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On J. H. C. Whitehead's aspherical question I

Joe Brandenburg and Micheal Dyer

Abstract A connectée, finite two-dimensional CW-complex with fundamental group isomorphic to G
îs called a [G, 2]f-complex Let L <l G be a normal subgroup of G L has weight k if and only if k îs
the smallest mteger such that there exists {ll9 /k}<=L such that L is the normal closure in G of
{lA, lk} We prove that a [G, 2]f-complex X may be embedded as a subcomplex of an asphencal
complex Y X U {é\, e£} if and only if G has a normal subgroup L of weight k such that H G/L
îs at most two-dimensional and def G def H + k Also, if X îs a non-asphencal [G, 2]f-subcomplex of
an aspherical 2-complex, then there exists a non-trivial superperfect normal subgroup P such that G/P
has cohomological dimension ^2 In this case, any torsion m G must be in P

0. Introduction

A [G, 2](f)-compiex X is any (finite) connectée! two dimensional CW-complex
with fundamental group isomorphic to G. Sometimes we will abuse the notation
and say Xe[G, 2]^). Let X be a connected subcomplex of an [H, 2]-complex Y.
J. H. C. Whitehead's question is this: if Y is aspherical, is X also aspherical? [Wl5
p. 428].

The question seems very hard. We say that a group G satisfies the (finite)
Whitehead condition (G e WC(f)) if any [G, 2]-complex X, which is the subcomplex

of an aspherical (finite) 2-complex, is aspherical. Thus G^WC^ iff for any
[G, 2](f)-complex X, either X is aspherical or, if not, then no [H, 2](f)-complex
Y>X is aspherical. The philosophy of this paper is to isolate properties of a

group G which imply that G e WC or WCf.
There are a number of results in this direction. W. Cockcroft [C, Theorem 2]

showed that if G is one-relator group, then G has WC. One crucial observation
he made was: Let X be a [G, 2]-complex such that the Hurewicz homomorphism
h2 : tt2X —» H2X is non-zero. Then no 2-complex Y>X is aspherical. It follows
that any group G which admits a [G, 2]-complex X which is the subcomplex of an

aspherical 2-complex has H2G free abelian. (Hère H2G means the homology of
G with coefficients in the trivial module Z.)

Let Xmm(Gr, 2) min (x(X) | X is a [G, 2]rcomplex}. A complex X whose

Euler characteristic x(X) is minimal is called a minimal [G, 2]f-complex. For
simplicity, ail [G, 2]-complexes will hâve a single vertex, and this will be the base
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432 J BRANDENBURG AND M DYER

point for ail homotopy groups. Any [G, 2]-complex has the (simple) homotopy type
of such a complex.

We observe for later use that WCf can be proved or disproved for a particular
group G as follows: choose your favorite minimal [G, 2]f-complex X and, if it is

not aspherical, check that no [H, 2]f-complex containing X is aspherical (see

Lemma 1.4).

It follows from Cockcroft's resuit above that if X<Y, where Ye[H, 2]f is

aspherical, then X is a minimal [G, 2]f-complex. To see this, we simply observe
that if X is any non-minimal [G, 2]f-complex, then h2: tt2X —» H2X is not zéro.
For let Y be a minimal [G, 2]rcomplex, with x(Y)<x(X). Let X2(~)
im{h2: tt2(~) —> H2(-)} be the image of the Hurewicz homomorphism. Then, by
a resuit of H. Hopf, H2G^H2XI22X H2Y/22Y. Because H2X and H2Y are

finitely generated free abelian groups with rankz H2 Y<rankz H2X, we must hâve

J. F. Adams' approach [A, p. 483] was to assume that a non-aspherical
X < Y X U {e^ | a e sd}, with Y aspherical, and to study L ker {tï^X —> tt1 Y}.
Adams proved that HXL is a free abelian group and L is not transfinite
metabelian; i.e., L has a non-trivial (normal) subgroup P which is perfect
(H1P Pab 0). This shows that any solvable group has WC.

In [Co], J. Cohen points out that Adams' perfect subgroup P<L is actually
superperfect; i.e., H2P 0. He also shows [Co, Theorem 3] that if G a group of
cohomological dimension 3 and type FL (that is, Z has a finite resolution by
finitely generated free G-modules) such that H3G 0, then G has WCf.

In [GR, Theorem 4], M. Gutierrez and J. Ratcliffe show that if X<
Y(Yg[H, 2]f) which is aspherical, then X is aspherical if and only if the

cohomological dimension of G < 2 and G has type FL.
In [H], J. Howie shows that any torsion élément x e G(xn 1) is contained in a

finitely generated perfect subgroup of L. We show that, in fact, ail the torsion of G
is contained in Adams' superperfect subgroup.

Finally, in his thesis [Be] W. Beckmann shows that locally finite groups hâve

WC.
Specifically, we show the following

THEOREM 1. Let X be a non-aspherical [G, 2]-subcomplex of an aspherical
2-complex. Then there is a nontrivial superperfect normal subgroup P (Adams) such

that G/P has cohomological dimension <2.

COROLLARY. Any torsion in G must be in P.
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As a second resuit we characterize when one may add 2-cells to a [G, 2]f-
complex to obtain an aspherical complex. Let Fn dénote a free group of rank n.

THEOREM 2. Let X be a minimal [G, 2]f-complex. One may add n l-cells
and k 2-cells to X to obtain an aspherical 2-complex if and only if G*Fn has a
normal subgroup L which is a free-crossed G-module of weight k (see 3.2) such
that (1) there is an aspherical [G/L, 2]rcomplex and (2) def G + n def (G/L) + k.

COROLLARY. Let X be a minimal [G, 2]rcomplex. One may add two-cells
to X to obtain a fïnite contractible space if and only if weight G def G.

The groups in the corollary are of interest because they are (higher) knot and
link groups, according to a theorem of M. Kervaire [K]. Thèse groups are ail
E-groups in the sensé of [StJ, [St2] and [B], From this it follows that the derived
séries of G has many interesting properties; such as, each élément G" in the
derived séries for G is an J3-group, and the derived length of G is severely
restricted.

The paper is organized as follows. In section one we study complexes X for
which the Hurewicz map h2 : tt2X —» H2X is zéro and reprove a crucial lemma of
W. Cockcroft and R. Swan about minimal aspherical complexes. In section two
we study necessary and sufficient conditions for the inclusion X < Y to induce the

zéro map on the second homotopy groups. In section three we prove Theorem 2
and in section four, Theorem 1. We defer examples and applications of thèse
results to a later paper.

To fix notation, let G be a group and let ZG be the intégral group ring of G.

Let IG dénote the augmentation idéal, the kernel of the map € :ZG-*Z.

1. Cockcroft complexes and the Cockcroft-Swan lemma

DEFINITION 1.1. A connected CW-complex X is called Cockcroft if and

only if the Hurewicz homomorphism h : 7r2X—» H2X is trivial. A group G is

Cockcroft if and only if some [G, 2]-complex is Cockcroft.
Note that any non-minimal [G, 2]f-complex is not Cockcroft. It follows that

any group G having H2(G; Z) not free abelian is not Cockcroft. It was shown in
[C, lemma 1] that for any non-Cockcroft [G, 2]-complex X, any Y XU{el} has

7T2X—» tt2Y not zéro. It follows that non-Cockcroft groups hâve WC.

EXAMPLE 1.2. Any finitely generated one-relator group is Cockcroft. Let G
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be the group présentée by {xu ...,*„; r} and let X be the model associated with
the présentation. Write r Qq, where Q is not a proper power in the free group
F(xl9..., xj. By a theorem of Lyndon [L], tt2X ZG(Q- 1) as a left G-module,
where Q is the image in G of Q under the natural projection F-+ G. As the
Hurewicz map h : tt2X —» H2X is given by restricting the augmentation e : C2X
ZG -> C2X Z, we see that h 0. Note that if X is a subcomplex of an

aspherieal two-complex Y, then X must be a Cockcroft [G, 2]-complex. This
follows because if [XvVSp)U{e«}=Y is aspherieal, then the Hurewicz
homomorphism tt2(Xv V Si)-* H2(Xv V S3) is zéro [C, lemma 1]. That X is

Cockcroft is clear from the commutative diagram:

> H2X
l l

tt2(Xv V Si) -+ H2(X v V Si).

Observe that if X and X' are minimal [G, 2]f-complexes, X is Cockcroft iff X
is.

The following theorem characterizes in several différent ways the property that
X is Cockcroft.

PROPOSITION 1.3. LetXbe a [G, 2]-comp/ex. The following are équivalent:

(a) h2 : it2X -* H2X is zéro.
(b) The Hopf epimorphism H2X-^H2G is injective.
(c) The natural inclusion H3G -* Z®Gir2X is surjective.

Proof This follows from the exact séquence of [D], which is just a fancy
rewrite of two theorems of H. Hopf:

where h2 is induced by h2.

We now prove the following key lemma of Cockcroft and Swan [CS, p. 197].

LEMMA 1.4. Let X and X1 be minimal [G, 2]rcomplexes. Then X is aspherieal

iff X' is.

Proof. As X and X' hâve the same Euler characteristic, it follows from
Schanuel's lemma that 7r2X©ZGn 7r2X'©ZGn for some integer n>0. Then
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tt2X 0 implies that

is exact, which yields that 7T2X' 0 by a theorem of I. Kaplansky.

The proof of Lemma 1.4 clearly breaks down if X is an infinité, but Cockcroft,
[G, 2]-complex. We conjecture that the lemma is still true for such complexes.

If G is finitely présentée, then one may show from Lemma 1.4 that either ail
minimal [G, 2]f-complexes are subcomplexes of finite aspherical 2-complexes or
none are.

LEMMA 1.5. Let G be a finitely présentée, group. Let X,X' be minimal
[G, 2]rcomplexes and Y (Xv\/?l1 S})U{eu el) be aspherical. Then one

may add m one-cells and n two-cells to X' to obtain an aspherical complex.

2. Killing tt2X-> tt2Y for X a subcomplex of Y

DEFINITION 2.1. For any subgroup A<G, let KA=ZG • IA be the left
idéal in ZG generated by {a — 11 a g A}. Note that if A is a normal subgroup of
G, then KA is a two-sided idéal. In any case, KA =ker{ZG —>Z(G/A)} induced
by the coset function G —» G/A.

DEFINITIONS 2.2. Let M be any (left) submodule of a free G-module. The
Fox idéal of M, F(M), is the two-sided idéal in ZG generated by the coordinates
of each élément (of a generating set) of M. We say that a subgroup A<G kills M
if the Fox idéal F(M) is contained in the kernel KA. Note that F(M) is

independent of any chosen basis.

EXAMPLE. For a [G, 2]-complex X, G itself kills tt2X iff F(tt2X) cKg= IG.
This happens iff the Hurewicz map h2 : 7T2X-* H2X is zéro.

Now let Xe[G, 2] be a subcomplex of an [H, 2]-complex Y. Let i:X-> Y
dénote the inclusion map and L ker tt^i). If Q.X is the cellular chain complex
(considered as left G-modules) of the universal cover X of X, let Rx

CxX—» C0X ZG} be a so-called relation module for G.

THEOREM 2.3. The following are équivalent:

(1) î# : tt2X-> u2 Y is zéro,
(2) the Fox idéal F{tt2X) c Kl(L kills tt2X),
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(3) the Hurewicz homomorphism hL : tt2X —> H2XL is zéro, where XL is a

covering of X corresponding to the subgroup L.
(4) The natural surjection d2•* C2X —» Rx induces an isomorphism Z®lC2X-+

Z<g>LR of free G/L-modules.

Proof. Let (ZH)MI dénote ©aG^ (ZH)a. Consider the universal covering X of
X, the cellular chain complex C%(X) of X (viewed as free left G-modules and

homomorphisms), and the cellular chain complexes C*XL =Z®LC*X-> C%Y
(viewed as free G/L and H modules, respectively). Let N=G/L dénote the image
of tti(Ï) :G->H and tj : G —» G/L be the natural map. Also let

Y=(xv V

Consider the following commutative diagram:

7T2X C2X

C2X-

C2X1L -

-C2Y-

ZN
II

-»C0XL-

The chain map i*: C2X (ZG)m -> C2Y factors as

ZGm C2X-*> C2XL=ZNm>-»ZHrn®ZHw C2Y.

with the first map being ©Zt] :ZGm-*ZNm. Hence, the kernel of i#:7T2X->
tt2Y is 7r2Xn(KL)m. Also, H2XL>-» tt2Y (it is a direct summand as Z-modules).
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So i#:7T2X—> tt2Y is zéro if and only if fiL : tt2X 7T2XL —» H2XL is zéro. This
happens if and only if tt2X c K™, which in turn is true if and only if F(tt2X) <= KL.

In order to prove (4)^>(1), consider the following exact séquences (see [D]).

H2XL » H2L

-+Z®LC2X—^

It is easily shown that both squares commute. Also

tt2X -i-> H2XL factors as tt2X > Z®L^X —^ H2XL.

Hence

1T2S\. > TT2 I Ç$ TT2X

H2XL

5Lc2x n

Note 2.4. The proof of Theorem 2.3 shows that conditions (2), (3), and (4) are
équivalent for any (not necessarily normal) subgroup L<G, provided we restate
(4) as an isomorphism of (not necessarily free) G-modules. In fact, it is clear that
(2)-(4) are hereditary in the sensé that, if they are true for some subgroup L<G,
then they hold for any subgroup M^G containing L.

3. Subcomplexes of aspherical complexes

DEFINITION 3.1. Let G be a (finitely presented) group. G is at most

(finitely) two-dimensional if and only if there exists an aspherical [G, 2]^-
complex.

For any group G and élément geG, dénote the image of g in Gab by g.

DEFINITION 3.2. Let L be a normal subgroup of G (L<iG) with quotient



438 J BRANDENBURG AND M DYER

H. L is said to be a free crossed G-module of weight k (fc <») if and only if there
exists éléments {g!,..., gk}c=L such that L is the normal closure ((gu gk))G

of {gj in G, HXL is a free H-module with basis {g1?..., gk}, and H2L 0.

It is a very nice theorem of J. Ratcliffe [R, Theorem 2.2] that this is équivalent
to the usual définition of a free crossed G-module (in this setting). The normal
generators {g1?..., gk} of L are called a basis for the free crossed module L.

An interesting spécial case is when G is a free crossed G-module of weight k.

Examples of weight 1 self free crossed modules are knot groups. By a theorem of
M. Kervaire [K], any finitely presented self free crossed module of weight k is the
fundamental group of a fc-link of 3-spheres embedded in S5.

Note that if L is a free crossed G-module of weight k, then L is a free crossed

L-module of weight k • |G/L|. Furthermore, if L is a free crossed L-module of
weight k and H is any group, then, for G L*H, the normal closure N of L (in
G) is a free crossed G-module of weight k. To see this, notice that N is the free

product ^HenhliT1 in G and that 1-»N—>G—>H-»1 is a split extension.

HjL=Zk, so H!N ZHk; H2L 0 implies H2N 0. If the normal closure of
{ll9..., Ifc} in L is equal to L, then <<{llt..., îk}»G N.

As another example, one may show the foliowing proposition.

PROPOSITION 3.3. Let G be a l-relator group with présentation

{xly..., X» ; Qq}, where Q is not a proper power. Let eXi(Q) dénote the exponent sum
of Q with respect to xr Then G is a free crossed G-module if and only if [q 1 and
E gcd {eXt(Q)} 1] if and only if [H.G Z""1].

Note. Let G be a finitely generated l-relator group. Any two l-relator
présentations of G hâve the same number of generators. This follows because the
models associated with both présentations are Cockcroft (Example 1.2) and are
therefore minimal.

Let def G dénote the deficiency of the finitely presented group G. The

following theorem characterizes when one may add finitely many one-cells and
two-cells to a [G, 2]f-complex X to obtain an aspherical 2-complex. Let Ft dénote
a free group of rank L

THEOREM 3.4. Let X be a minimal [G, 2]rcomplex. One may add l l-cells
and k 2-cells to X to obtain an aspherical two-complex Y if and only if (1) there

exists a normal subgroup L<G*Ft which is a free crossed G*Frmodule of weight
k having H (G*Fi)/L at most finitely two-dimensional and (2) def
defH+fc.
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Note that this theorem is true whether X is aspherical or not. For another
équivalent condition see Theorem 3.6.

Proof. (4>) Suppose X< Y (Xv\/!=i S})U{e\L..., et} and Y is aspherical.
Consider the homotopy séquence for the pair (Y, X), where X XU Y(1):

1T3(Y) -> TT3(Y, X) -* 7T2(X) -> 7T2( Y) -* 7T2( Y, X) A ^(X) -> TT^Y) ~* 0.
Il II II II

0 0 G*F{ H

The group tt2( Y, X) is a free crossed ^(Xl-module on the characteristic maps for
the fc added two cells. We let L im d. Then H G/L is at most 2-dimensional.
Because *(X) Xmm(G, 2), *(Y) Xmin(H, 2) and *(X) + fc -1 *( Y) we hâve (as

x(X) l-def G) fc + defH def G + l.

«=) Let X be a minimal [G, 2]rcomplex and identify ttxX with G. Let
{gi> • • • » 8k) be a basis for L<G*Fi as a free crossed G*Frmodule. Attach
ef,..., efc to X Xv\/!=i S] using maps ax : S,1 -> X(1) which represent gteG*Fi
(i 1,..., fc). Then X< Y XU{e?,..., ef} has itxY H at most a finitely
two-dimensional group. Thus there is an [H, 2]f-complex W which is aspherical.
Because def H def G-k + l 1-*(Y) l-x(W), we hâve *(Y) *(W)
Xmin(H, 2). Therefore, Y is aspherical by Lemma 1.4.

Note. One sees from the proof that really only the following was used:

G*Ft has a normal subgroup L of weight fc over G*FX such that
(a) G*FJL is at most finitely 2-dimensional and
(b) def[(G*F,)/L] + fc= def G + l.

That L is a free crossed G *Fj -module of weight k is a conséquence of the
above statement.

COROLLARY 3.5. Let X be a minimal [G, 2]rcomplex. One may add k
two-cells to X to obtain a contractible space if and only if det G fc weight G.
This is true iff G is a free crossed G-module higher dimensional link group) of
weight k which is Cockcroft.

Proof. The first statement follows by specializing Theorem 3.1 to 1 0 and
H {1}. To see the second, we observe that a group G with HlG^Xk and which
is Cockcroft has H2X H2G =Zk~defG. So H2G 0 implies def G fc. A similar
argument yields the converse.
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We would ask, more generally, what does the fondamental group G of à

subcomplex X of a finite contractible space Y look likel By the above corollary, we

see that G*FX is a higher dimensional link group with def (G*Fj) def G + l

weight (G*Fi). Does this imply that def G weight G? It is easy to see that such

groups are J5-groups (see [B], 123-130, for facts about E-groups).
We also hâve (using the same géométrie techniques)

THEOREM 3.6. Let X be a Cockcroft [G, 2]-complex. One may add (k <=«>)

2-cells to X to obtain an aspherical two-complex Y if and only if there exists a free
crossed G-module L<G (of weight k) which kills it2X.

Proof. From the exaetness of

7T2X -*1T2Y-* 7T2( Y, X) -

we see that tt2Y 0 if and only if tt2X-^7t2Y is zéro and tt2(Y, X)—» ttxX is

monic. But, by the theorem of J. H. C. Whitehead [W2], ^C Y, X) is a free crossed

irtX G module of weight k.

Thus, a counter example to the Whitehead conjecture would arise if there is a

group G with a "large" free crossed module L as a subgroup (in the sensé that L
kills tt2X for some Cockcroft [G, 2]-complex X).

4* Extending Adams' theorem

In this section we prove Theorem 1 of the introduction.

LEMMA 4.1. Let X be a [G, 2]-complex and d2:C2X-+ CXX be the second

boundary operator considered as a left G-module homomorphism of free G-modules
CXX. Let N be a subgroup of G. Then l®d2:rL®NC2X->2À®NC1X is a

monomorphism if and only if F(tt2X)<^Kn and H2N 0. This happens iff
H2(XN) 0.

Proof. Recall that JR is the image of d^:C2X-^C1X and IG imdf. From
the exact séquences

R, Ry^C^^ IG, and IG>->ZG-^ Z,
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we obtain the following séquences:

Tor?(Z, IG) H2N

(4.1)

HtN Torf(Z,Z)

Note that the triangles commute and that the vertical and horizontal séquences
are exact. Clearly ker (l®a2) oT^N. So H2N 0 yields ker (l<g)d2) ker a
im hN 0, if F(tt2X) ci Kn. Similarly ker (1®d2) is zéro yields a~xH2N 0 which
implies a~H0) im hN 0 and H2N 0. D

DEFINITION 4.2 [Stx]. A group G is called an E-group if HxG is torsion
free and the trivial G-module Z has a projective G-resolution

such that the homomorphism \®Gd2:Z®Gï>2^'Z®GP\ is injective.
It follows that if G is an E-group, then H2(G) 0.

For a given group G, we define PXG to be the maximal perfect subgroup of the

group G. It is uniquely defined as the group generated by the family of ail perfect
subgroups of G. This subgroup is perfect because the group generated by any
family of perfect subgroups is perfect. Because the normal closure of a perfect
group is perfect, PXG is a normal subgroup of G. Pi is clearly a functor from the
category of groups and homomorphisms to the category of perfect groups and
homomorphisms.

There is another way to define PXG. Let {G" | a ordinal} dénote the denved
séries: Ga (G""1)' for a not a limit ordinal, Ga nP<« G& for a a limit ordinal.
This séquence terminâtes [Dr, p. 20] at a perfect group, and since Ga contains
any perfect subgroup of G, it terminâtes at PtG.
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The following theorem may hâve been known to J. F. Adams. It certainly
follows from his techniques, when applied to the derived séries of L. See [A] and

[StJ.

THEOREM 4.3. Suppose X is a non-aspherical [G, 2]-complex such that

Y X U {el | a e M} is aspherical. Let L ker {irxX -» t^ Y H}. Then the maximal

perfect subgroup PtL of L is superperfect, kills tt2X, and is non-trivial.

Proof. We first observe that L is an E-group because

is monic (Lemma 4.1) and H^^ZH1^. By Theorem A(i) of [StJ each term of
the derived séries L" of L is an E-group; hence PXL is an E-group, therefore
superperfect. In fact, the argument of the theorem cited above shows that

is monic, hence PXL kills tt2X by Lemma 4.1. PXL is non-trivial because, if it
were trivial then PtL kills tt2X implies F(7r2X) c KPlL 0. But F(tt2X) 0 iflf

7r2X 0, which contradicts the assumption that X was non-aspherical.

A group G has cohomological dimension <n (cd G < n) if H1 (G; M) 0 for
ail i>n and ail Z G-modules M. Equivalently cd G<n if and only if the trivial
G-module Z has an ZG-protective resolution of length n:

A group G has type FP (JFL) if and only if G has a projective resolution (*) of
fînite length with each Pt (free) of finite rank.

If G has type FL, we define the (naive) Euler characteristic x(G)
Xr«o("~l)1 rankzoPj. In this case, let blG rankzHtG. Standard arguments show
that x(G) Ln=o(-l)lblG as well.

THEOREM 4.4. Let X be a [G, 2]-complex and P be any superperfect normal
subgroup of G such that P kills v2X. Then G/P has cohomological dimension <2
over Z. Furthermore, if X is a minimal [G, 2]f-complex, then G/P has type FL and
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Proof. Consider the chain complex C%X. In diagram 4.1 with P N, we see

that HXP H2P 0 together with hP 0 (if and only if KP 3 F(tt2X)) shows that
the séquence

is an exact séquence of ZG-modules. Because P is normal, Z<8>PZG^Z(G/P) as

(G/P)-modules. If X is a [G, 2]rcomplex, then clearly G/P has type FL and

After proving Theorem 4.4, we noticed that R. Strebel had proved a similar
resuit for E-groups [StJ. However, groups arising as the fundamental group of a

subcomplex of an aspherical complex are not necessarily E-groups, as the second

homology group is not necessarily zéro (it is free abelian). The results do not
imply one another, even though the basic trick is the same.

THEOREM 4.5. Let X be any non-aspherical [G, 2]-complex and X< Y, an
aspherical [H, 2]-complex. Then there exists a family of distinct non-trivial normal
superperfect subgroups Pt <3G, ieI, such that cd G/Pl <2 for ieland such that the
smallest {normal) subgroup P (Pt\ieI) containing ail Pt kills 7T2X. Hence, PXG
kills tt2X.

Proof. X<XUYil) Xv\/Si X<Y XU{el}. By theorem 4.3 there is a

superperfect normal subgroup P^ 1 in G*F, where F is a free group isomorphic
to Tr^VSi). Also P kills tt2X. Hence, by 4.4, cd G*F/P<2.

By Kuros' theorem, we hâve P #M(wGM"1nP) for certain ueG*F. The

group P is superperfect implies that each uGu^DP is superperfect. Let Pu

M~1(wGu~1nP)u. Each Pu is a superperfect normal subgroup of G. The group
P^ 1 implies that some of the Puj= 1. Choose the family {PJ to be those Pu^ 1.

Consider the following diagram:

G*F »G*F/P

uGu1 —» uGulIP H uGu1

Thus uGw~VP H uGm"1 « G/Pu has cohomological dimension <2 for each u. Note
that if any PC\ uGu1 -1, then G itself has cohomological dimension <2.

Let FG(M) dénote the 2-sided idéal in ZG generated by the coordinates of
éléments of the G-module Afci(ZG)a. We know that FGsltF(7r2X)c:Kp

Z(G*F)-IP, where 7r2X Z(G*F)®G7r2X, by Theorem 4.3. It follows that
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Fg*f('tt2X) Fg*f(tt2X), with tt2X considérée as a G*F-module via the projection

tî:G*F-»G. Notice that P r\(P). The surjection Ztj :Z(G*F)-»Z(G)
clearly carries KP=Z(G*F)IP onto Kp=Z(G)IP Also FG^7r2X)
FG*F<7r2X) is carried onto Fg(tt2X). Thus FG*F<7r2X) <= KP implies FG(ir2X) c= Kp
and we are done.

For the next corollary let X be a [G, 2]-complex which is not aspherical, but
which is a subcomplex of an aspherical [H, 2]-complex. Thus, there must exist a

non-trivial superperfect subgroup P <\G such that cd G/P^2. Because groups of
finite cohomological dimension are torsion free, we hâve

COROLLARY 4.6. Any élément geG such that gn eP (n> 1) must be in P.

In particular, the torsion of G is contained in P.

In [B, p. 122], R. Bieri shows that the center of a non-abelian group of
cohomology dimension <2 is cyclic. The exact séquence P >-* G—*>G
induces a monomorphism

(8G is the center of G). If G/P is non-abelian, then 8(G/P) is 0 or Z; if G is

finitely generated, 8(G/P) 0, Z, or Z©Z (this last occurs only if G/P Z©Z
is abelian).

COROLLARY 4.7. Let G be a finitely présentée group, X be a minimal
[G, 2]f-complex, and Pbe a superperfect normal subgroup of G with the cohomological

dimension of G/P<2. Then 8G/(PH8G) 0, Z, or Z©Z, with this last

group occurring only if G G/P is abelian. If def G > 1 and P doesn't kill tt2X or if
P Mis <jt2X and def G± 1, then 8G c P.

Proof. First, we assume that P kills tt2X and that def G^l. Then, by
Theorem 4.4, G has type FL and x(G) x(X) 1-def G. The deficiency of

G+\ implies that x(<5)^0. Then, by corollary 3.6 of [S], we see that 8(G) is

trivial. Hence P contains 8(G).
We assume that defG>l and that P does not kill tt2X. Let Rt

keriZOpÇX-^Z^pÇ-iX} (i 1,2). The cohomological dimension of G<2
implies that Rt is a projective G-module. Because P is superperfect, we hâve an

exact séquence

R2 >
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This shows that Rt and R2 are both finitely generated projective G-modules.
Now at this point in the proof, we must use the Euler characteristic of a group
defined by J. Stallings in [S], The rank of a finitely generated projective
G-module O îs a certain élément rQ in the free abelian group T on the
set of conjugacy classes of G. Then pQ is defined to be the coefficient of
[1] in rQ. Accordingly, *(G) e?=0 (-1)' * p(Z®PQX) - pR2 *min(G, 2) - PR2

1-def G-~pR2. It follows from proposition 1 of [DV] that pR2>0 and pR2 O

iflf R2 0. Now F does not kill tt2X implies that R2^0. Thus pJR2>0. Hence the
deficiency of G>1 implies that x(G)<0 and the resuit again follows from
corollary 3.6 of [S].

We would like to thank the référée for simplifying the hypothèses of 4.7.
One may show that ail the higher centers 8nG<=F as well. To see that

82G <= F, notice that the hypothèses of 4.7 imply that 8 G 1. Then the following
diagram commutes:

8G > > P —» F/8G

I I

Now 8G 1 implies that 8(G/8G)cF/8G and hence that

BIBLIOGRAPHY

[A] J F Adams, A new proof of a theorem of W H Cockcroft, J London Math Soc 30 (1955),
482-488

[B] R Bieri, Homological dimension of discrète groups, Queen Mary Collège Notes, 1976,

Umversity of London, London E 1

[Be] W Beckmann, Completely Asphencal 2-Complexes, Thesis, Cornell Umversity, 1980
[C] W H Cockcroft, On two-dimensional asphencal complexes, Proc London Math Soc 4

(1954), 375-384
[CS] and R Swan, On the homotopy type of certain two-dimensional complexes, Proc London

Math Soc, 11 (1961), 194-202
[Co] J Cohen, Asphencal 2-complexes, J of Pure and Applied Algebra 12 (1978), 101-110
[DV] E Dyer and A Vasouez, An invanant for finitely generated pro]ectwes over Z[G], J Pure

and Applied Algebra, 7 (1976) 241-248



446 J BRANDENBURG AND M DYER

[D] M Dyer, On the second homotopy module of two-dimensional CSN-complexes, Proc AMS, 55
(1976), 400-404

[Dr] E Dror, A generahzation of the Whitehead theorem, Symposium on algebraic topology, vol
249, Lecture Notes m Math Spnnger-Verlag, 13-22

[GR] M A Gutierrez and J G Ratcliffe, On the second homotopy group, Quart, J Math 32
(1981), 45-55

[H] J Howbe, Asphencal and acychc 2-complexes, J London Math Soc 20 (1979), 549-558
[K] M Kervaire, On higher dimensional knots, Differential and Combinatonal Topology, pp

105-119, Princeton Umv Press, Princeton, N J 1965

[L] R Lyndon, Cohomology theory of groups with a single defining relation, Ann Math 52
(1950), 650-665

[MKS] W Magnus, A Karrass, and D Solitar, Combinatonal Group Theory, Interscience, New
York, 1966

[R] J Ratcliffe, Free and projectwe crossed modules, J London Math Soc 22 (1980), 66-74
[Se] J -P Serre, Cohomologie Des Groupes Discrets, Prospects in Mathematics, Annals of Math

Studies, 70, 1971
[S] J Stallings, Centerless groups-an algebraic formulation of Gottheb's theorem, Topology, 4

(1965), 129-134
[StJ R Strebel, Homological methods apphed to the denved senes of groups, Comment Math

Helv 49 (1974), 302-332
[St2] Die Reihe der Denvierten von E-Gruppen, Dissertation an der Eidgenossischen

Techmschen Hochschule Zurich (1973)
[WJ J H C Whitehead, On adding relations to homotopy groups, Annals of Math 42 (1941),

409-428
[W2] Combinatonal homotopy II, Bull American Math Soc 55 (1949), 453-496

George Mason Unwersity
Fairfax, Virginia 22030

and

Unwersity of Oregon
Eugène, Oregon 97403

Received February 12/June 11 1981


	On J.H.C. Whitehead's aspherical question I.

