 2 components whose

mutual linking number is not zéro.

Proof. When L is a knot, SE(G) is nilpotent of index 1 since S3-L is a

homology circle. If L has two components, then &quot;if&quot; part is obvious for both

cases, (1), (2), because £E2(G) is isomorphic to a cyclic group of order
|Mc(Kl5 K2)\. To see &quot;only if part, recall Murasugi&apos;s explicit computation [12] of
the Chen groups. That is, roughly speaking, the Chen group Chp(G)
Gp-xtGx, G^/GptGi, GJ of a 2 component link group G is infinité for ail p ^ 1 if
lk(Kx, K2) 0, and is nontrivially finite for ail p^2 if !fc(fc1,X2)^0, ±1. Since

there is an epimorphism of J£P(G) to Chp(G) for each p, SE{G) cannot be

nilpotent except when lk(KuK2) ±l. Also SE(G) ® Q cannot be nilpotent
except when lk(Ku K2) £ 0.

Let us think of the case where L has more than 3 components. When L
contains two components whose mutual linking number is zéro, then by forgetting
the other components, we get a homomorphism of G onto the group of a link of 2

components whose mutual linking number is zéro. When the linking numbers of

any 2 components of L are not zéro, then by forgetting some components, we get
a homomorphism of G onto the group of a link of 3 components as in Corollary
6.5. Thus iâ?(G)®Q cannot be nilpotent in either case. Of course neither does
SE(G) and we are done.

Remark. This remark was pointed out by Murasugi. It can be known by [1]
and [12] that a link group itself is nilpotent iff it is abelian. Such a link must be

either a trivial knot or a Hopf link by Dehn&apos;s lemma and Neuwirth&apos;s theorem
[13].
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