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Transverse foliations of Seifert bundles and self homeomorphism of
the circle

David Eisenbud, Ulrich Hirsch and Walter Neumann*

1. Introduction

In this paper we give criteria for a Seifert circle bundle over a compact surface

to admit foliations whose leaves are ail transverse to the fibers, and we discuss

which foliations may be deformed to foliations of this type.
Our criteria for transverse foliations, presented in Section 3, are simple

numerical inequalities involving the Seifert pairs of the fibration and the euler
number of the base (Theorems 3.1 to 3.4). They generalize criteria of Milnor [Mi]
and Wood [W], who treat the case of locally trivial circle bundles with orientable
total space (see also Sullivan [Su] for a higher dimensional generalization of
Milnor and Wood). They are complète except for the case that the base is S2, in
which case we only hâve partial results (Theorems 3.3, 5.3). Our criteria are valid
both for the case of C° foliations and, as we show in Section 4, for analytic
foliations, hence also for any intermediate degree of smoothness.

We reduce the géométrie question of the existence of foliations to algebra in a

way similar to that of Milnor and Wood. We let 3) be the group of self-
homeomorphisms f : R —» R which are lifts of self-homeomorphisms of the circle.
3) contains the group 2>+ {/:R--»R|/ monotonically increasing and /(r+l)
/(r) +1 for ail reR} as a subgroup of index 2 (the "flip" t(r) -r is a coset
représentative for the non-trivial coset of 3)+ in 3)). For each real number 7 we write
sh (y)g2ï+ for the "shift" by 7, that is sh (7) : r*-> r + y for reR.

It turns out that the problem of transversely foliating a Seifert fibered
manifold M is équivalent to the problem of finding a homomorphism tt^M) —> 2>

which takes the class of a nonsingular fiber of M to the élément sh(l)eâ>+
(Theorem 3.5). This in turn is équivalent to a problem of representating a certain
product of conjugates of shifts as a product of a certain number of commutators in

*The authors wish to express their gratitude to the SFB 40 and the mathematical institute of the

University of Bonn, under whose roof most of the work of this paper was done. The first and last
authors are also grateful for the partial support of the NSF.
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Transverse foliations of Seifert bundles 639

Çè+ or â), or as a product of a certain number of squares of éléments of 2>—3>+.

For this reason we begin, in Section 2, by characterizing the éléments of â>+

that can be written as products of g commutators, or of g squares of éléments of
3>-3>+, etc., and by partially characterizing the éléments that can be written as a

product of conjugates of a given collection of shifts. Perhaps the most surprising
resuit is that thèse classes of éléments can be simply characterized in terms of the
invariants

mf min (f(r) - r), mf max (f(r) — r),
reR reR

of an élément / e 2>+ (this min and max exist, since f(r) — r is a continuous perodic
function on R). In Section 4 we prove the same characterizations with 3)+ and 9)

replaced by their subgroups PSL (2,R) and PGL(2, R) respectively, obtained by
lifting the subgroups PSL(2,R) and PGL(2,R)j3f HomeoCS1). A différent
characterization for products of commutators in PSL(2,R) was given by Wood.

In Section 5 we describe a natural analytic family of examples due to Maria
Carmen del Gazolas [dG]. We are grateful to the référée for bringing them to our
attention. They are more gênerai than the examples we originally had hère and

yield better results for base S2.

The last section (Section 6) of our paper contains results on deforming
foliations of Seifert fibered manifolds to make them transverse. Hère we only
consider transversely oriented C2 foliations on Seifert manifolds whose base is not
S2 or P2. Roughly speaking the theorem is that this can be done if the foliation
has no compact leaves. The techniques are the same as for the case of locally
trivial bundles, done by Thurston [T] and Levitt [L], so, at the referee's suggestion
we omit proofs.

We fix the notations â>, â>+, m> m and, for 7 eR, sh (7) for use throughout this

paper. In addition, we use Knuth's "floor and ceiling" notations L7J and [7! for
7 € R to dénote respectively, the greatest integer < 7 and least integer > 7.

2. Self-homeomorphisms of the cirde

We will actually need information on the "lifted" homeomorphisms in % and
Q)+. To make the connection explicit, note that the center of 2è+ is

and that 2)+/Z(â>+) is the group of orientation preserving self-homeomorphisms of
thecircle SX=R/Z.
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We write ab b~lab for the conjugate of a by b. A commutator is an élément
of the form a~1b~1ab.

Before we describe our main results characterizing certain products of spécial
éléments of 3>+, we describe some elementary properties of 3>+ and of the
functions m and m.

LEMMA 2.1. Let /, /„ g be éléments of 2)+. Then

(1) If x, y€R, then x-yeX implies fx—fy x-y. If, on the contrary; n<
x —y<n + l for some neZ, then n<fx-fy<n + l.

(2) 0<m/-m/<l.
(3) mf~1 '-tnf, and dually, mf~1 -mf.
(4) ÏUmf^MUD^mfn+lU mf^Œ^m/J + n-l, and dually,

/ n \ n —1 / n \

(5) L™/8J Li1/] anà [m/g] [mfl (so, in particular, if mfeX, then

in/8 m/) and the same for m.

Proof. (1) Apply / to the equality y + n x or to the inequality y + n<x<
y + n + 1, for neZ.

(2) Choose x, y € R with fx-x mf and /y - y mf and observe that if
m/-m/>l then x and y contravene (1).

(3) is clear, as is the first inequality in (4). For the second inequality choose

xgR with fnx-x mfn and observe that (II/i)*"*— ^/n +Ln=i ^/r The third
inequality now follows by (2), and the dual inequalities foliow by (3).

(5) By (1) we hâve Lx-yJ Lg"1x-g~1yJ for x,yeR. Choosing y gz and

x=fgz gives |_/gz-gz] |_/gz — zj, and minimizing over zeR gives Lm/] i_mfg].

Replacing L J by F 1 and/or min by max in this argument proves the rest of (5).

We shall also need a spécial subset of 3)+. We say fe3)+ has a stable fixed point
at reR if for any sgR sufficiently close to r, the itérâtes fn{s) converge to r as n

goes to infinity. Equivalently, f(r — e)>r — e and /(r + e)<r + e for ail e

sufficiently small. We say fe$)+ has an unstable fixed point at r e R if r is a stable fixed

point of f"1. For fc>0 we write

/€SUF(k)

(SUF stands for: Stable or Unstable Fixpoints) if / has exactly 2fc fixed points on
some (or equivalently every) half open unit interval [r, r + 1), and exactly fc of
them are stable and the other fc are unstable. It is clear that the fixed points of /
then alternate type (stable or unstable) along the real line. The significance of this
définition is given by the following well known lemma.
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LEMMA 2.2. Any two éléments of SUF (fc) are conjugate in S)+.

Proof. We prove this for fc 1, the only case we ever use. The gênerai proof
will then be clear. Thus let /, g eSUF(1). Let x be an unstable fixed point of / and
let y be the unique fixed point of / in the interval (x, x H-1), so y is necessarily
stable. Let x' and y' be chosen similarly for g. We shall construct an he3)+ with
hx x', hy y' and hgh1 =/.

It is enough to construct h on each of the intervais [x, y] and [y, x +1] so that
the équation hgh~l=f holds where it is defined. We do this for [x, y]; the
construction for [y, x +1] is similar. Choose z and z' with x < z < y and x'< z'<
y' and let h0 : [z, /(z)] -> [z', g(z')] be any monotonie homeomorphism. For n eZ
deflne hn gnhof~n : /"!>, /(*)] -» gnU\ g(z')]. Since the intervais /n[z, /(z)]
partition the interval (x, y) and the intervais gn[z\ g(z')] partition (x', y'), thèse maps
hn fit together to give the desired map h : [x, y] —> [x', y'].

We now corne to the main results of this section. The first resuit needed for
our géométrie application is:

THEOREM 2.3. Let f be an élément of 2)+.

(1) / can be written as a product of g > 1 commutators of éléments of Q)+ if and
only if mf<2g-l and mf>l-2g.

(2) / can be written as a product o/ g>2 squares of éléments of 9)-3)+ if and
only if mf < g — 1 and mf > 1 — g.

Remark. (2) remains valid if "squares of éléments of Q) — â)+" is replaced
either by "éléments of SUF(l)" or "éléments of Q}+ having fixed points".

The situation for commutators in 3), which we need to handle the non-
orientable case of our géométrie problem, is much simpler:

THEOREM 2.4. Every élément of â>+ is a commutator of an élément of Q)-Q)+

with an élément of £è+.

We shall also need a partial characterization of certain products of conjugates
in 3)+:

THEOREM 2.5. Let fu ,fn eâ>+ and reR be given with

lLm/J<r<Irm/,l.

Then there exist éléments ex eâ)+ such that d=H (/?•) satisfies

md < r < md.
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To deal with Seifert fibrations over the sphère we need to know when d can be
the identity in the above theorem, when the /, are shifts. We only hâve a partial
answer to this question.

THEOREM 2.6. Let yu yk be real numbers.

(1) There exist ex e â>+ such that U sh (y^ e SUF (1) if and only if £ [y, J< -1
and

(2) If I Y, =0 or - 2 and IFY* 1^2, then there exist e, <eS>+ such that

(3) Conversely, if ex exist as in (2), the either XYi=0, or £LyJ — -1 and
1 wifh a* teast one of thèse inequalities strict.

The rest of this section gives the proofs of Theorems 2.3 to 2.6. We start with
the proof of 2.3, which is an induction, starting at the case g 1 in part (1) and

g 2 in part (2). Since we shall often need this spécial case, we state it as a

lemma, for easy référence.

LEMMA 2.7. The following conditions on an élément feÇft+ are équivalent:
(1) mf<\ and mf>-\.
(2) / is the product of two éléments of SUF(l).
(3) / is a commutator in â>+.

(4) / is the product of two squares of éléments of 3>—£è+.

Proof. We begin with the most délicate point, the constructive statement

Let e, y € R with 0<e<Y<l?tobe chosen later, and let c € 9T be a function
whose graph looks like

y 1
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That is, c(0) 0, c(y) e, and c e SUF (1), with an unstable fixed point at 0 and a

stable one in the interval (0, e).
Given that / satisfies (1) and is not the identity, we may suppose, by inverting /

if necessary, that m/>0. Conjugating / by a shift if necessary, we can then further
suppose that 0</(0)< 1. Chosen e close enough to zéro and 7 close enough to 1

that

We may write / (fc)c~x\ we will see that this is nearly the required factorization.
First, since /c(0) > 0, fc(y) < y, and fc(l) > 1, the function fc must hâve at least

one fixed point on each of (0, 7) and (7,1). On (0, 7), the fixed points must of
course occur on /c(0, 7) /(0, e), while on (7,1) they must occur on (/c)"1(7,1) <=

(7,1).

f(0)

s KO) f(e)
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If / is nicely behaved, say / and / l Lipschitz, then by making c sufficiently flat
on /(0, e) and sufficiently steep on (7,1), we can assure that fc has exactly one
(stable respectively unstable) fixed point on each of thèse intervais, so the
factorization f (fc)c~1 is the desired one.

In gênerai, we proceed as follows. Let g be the unique élément of 2è+ which

agrées with fc on [0,1] — /(0, e)-(fc)~l(y, 1), and which is linear on /[0, e] and on
(/c)~1[t, 1]. Clearly g is in SUF(l) (with a stable fixed point on /(0, e) and an
unstable one on (/c)~1(7,1)). We shall replace the factorization f=(fc)c~l by a

factorization /=g(c')~\ so it suffices to show that c' /"1g is in SUF(l).
Now c' c(fc)~lg, so c' c except on /(0, e) and (fc)~1(y, 1). Since c'/(e)

cf(e)<c(y) £</(0), we see that c'f(O, e) is disjoint from /(0, e), so c' has no
fixed point on /(0, e). Similarly cf(fc)-\l) c(fcTl(l) r\l)<y <(fc)~\y)y so

c'dfc^iy, 1)) is disjoint from (fc)~l(y, 1), and so c' has no fixed points there
either. Thus c'eSUF(l), and the proof of (1)=>(2) is concluded.

(2)=M3). Write f=dc, with c, d€SUF(l). By Lemma 2.2, d~l is a conjugate
of c in S>+, say d b~lc~lb, so / b"1c"1bc, as required.

(2)=>(4). It suffices to show that any ceSUF(l) is a square of an élément of
âJ-â)+. By Lemma 2.2 it suffices to show this for just one such c. Let a €â>-â>+
hâve the following graph on [—5,5] that is a(0) 0, a(|) -|, a (-5) 2, and

-*

a(x)<-x for xg(0,|) and a(x)>-x for xe(-|,0). Clearly c a2 has a stable

fixed point at §, an unstable one at 0, and no others in the interval [0,1).
(4)=> (1). If c g 2i+ has a fixed point then -1< me < 0 and 0 < me < 1. Thus if

both c and d hâve fixed points, then m(cd) < me 4- md < 0 4-1 1 and similarly
fh(cd)>-l.

(3)=>(1). Say f c~1d~1cd. Using Lemma 2.1 we see

m/ < mie
\mc~\

Similarly m/>-l.
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The inductive step in the proof of Theorem 2.3 will use the foliowing
conséquence of Lemma 2.7.

PROPOSITION 2.8. Let fe3)+ and 0<e <1 be given. Then
(1) f=kh for some h,ke<2)+ with

0<mh<l,
mk<m/-2ie<mk.

(2) f=kh for some h,ke3)+ with heSUF(1) and mfc <m/-1 + e < mfc.

Proof. By Lemma 2.7, sh(— m/+l — e)f= k'hr, where each of k' and h' is in
SUF(l). The décomposition / (sh(m/-l + e)k')h' satisfies (2), while /
(sh(m/-2 + e)k')(sh(l)h') satisfies (1).

"

Proof of Theorem 2.3. The "only if" statements follow at once from Lemma
2.7 and Lemma 2.1(4). We prove the "if" statements by induction on g, the cases

g 1 of (1) and g 2 of (2) being Lemma 2.7. Inverting / if necessary, we may
assume m/>0.

(1) If m/<2g-l, then we use Proposition 2.8(1) to write f=kh with 0<
mh<\ and mk<mf — 2 + E<mk. By Lemma 2.7, h can be written as a com-
mutator, and if e is small enough, then k will be a product of g -1 commutators
by induction hypothesis.

(2) If m/<g-l, then we apply Proposition 2.8(2). The élément h will, as

noted in the proof of Lemma 2.7, be the square of an élément of 3) — ®+, while fc

will be a product of g-1 such squares by induction hypothesis.

Proof of Theorem 2.4. We first note two simple équations. If t e 9) is given by
f(x) -x, and if ae2)-â(+ is arbitrary, then

Y) for ail

sh(n) • a =sh(-n) for ail neZ.

Given /g2)+, we wish to write it as /= a^b^ab with a eQ)-Q)+ and b e<&+. If
/ is a shift we use the équation t"1 • (sh^XT1 * t • sh(Y) sh(2Y), so we may
assume / is not a shift. We can then find neZ such that mf—2n<l and

mf-2n > — 1 (namely let 2n be the one of [mfi and Lm/]+1 which is even). Put

f sh(-2n)/.
Then f satisfies condition (1) of Lemma 2.7, so f cd with c, d<ESUF(l).

Now tc^r1 is still in SUF (1), so by Lemma 2.2, tc^C1 e~xde for some e e Q)+.

Putting a et, we get c a~1d~1a, so f a~1d~1ad. Finally / sh(2n)f
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a"1-sh(-n) • a-sh(n)-a~1d"1ad a~1(sh(n)d)"1a(sh(n)d) is in the desired
form.

Proof of Theorem 2.5. First note that given /g3b+ and 0< e < 1, we can find a

conjugate /' of / with m/'< Lm/J+e. Indeed, if mf [mf\ this is trivial; otherwise
choose xeR with fx x +lm/]+ f and 0< t< 1, and choose ae^+ with a(x) x
and a(x + e) x-f t, and then a"1/a(JC) ^+Liî/J+e, so mCa"1/^) — Lm/J+e.

We can thus replace each /, in Theorem 2.5 by a conjugate f[ with mf[^
Lm/J+e for some small e. We next observe that by conjugating each /( by a

suitable shift we can move the points at which they attain their m's so as to
achieve also: m(TI/0==Z^l/î-

Thus if reR is as in the theorem, we can find 6,€®+ such that m(TI/fl)<r.
Dually, one finds c,effl+ such that r<m(TI/?).

Now let e, : [0,1] —> 3>+ be a continuous path with ^(0) fy and e,(l) ct for
each i (2ï+ is a convex subset of RR, hence pathwise connected). If dt =Hft(t) for
0<f<l then, since m and m are continuous, the intermediate value theorem
implies m(dt)^r<m(dt) for some t, proving the theorem.

Proof of Theorem 2.6. The proof uses the following lemma.

LEMMA 2.9. (1) If -1<71<O<72<1» then there exists ee®* such that

sh(7l)(sh(72))€€SUF(l).
(2) If -1< 7 < 1 and fe SUF (1), then there exists ee3)+ such that /(sh (y))e e

SUF(l).

This lemma is easy to prove directly, but since it follows immediately from a

stronger resuit, Lemma 4.2, to be proved later, we postpone its proof for now.
Returning to the proof of Theorem 2.6(1), note that the "only if" is immédiate

from Lemma 2.1, so we must prove the "if". Assume therefore SLtJ^-1 and

XFyJ^L Our first step is to "normalize" the y,'s.
Observe that inserting or deleting a yt 0 does not change the problem. Also,

since sh (n) is in the center of Q)+ for n eZ, if we replace each yt by 7, + n, with
n,€Z and £n,=0, then we also do not change the problem. We can thus

normalize and reindex 7, so that they become:

Yo,Yi,...,Yi; Yo^Z, 0<7t<l for i 1,..., I.

The conditions X Lt» J^-1 and X ïyt]^ 1 then become: yo -n with 1 < n < l-1.
By eliminating 70 by subtracting 1 from n of the 7,, we can renormalize once

more to obtain:

71,...,7l; -1<71<1 for i 1,..., î. (*)
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Since exactly n of thèse yt are négative, and l<n<i-l, we can assume

-1<7X<O and 0<72<l.
We now apply part (1) of Lemma 2.9 to find eeâ>+ with sh (y^ sh (y2)e e

SUF (1). Applying part (2) of the lemma iteratively, with y y39..., yb then
complètes the proof.

To prove 2.6(2), note that if £ 7, 0 we can take ail ex 1. If X 1-7, M -2 and

Xr7t1^2, then we can renormalize as above, to get the 7, in the form (*) with
-1 < 7i, 73 < 0 and 0 < y2, y4 < 1. Then {7^ y2} and {73,..., yt} each satisfy the

inequalities of part (1) of the theorem, so (2) follows from (1) and Lemma 2.2.

(3) Assume some product fi sh (7,)*' equals 1. If ail the 7, are integers then we
must hâve EYi=0- Otherwise, for each i we hâve l/yj^mfeh^,)*»)^
m(sh (7l)e0^r7ll, with both the first and third inequality strict for some i, so the

inequalities ZI_7,J<0 and Zr7tl>0 follow from Lemma 2.1(4).
Now suppose £1.7,]= —1 and Er7»l= + 1. Then the normalization procédure

used in the proof of part (1) implies that we may assume fc 2 and — 1 < yx < 0 <
72 < 1. The équation sh (7i)Cl sh (y2T2 1 implies sh (72) is conjugate to sh (— 7^.
The following lemma thus shows 71 + 72 0, completing the proof of (3).

LEMMA 2.10. If ae2è+ is conjugate to sh (7) then ma < 7 < ma.

Proof. By Lemma 2.1(5), \imn^xm(an)ln y. But by Lemma 2.1(4),
lim m(an)/n ^ m(a). Thus ma ^ 7, and similarly ma ^ 7.

Remark. For any ae2ï)+ the number s(a) limm(an)ln lim m(an)/n is a

well defined (and well known) conjugacy invariant, and satisfies ma ^ s(a) < m(a).

3. Seifert manifolds with transverse foliations

We consider a Seifert bundle p : M -^ F over a closed surface F, the fiber

being S1. The total space M may be orientable or not. Such a bundle may be

described as follows: There exists some finite non-empty collection Dx,..., Dk of

disjoint closed dises in F so that p~~l(F- UintDJ —» F- U int Dt is a locally
trivial fibration admitting a section s : F- U int Dt -> M, while p~lDt =D2xSx is

a solid torus. With each Dt is associated a coprime "Seifert" pair (a,, ft) of
integers, with a,^l, so that the class of s(dDt) in ir1(p~lDl) X is —ft, and over
D, the map p is given in suitable coordinates by

p~lDl=D2xS13 (reie, el*)^> rel^9"v^ g Dr

Hère vx is an inverse of |3l modulo at and we are identifying D2 and Dt with the
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unit dise in C. The integer ax is thus the class in 7r1(p~1DI) Z of the "gênerai
fiber" p~\u\ ueDt-{0}.

We shall write the Seifert pairs as rational numbers ^Ja,. The collection

{Pilai,..., &Jak} of Seifert pairs associated to p : M —» F is not unique, but
dépends on the choice of the D,'s and of s. By changing thèse choices, {ft/aj can
be changed in the foliowing ways:

(a) permute the indices;
(b) add or delete a Seifert pair 0/1;
(c) alter each ft/a, by an integer, but keeping £ ft/a, fixed;
(d) (only if M is non-orientable:) replace any ft/a, by -/3,/a,:
(e) (only if M is non-orientable:) replace any ft/a, by (ft ± 2a()/al ((3Jdl)± 2.

If M is orientable, the Seifert fibration is completely classified (up to orientation

preserving homeomorphisms) by the Seifert invariant

where g g(F) is the genus of the base surface F (with the convention that g is

négative for F non-orientable). The fact that the Seifert invariant is well deter-
mined up to (a), (b), and (c) above can also be formulated: M is classified by g, by
the unordered set of ft/ex, modulo 1 (omitting those that are zéro modulo 1), and

by e(M —» F) -£ ft/ar This number e(M —» F) is called the euler number of the

fibration, see [N-R].
Staying with the case M orientable, note that the Seifert invariant can always

be put in the form

<l for i l,..., fc,

and this form, called normal form, is unique up to permutation of the indices
î 1,..., fc.

If M is non-orientable then one must include in the classifying data the
information as to whether the fibers can be given mutually consistent orientations
or not, and then the resulting "Seifert invariant" (well defined up to
(a), (b), (c), (d), and (e)) classifies. We will not need a notation for this, so we do

not introduce one. The euler number of the fibration is of course not defined in
this case.

The above discussion is a modified présentation of Seifert's original classification

[S], where the invariants are given in normalized form. The unnormalized
version was introduced (in the oriented case) in [N] and [N-R].

We will say that M admits a transverse foliation if M has a codimension 1
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foliation whose leaves are transverse to the libers of p : M —> F. Foliations hère
are always C° foliations, however, when we give conditions below for existence of
foliations, thèse foliations can actually be chosen to be analytic, by the results of
the next section.

We can now state the main géométrie results of this paper. Let p : M —» F be

a Seifert fîbration over the closed surface F with Seifert pairs Pilau &klak.
Let x be the euler characteristic of F, so x 2 — 2 g if F is orientable (that is,

g>0) and x==2+g if F is non-orientable (that is g<0).

THEOREM 3.1. If M is non-orientable, then it admits a transverse foliation.
This foliation can be chosen with ail leaves compact.

THEOREM 3.2. If M is orientable and F is not the sphère (that is x£ 2), then

M admits a transverse foliation if and only if
£ Lft/a, J ^ - x and £ Fft/a, 1 ^ X

orM-*F has normal form Seifert invariant (— 1; 0/1). For a normal form invariant
(g; (30/l? Pi/^i? • • • 5 Pdak) thèse inequalities may be rewritten x~~fc^Po — ~X-

THEOREM 3.3. If F=S2 (that is x 2) and !&/«<=() or I Lft/a, J^ ~ x
— 2 and Y,ÏPJ<Xi] — X~2, then M admits a tranverse foliation.

Conversely, if M —» S2 admits a transverse foliation then either X ft/a, 0 or
^-1 and ETft/aJ^l and aï Jeasf orce o/ thèse inequalities is strict.

Before proving 3.1 to 3.3, we pause to note the corresponding results for
foliations with only compact leaves in case M is orientable. Recall that in this case

the euler number of the fibration, e(M —? F) ~Z ft/a,, is defined.

THEOREM 3.4. Suppose that M is orientable. The following statements are

équivalent
(i) e(M-*F) 0;
(ii) M has a transverse foliation with a compact leaf;
(iii) M has a smooth transverse foliation with ail leaves compact.

Proof. The euler number e(M —> F) is the obstruction to finding a "rational
section" to the Seifert fîbration, that is, a closed compact surface F c^> M
immersed transverse to ail fibers. This is implicit in [N-R], but can be seen

explicitly as follows using the naturality properties of e of [N-R, Theorem 1.2]
(which contained a misprint: "homeomorphism" should hâve been "continuous
map"). By taking a double cover if necessary one can reduce to the case g^O.
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The Seifert fibration is then given by an S1-action, and by factoring a (Z/a)<=S1
one can reduce to the case of a genuine S^bundle. Finally, for a genuine
S^bundle the existence of a rational section is équivalent, by standard obstruction
theory, to the rational euler class in H2(F : Q) being trivial.

Thus (ii)=J>(i). Clearly (iii)=>(ii).
Finally (i)^(iii) by Conner and Raymond [C-R]. Various approaches to this

are also discussed in [N-R]. In fact, a complète set of models for the foliations
given by (iii) is as follows. Those with orientable base are given by fiber products
M Zxx/aS*, where (X,Z/a) is an oriented (Z/a)-action on a closed surface and

Z/a acts standardly on S1. The foliation is by fibers of M -* S1/(Z/a) S1. Those
with non-orientable base are given by fiber products M Xx£haS1, where D2a is

the dihedral group (t9 g 112= ga 1, t~1gt g"1) acting standardly on S1 and

acting on the closed oriented surface X in such a way that g is orientation
preserving and t is free and orientation reversing on X/(g). The foliation is by
fibers of M -» Sx/D2a [0,1].

Generalizing the ideas of Milnor and Wood, we reduce 3.1-3 to algebraic
theorems as follows.

Suppose M -* F has a transverse foliation. We will utilize the notions of the
introduction to this section, and in particular consider disks Dl5..., Dk in F so

that M -* F admits a section s over F - U int Dv
Cut F open along some additional disk, D, and open out F- int D - U int Dt

to represent it as a disk with oriented handles ap fc,, àx :

3} b} a2 b2 ag bq

in case F is orientable; or as a dise with handles c,, d,:

in case F is non-orientable.
Using the section s, we may trivialize the fibration over F—int D-\J intDr

Moreover we may assume this trivialization of the fibration agrées with the
foliation over the disk F-intD-|J int D,- {Handles}. Then by following the
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leaves of the foliation around a handle we may associate to each handle an
élément of 3>+, if the fiber orientation is preserved over a path going around that
handle, or of S>-3>+ if the fiber orientation is reversed over a path around the
handle. The reason why the élément corresponding to a handle is in 3> rather than
Homeo (S1) is that our section s on the handle tells us how to lift to Q).

Of course the fiber orientation is preserved around each handle dxy and we see

that the élément of 3>+ associated to dx is conjugate to the shift shC-ft/a,).
Indeed, in the coordinates in p~1Dl =D2xS1 introduced at the beginning of this
section, let m dénote a meridean S1x{l}czd(D2xS1), l dénote a longitude
{1}xS\ h dénote a typical fiber p~l(u) with uedDx, and q dénote s(dDx). Then
our explicit description of p implies the following homology relations in
H^diD2 x S1)): h vxm + axl, q - (ixxm + ftO, where ^ is defined by vfi, - j^a,
1. This implies the homology relation m ftfi 4- axq. But m represents the
homology class of the intersection of a leaf of our foliation with d(D2x S1), so this

homology relation says that as the leaf winds ax times around the handle it also

winds ft times around the fiber in our given trivialization of the bundle structure
on 3(D2xSl). Thus in one circuit of the handle in the q-direction we get a

conjugate of sh(pjax), so dx is conjugate to shC-ft/a,), as claimed.
We write av bv cp and dx again for the élément of 9> associated to the

corresponding handle. Since dD is the boundary of a disk, over which the
fibration and foliation will be trivial, the élément of 3) induced over dD must be 1.

Thus, in the case F orientable, we hâve

while if F is non-orientable we get

i. (**)

Conversely, given éléments ap bp d, and 9) satisfying (*) or cp d, satisfying

(* *), with dx conjugate to shC-ft/cO, the above discussion yields a construction

of a transverse foliation for the corresponding Seifert fibration. Thus the problem
of the existence of transverse foliations becomes the problem of finding approp-
riate factorizations (*) or (**).

Proof of Theorem 3.1. In this case, either F is orientable, and some a, and/or
bj is in S—S+, or F is non-orientable and some c, lies in Q)+.

In the former case suppose it is a{ which is required to lie in 3>-2)+. We use

Theorem 2.4 to find ax eQ)-2)* and 5[€â)+ such that O|(bi)"1ar1bî is the shift by
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X PJav If b{ is required to lie in â)+ take bx b[\ if bt is required to lie in 9)~9)+
take bt atb{. If we choose the remaining a,'s and fy's so their commutators are
trivial we hâve satisfied équation (*), with dx =sh(—/3l/al).

To see the statement about compact leaves, observe that we do not really need
Theorem 2.4, we can work more explicitly. Namely choose at in the above

argument to be at t with tx -x, and choose b[ sh(7) with 7 (£ft/al)/2.
Since t sh (- y)t~1 sh (7) sh (27), this does what is required, and clearly leads to
a smooth foliation with compact leaves.

In the case that F is non-orientable it is enough to note that any shift has a

square root in â>+ to see that (* *) is solvable, and to choose this square root as a

rational shift to get a smooth foliation with compact leaves.

Proofof Theorem 3.2. We flrst consider the case that F is orientable. Then our
discussion shows that a transverse foliation exists if and only if we can represent
some product of conjugates of the shifts sh (ft/a,),

as a product of g commutators. By Theorem 2.3 we can do this if and only if we
can find d as above with

md<2g-l=l~x

But by Lemma 2.1, any d as above satisfies ZLft/aJ^md and Uft/a,!—wd, so

XLft/aJ<2g-l and Zrft/a,l> l-2g. Since thèse are inequalities between inte-

gers, the necessity of the condition in Theorem 3.2 is shown. Conversely, suppose
the inequalities of Theorem 3.2 are satisfied. If the ft/c^ are ail intégral then

d=sh(Xft/al) does what is required. Otherwise ZLft/aJ<£[&/«,! and the

inequalities YdlPJ<xJ — ~X and ZFft/a,!^* imply that we can find £Lft/a,J<r<
XFft/aJ with x-Kr<l~X' Theorem 2.5 then implies the existence of the
desired élément d.

If F is non-orientable of genus g<-2, then the proof is just the same, using

(* *) in place of (*). We may thus assume that g -1, so x 1 and F RP2. In
this case condition (* *) becomes that the élément d above can be chosen to equal
the square of an élément of 2)-2)+.

If we eliminate the trivial case that the PJat are ail intégral and X ft/«i 0?

which is the exceptional case of Theorem 3.2, then the sufficiency of the
conditions I Lft/a, ]< - x ~ 1 and £ \^Jat]^x 1 îs just part (1) of Theorem 2.6
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together with the observation, made in the proof of 2.7, that any élément of
SUF(l) is a square of an élément of 9)-Q)+.

To see the converse, observe first that if c €â>-â>+ with c2 ^ 1, then mc2<0<
me2 (since c2x <x <$c2x>cx, since c reverses orientation). Thus if d c2^l
the inequalities ZLft/aJ^-1 and iTft/aJ^l follow from Lemma 2.1, while if
d 1 then thèse inequalities follow from Theorem 2.6(3), unless £ ft/«t 0. But
in the latter case the inequalities still hold, unless the ft/a, are ail intégral, which
is the exceptional case of Theorem 3.2.

Proof of 3.3. Hère (*) becomes d 1, with d as in the previous proof, so
Theorem 3.3 becomes parts (2) and (3) of Theorem 2.6.

There is an interesting corollary of the above proofs. Namely if F is orientable,
then the fundamental group rr^M) can be presented as follows: it is generated by
éléments ap bp d,, and z subject to the relation (*) above and the additional
relations

d?>z^ 1, dxz zd,,

a{i zaf1, b}z zbf1,

where the exponents are +1 or — 1 according as the corresponding élément a] or
b] préserves or reverses fiber orientation in M. For F non-orientable the
corresponding statement holds using éléments cp dt, z, and replacing (*) by (* *). Thèse

are by an easy Van Kampen argument, see Seifert [5]. The élément z is

represented by a generic fiber of M; The other éléments hâve their obvious
géométrie meanings. Our proof thus showed the following.

THEOREM 3.5. The Seifert manifold M admits a transverse foliation if and

only if there exists a homomorphism <p : tt^M) —» 3> with <p(z) sh(l), where

z £ 77!(M) is the class of a generic fiber of M.

Theorems 3.1 to 3.3 thus give numerical conditions for existence of such a <p.

Given <p as in the above theorem, one can reconstruct M with its transverse
foliation as follows. G tt1(M)/(z) can be represented as a group of isometries of
a geometry X, where X is S2, euclidean space R2, or the hyperbolic plane H. Thus
71*!(M) acts (non-effectively) on X. Via cp it also acts on R, so it acts diagonally on
XxR and we can form the quotient space Xx7ri(M)R M. The Seifert fibration is

given by Xx^^R->X/tt1(M) X/G F, and the foliation is induced from the
foliation of XxR by fibers of XxR-^R.
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Remark. The foliation will hâve ail leaves compact if and only if the image of
<p acts discretely on R. One can check that <p can always be so chosen if X S2 or
R2.

To close this section we discuss briefly the case of Seifert manifolds with
boundary. In this case M always admits transverse foliations, but a specified
transverse foliation on dM may not extend to one on M. The condition for such

an extension to exist can be derived just as in the closed case. For simplicity we
just discuss the case of orientable M.

Let the boundary components of M be denoted 7\,..., Tr. We make the

following simplifying assumption: r^l and the foliation restricted to each Tt has

non-compact leaves. This is no loss of generality, since, if the foliation had only
compact leaves on some Tl9 then we could eliminate this boundary component by
pasting in a solid torus over which the foliation extends.

Choose a section to the Seifert fîbration on each boundary component Tr
Then a transverse foliation on T, détermines an élément h} e â>+, by taking
holonomy in Homeo+ (S1) and using the section to lift to 2è+. This élément is well
defined up to conjugacy, so Lmfy] and \mh^ are well defîned. Moreover, our
choice of sections on dM lets us define the Seifert invariant of M,

(g, r; PJal9..., |8k/ak)

(we now include the number of boundary components in our notation), well
defined up to the usual indeterminacy, namely any PJat 0/1 can be added or
deleted and each pjat can be altered by an integer so long as £ ft/«t remains
constant.

We put x 2 — 2g if g > 0 and x 2 4- g if g < 0, so x *s the euler characteristic
of F with its boundary components capped by dises.

THEOREM 3.6. If g^O or -1 then the inequalities ILft/aJ+XLmfiJ<-x
and X fft/aj+l] [mh,!^ x are necessary and sufficient for the given foliation on dM
to extend to a transverse foliation on M. This is true also for g — 1 unless the pjat
are ail intégral and r l. If g 0 thèse inequalities, with x replaced by 1, are

necessary, but not sufficient in gênerai

Note that the inequalities are independent of the choice of sections on dM,
since altering the section on Tp say, alters \mh}\ and Fmfyl by an integer, and
alters ZLft/aJ and XTft/aJ by the négative of this integer.

The proof of this theorem is just like the closed case, so we omit it. We do not
hâve complète results for g 0. However, in the exceptional case with g —l,
omitted in the above theorem, we can assume, by changing the section on dM if
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necessary, that the Seifert invariant is (-1,1; 0/1), and a necessary and sufficient
condition for extension is that hx be the square of an élément of 2)—âf\

4. The projective linear group

In this section we show that the results of Section 2 also hold in the universal
cover PGL (2, R) of the projective linear group PGL (2, R). In particular this gives
a rather pleasanter characterization of products of g commutators in PSL (2, R)
than that given by Wood [W]. It also shows that the transverse foliations whose
existence is given by the theorems of Section 3 can always be chosen with
"structure group" PGL (2, R), and in particular they can be chosen as analytic
foliations.

We dénote PGL(2,R) by G. since PGL(2,R) acts on RP1 S\ we hâve an
inclusion PGL (2, R)<=Homeo (S1), which induces an inclusion GczQ). Dénote
G+ Gn2>+ PSL(2,R). G+ has index 2 in G with the nontrivial coset rep-
resented by the "flip" tx -x.

Let A I Ae PSL (2, R). Then A has two fixed points on RP1 S1, so it

has a unique lift Â € G+ with fixed points. Let K c G+ be the conjugacy class of
Â (this is a slight modification of Wood's notation).

THEOREM 4.1. Theorems 2.3,2.4,2.5,2.6 and the remark after 2.3 are ail
valid with % °t and SUF (1) replaced by G, G+ and K.

This can be deduced without too much trouble from a comparison of Wood's
results with ours, but we give a self-contained version, based on the following
improvement of Wood's Proposition 5.1.

LEMMA 4.2. Given f,geG+ with -Km/, m/<0, 0<mg, mg<l, there

exist conjugates /', g', of f, g in G+ with fgf Â. In particular, by replacing either f
or g by a conjugate one can achieve /geK and gf^K (note

gf=g(fg)g~1eK&fgeK).

Proof. Since SL (2, R) is a connected 2-fold cover of PSL (2, R), the group G+
is also the universal cover of SL (2, R). Let F, G € SL (2, R) be the images of / and

g. We first show we can solve the relevant conjugacy problem in SL (2, R).
Eléments HeSL(2,R)-{±l} are classified up to conjugacy as follows. If

|tr H| > 2 then tr H classifies H up to conjugacy. For each value of tr H with
|trH|<2 there are exactly two conjugacy classes, distinguished as follows: there
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exists v e R2 such that v, Hv forms a basis of R2, and this basis will be an oriented
basis for one conjugacy class and non-oriented for the other. The corresponding
élément [H]ePSL (2, R) has either 2 fixed points on RP1 S1, one fixed point, or
is conjugate to a rotation, according as |trH|>2, |trH| 2, or |trH|<2.

Note also that, since SL (2, R) is the 2-fold cover of PSL (2, R), the élément
1 g SL (2, R) lifts to sh (2n) e G+ with n e Z and -1 e SL (2, R) lifts to sh (2n +1) e
G+ with neZ.

We claim that our élément F above is conjugate to a unique Fo e SL (2, R) of
the form

Fo=Ul a)' Û€R'

and every such Fo occurs. Of course, a is given by a - tr F. Indeed, our condition
on / is équivalent to saying — K/r-r<0 for some reR, in other words, there
exists t)€R2 such that v, Fv is an unoriented basis of R2. Thus Fe
SL(2,R)-{±1}, and if |trF|<2 then just the "négative" conjugacy class is

permitted. Since Fo is in this conjugacy class if |a|<2, our claim follows.
Similarly G is conjugate to a unique Go of the form

Since F0G0= x
is conjugate to A 1 by a further conjugation if

necessary we can fînd F', G' conjugate to F, G such that F'G' A.
Now let f,g'eG+ be the lifts of F, G' which satisfy -Kfnf, mf<0,

0<mg\ mg<l. They are unique, since lifts of éléments of SL(2,R) are deter-
mined up to even intégral shifts. Then /', g' are conjugate to /, g, and /'g'
sh (2n)Â for some n eZ, since /'g' is a lift of A. If F', G' are each conjugate to
rotations, that is \a\ <2 and \b\ <2, then -1<mf < fnf <0 and 0<mg' < mg' < 1,

so -1< m(fgf) < fh(fg') < l.Thus in this case n 0 and f g' A. Thus by continuity
this holds for any value of a and b, completing the proof.

We now return to the proof of 4.1. We must fîrst prove the analog of Lemma
2.7, with %@+, SUF(l) replaced by G9G+,K. For the implication (1)=M2),
observe that if mf< 1 and m/> — 1 then, by replacing / by f""1 if necessary we can

assume / is as in Lemma 4.2. Then choosing g e K, so g'^X, Lemma 4.2 implies
that / is the product of two éléments of K. For the proof of (2)=£>(4) we observe

that Â is the square of a lift to G of the élément ePGL(2, R), so any

élément of K is the square of an élément of G - G+. The rest of the proof of the
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analogues of 2.7, 2.8, 2.3, 2.4 now are exactly as before. For the proof of the
analogue of 2.5, note that the conjugating élément a used in the proof of 2.5 can
be chosen in G+, so that proof also goes through with no change. Finally Lemma
2.9 is a spécial case of Lemma 4.2, so the proof of the analogue of 2.6 goes
through with no change. This complètes the proof of 4.1. Using Theorem 3.5 and
the discussion after it, we get:

COROLLARY 4.3. The necessary and/or sufficient conditions of Section 3 for
the existence of a transverse foliation on a Seifert manifold M are also necessary
and/or sufficient for the existence of an analytic such foliation, and for the existence

of a homomorphism <p : ttx{M) —> G PGL(2, R) taking the class h of a non-singu-
larfiber to sh{\)eG.

Remark. The homomorphism <p : tt\(M) —> G of this corollary can practically
never be found injective, with discrète image in G. Indeed this will be so if and

only if the foliation is an Anosov foliation, discussed in the next section, which
considerably restricts the possibilities for M.

Problem. Are the results of Section 2 valid also for groups between G and 9)1

This is particularly interestingfor CrQ) {fe<&\fis Cr-smooth}. Ail one needs is a

suitable substitute for (1)=>(2) in Lemma 2.7, the rest of the proof then runs
itself.

S. Examples

We describe briefly examples of Maria Carmen del Gazolas [dG]. They
generalize the well known Anosov foliation of a quotient M F\PSL(2, R) of
PSL (2, R) by a discrète subgroup, induced by the foliation of PSL (2, R) by fibers
of PSL(2,R)->PSL(2,R)/LT, where L/cPSL(2,R) is the subgroup of upper
triangular matrices.

Let S be a compact surface with a riemannian metric with a finite number k of
conical metric singularities with cône angles 27rôl9 i 1,..., k. A neighborhood of
such a point is obtained from a solid angle of measure 2^ by identifying its
sides. Define the Euler characteristic of S by

where x(S0) is Euler characteristic of the underlying topological surface. The

Gauss-Bonnet formula is 2irx(S) $s Kdv, so if we assume S has constant

curvature K, we see that K has the same sign as
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Now suppose each ô, is a rational number yjax. Then the unit tangent bundle
M= T^S of S is well defined and is a Seifert bundle with an a.-fold fiber over the
t-th cône point. It is not hard to compute the Seifert invariant explicitly using the
définition at the start of Section 3. Namely choose the section s to be a vector
field which is radially outward at each of the cône points of S and has a unique
singularity of index x(So)-k otherwise. A simple calculation shows this leads to
Seifert invariant

(g; (fc-

which has normal form

with

ft b.0,-7,

Notice that |80< -x(S0). Moreover e(M —? S)^ x(S), so if S has non-positive
curvature we get e(M—> S)^0, or equivalently — Sî^i (ftAO —ft>-

Now suppose S is as above with constant curvature <0, that is, it is hyperbolic
or euclidean. Then the usual parallelism on M=TXS gives a foliation on M
transverse to the fibers. Precisely, two vectors in euclidean or hyperbolic space are

parallel if their directed geodesics stay a bounded distance apart in positive time.
The unit tangent bundle of a euclidean or hyperbolic surface élément is thus

canonically foliated by families of parallel vectors. This foliates M away from its

singular fibers, and this foliation is easily seen to extend across the singular fibers.
We hâve already observed that a necessary condition for an M with normal

form invariant (g; po/l, PJal9..., f}Jak) to arise as one of thèse examples is

Since —M has normal form invariant (g;-fc —(30/l, (ai —

(ak-pk)/ak), the same condition for -M becomes, after trivial simplification,

(5-2)



Transverse foliations of Seifert bundles 659

If one shows that thèse necessary conditions are also sufficient, one has an
alternate proof of sufficiency in Theorems 3.2 and 3.3. This presumably can be
done in gênerai; in particular, if the desired cône angles 27rôt of S are ail at most
2tt, it is not hard to show the existence of S. This already gives sufficient examples
to show that the sufficient condition of Theorem 3.3 for the g 0 case can be
weakened as follows:

PROPOSITION 5.3. If M is orientable and Seifert fibered over S2, then a
sufficient condition for M to admit a transverse foliation is that either (5.1) or (5.2)
is valid. Hère *(S0) 2.

It seems a reasonable conjecture that this condition is also necessary. The
results of Greenberg [G] prove this for transverse foliations with structure group
PSL(2, R) when fc 3. We hâve some slight improvements of the necessary
condition of Theorem 3.3 in gênerai, but they do not corne close to this
conjecture, so we omit them.

The Anosov foliation mentioned at the beginning of this section are the spécial
case of Maria Carmen del Gazolas' examples for cône angles of the form 27r/ar

6. Making foliations tranverse

Very many foliations of Seifert manifolds are isotopic to transverse foliations.
We will state two results in this direction which generalize the results of Thurston
[T] and Levitt [L] on S ^bundles. The proofs rely on the results and techniques of
[L] and [T], and we omit them. The possibility of making such a generalization
was also observed by Johannson in discussions with one of the authors in 1976.

We consider a closed 3-manifold M with Seifert fibration p:M-* F and a

foliation 9 of M which is transversely orientable and C2. We will suppose that no
leaf of 9 is a torus or a Klein-bottle.

THEOREM 6.1. If *(F)<-1 then & is homotopic to a foliation transverse to

every fiber of p. The same is true for x(F) ^ — 1 provided that
(1) F/S2orRP2,
(2) If F=T2 then p has exceptional fibers, and
(3) either (a) The orientation of each fiber of p is preserved along each curve in

F, or (b) The leaves of & are orientable.

In proving Theorem 6.1, it is convenient to isotope & to make one leaf
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transverse and then apply the following somewhat more gênerai resuit:

THEOREM 6.2. If &* is transverse to one fiber of p then & is isotopic to a
foliation transverse to every fiber of p.
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