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Some rational computations of the Waldhausen algebraic K theory

by Dan Burghelea

Introduction

The purpose of this paper is to compute the rational part of the algebraic
K-theory defined by Waldhausen [W] of the following type of topological
(semisimplicial) rings R.:

(a) R. is an associative topological (semisimplicial) ring with unit and /70(R.)

Z (Z dénotes the ring of integers).
(b) There exists a ring homomorphism t : i!0(R.) —> R. so that m id where

tt:R.—»n0 (R.)1 is the canonical projection.
(c) iTl(R.)®zQ 01 for iïr>l and I7r(R.)®zQ Q, where Q is the ring of

rationals.
Thèse computations provide in particular the computation of the rational part

of the Waldhausen's algebraic K-theory of a space X, in the case X has the
rational homotopy type of a K(Z, 2r)2 and implicitly the computation of the
rational homotopy type of plWh(X), plWh±(X), DlffWh (X)± (see [B.L] for
notations), for K(Z, 2r).

In this paper we give the results only for DlffWh, the problem of the
computation of PIWh(X), PIWh±(X) will be contained in another paper on
automorphisms of manifolds.

The methods of this paper allow the same computations for X of the rational
homotopy type of a K(G, 2r) but more "classical invariant theory" is necessary
and the author has not yet worked it out.

The paper is organised as follows:
In section 1 we recall briefly the algebraic K-theory of Waldhausen for rings

and for topological spaces and présent the main results as a conséquence of
Theorem 3.1 of section 3. In section 2 we présent the "invariant theory"
necessary for the proof of Theorem 3.1 and in section 3 the proof of this theorem.

1 II0(R.) dénotes the ring of connectée components and U, (R.) the homotopy groups of R. with
respect to the base point "0".

2 K(G, s) dénotes the Eilenberg-MacLane space corresponding to G and s.
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186 DAN BURGHELEA

This work has been done in the fall of 1977 while the author was visitor at the
Institute for Advanced Study and the Princeton University. I am deeply indebted
to the stimulating environment provided by thèse Institutes. I must also acknow-
ledge the benefit I got from private discussions with W. C. Hsiang which has

probably developed (in the meantime) parallel computations.*

§1

Let Ring* be the category of topological (semisimplicial) rings which are
always assumed to be associative and with unit, and continuous (semisimplicial)
ring homomorphisms which are assumed to be unit preserving. Let Top* be the

category of based pointed topological spaces (semisimplicial complexes) and based

point preserving maps, Grl be the category of topological (semisimplicial) groups
and continuous (semisimplicial) homomorphisms and O the subcategory of
Top* consisting of oo-loopspaces and oo-loop space maps.

Following Waldhausen [W] one defines the algebraic K-theory as a functor
IK rRing'^D which is a homotopy functor in the sensé that if fu f2 are two
homotopic morphisms (homotopic by "morphisms") then Kif^ and IK(/2) are

homotopic in ù and if /:R. -*R. is fc-connected then (K(f) is (fc + l)-connected.
Since we are not interested in the oo-ioop space structure of IK we regard K as a

functor with values in Top* whose définition is the following.
For any n let GL(R., n) be the space3 (semisimplicial complex) of n x n

matrices {a,,}, atJeR., with {Tr{aX])} invertible. The composition of matrices
endows GL(R.,n) with a structure of associative H-space and the inclusion

GL(R., n) -»GL(R., n + 1) defined by A-» (tjtt) l$ a morphism of associative

H-spaces. We take GL(R.) GL(R.,oo) lim_^GL(R., n) which is an associative

H-space whose no(Œ.(R.))^GL(7ro(R.)) limuGL(n0(R.); n). Applying the

"classifying space" functor to GL(R.) one obtains BGL(R.) whose 1I1(BGL(R.))
GL(U0(R)) has the commutator a perfect group [L]. Consequently one can apply
the Kervaire-Quillen's "+"-construction and the resulted space (sçmisimplicial
complex) will be denoted by BGL(R.)+. We define K(R.) Z x BGL(R.)+ where

Z dénotes the ring of integers. If /:R. —»R'. is a morphism, it induces

K(f) : K(R.)-+K(R[) with the properties we hâve mentioned.
The "loop space" functor O iTop^^G' in the semisimplicial case is the Kan's

free group construction F and in topological case any "group type" construction

3 With the obvious topology.
*Added in proofs: Similar résulte hâve been independently obtained by Hsiang and Staffeldt;

more recently, the author and Hsiang and Staffeldt hâve obtained upper bounds for dim II, (3îf(X))®Q
for X 1-connected and with finite Betti numbers.
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of the loop space for example the Milnor's construction [M2] or X*~|F(SingX)|
where Sing dénotes the singular complex and |.. .| the "géométrie réalisation".

Let Z.G^Ring* be the functor which associâtes with any topological
(semisimplicial) group G the ring Z(G) the topological (semisimplicial) analogous
of the group ring; in the semisimplicial context it is actually the group ring, in
topological context we can take |Z(SingG)| or any other functor from Gf^Ring*
which is essentially the infinité symmetric product. The composition 5if

IK o Z o Cl produces a functor defined on Top* with values in il which is a

homotopy functor and has the property that /:X-* Y K-connected implies JC{f)
K-connected.

As we hâve mentioned, our purpose is to compute IK(R.) for rings which
satisfy the properties (a), (b), (c) mentioned in Introduction and in fact we prove
the following theorem.

THEOREM 1.1. IfR. satisfies the conditions (a), (6), (c) then K(R.) has the
rational homotopy of K(Z)xTr+1 where Tr =IÎ°-i K(Z,2sî) if r 2s and Tr
nr-i K(Z; (2s + l)(2i -1)) if r 2s +1.

As a conséquence one obtains.

THEOREM 1.2. If X has the rational homotopy type of K(Z,2r), r>0, then
X(X) has the rational homotopy type of K(Z)xnT-i K(Z; 2ri).

COROLLARY 1.3. If X has the rational homotopy type of K(Z, 2r),
DlflFWh(X), DlflFWh±(X) hâve the rational homotopy type of DlflpWh(pt) respectively

DlffWh±(pt).

Recall from [W] that DlffWh(pt)4 has the rational homotopy type of
nr«i K(Z; Aï) and from [F, H] that DlflrWh+ respectively DlflFWh_ hâve the rational
homotopy type of DlffWh(pt) respectively pi.

Proof of Theorem 1.1. Let Mn(R.) respectively ^(R.) be the space (semisimplicial

complex) of n x n matrices with entries in R., the connected component of
"0", endowed with the composition law "+" respectively "*" given by M *N
M+N+MN.

Consider the diagram

-h^* GL(R., n) -X GL(/T0(R.), n)

/,
Ax+1(R.) ^> GL(R., n +1) -

D'»wh is the loop space of the one defined by Waldhausen in [W].
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where an(M) (M+I), ïn and ïn are defined by Aw(^~~j")> *n by

and con by ù)n{alJ} {7ralJ}.

Passing to the limit in diagram (*) one obtains the fibration

(**)

with ail terms associative H-spaces and cr^ respectively o)œ homomorphisms.
Applying the "classifying space" functor to (**) one obtains the fibration

(***

Assume now that the ring R. satisfies our hypothesis (b), hence there exists a

morphism i : J70(R.) —» R- so that JT.t id; t induces the group homomorphism
ï : GL(/I0(R.) —» GL(R.) and consequently we can define the représentation p^ of
GL(JI0(R.)) on the H-space Mjfr.) by p^A; M) î(A) • M • ï (A)"1 for As
GL(no(R.)) MeJL(fi.). Clearly

is an H-space isomorphism, consequently one can apply the classifying space
functor to Poo(A;...) and obtain the action

BPoo : GL(2T0(R.)) x BJUR.) -> B^CR.).

PROPOSITION 1.4. The fibration (***) is the fibration over BGL(II0(R.))
associated with the action Bp^.

Proof of Proposition 1.4. Let us recall the définition of the semidirect product
of JC(R.)x^GL(Z). This is the associative H-space structure defined on
^oo(R.) x GL(Z) by the following composition law

(M', A') # (M, A) ({pooCA"1; M)} * M, A' • A)

where M,M'eiL(R.) and A,A'eGL(Z). The natural projection (M,A)-*A
defines an homomorphism p2:^O0(R.)xp0OGL(Z)->GL(Z) whose kernel is exactly

In order to prove Proposition 1.4 it is obviously enough to show that (**) is

isomorphic to

MJ&) -* MJLR.) x^GL(Z) -> GL(Z)
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and this isomorphism is established by 7 : GL(R.) -» M^R.) xpGL(Z) defined by

(o-~1{t(^(A)~1) • A-I}, o)(A)) which makes sensé since

q.e.d.

Remark. The same proof shows that

BJ(n(R.)-^BGL(R.,n)-^BGL(JI0(R.),n)) (with the hypothesis (b) on R.)is
the fibration induced by the représentation pn :GL(/T0(R.), n)x^n(R.)
defined by the same formula.

Let us observe that if conditions (a), (b), (c) are satisfied then

if i
[ =r + l

and n1(BMoo(R.)) II0(Moo(R.)) 0. Consequently the fibrewise "O-localisation"
of the fibration (***) is the fibration

K(Mo(Q), r +1) -» E -> BGL(Z)

associated with the action

this action is determined by the adjoint représentations pTO : GL(Z) x MUQ)
given by Poo(A:M) A.M.A"1.

Waming. If (a) and (b) are satisfied and BjI/LCR.) has trivial rational Postnicov
invariants, we might be tempted to believe that the fibrewise "O-localisation" of
the fibration (***) is the fibration with fibre [17=2 (K(GS®Q), s)) associated with
the action nT=2SPoo where sPoo is the action induced by the représentation
sPoo:GL(Z)xMoo(Gs®Q)->Moo(Gs0Q) defined by spJA,M) A • M • A"1 this is

not always the case.

The proof of Theorem 1.1 foliows now immediately from Theorem 3.1.

Proof of Theorem 1.2. If X K(Z,2r) then flX K(Z,2r-l) and
consequently Zf2(X) has as homotopy groups the homology groups of f2(X) since
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Zfî(X) is essentially the infinité symmetric product of OX. This makes clear that
ZO(X) satisfies (c) since X is 1-connectée! (a) is also satisfied and (b) is trivially
satisfied since Zpf Z. Consequently the theorem is true by Theorem 1.1 for
K(Z, 2r). The construction of the functor 3£ implies immediately that if X and Y
are rationally homotopy équivalent then 3C(X) and 3C(Y) are.

q.e.d

Proof of Corollary 1.3. In [W] Waldhausen defines two natural transformation
3if(...) -* 3P(...) where 3P(...) is the stabilized functor associated with 3Sf, which
is an unreduced homology theory, and h(...; 3f(pO)—»^C •) where h(...; Sif(pO)
is the reduced homology theory produced by the °°-loop space 3if(pf).

The composition h(...; 9if(pO) -» 3T(...) is a natural transformation of homology

theory and because 3V(pt)-*J{s(pt)9 is rationally homotopy surjective,
h(X:3{(pt))-*yCs(X) is rationally homotopy surjective. On the other side
BDlffWh(X) is the fibre of 3if(X)^9P(X). Consequently 3if(X) and BDlflrWh(X)x
3ifs(X) are rationally homotopy équivalent. (Waldhausen claims a much stronger
fact namely A(X) and BDlffWh(X)x AS(X) are homotopy équivalent which will
imply the mentioned rational homotopy équivalence).

§2

Let A be one of the fields Q, R, C of rational, real or complex numbers, and

Mn(Â) be the Lie algebra of GL(^, n), i.e. the Lie algebra of n x n matrices over
A,

We dénote by Âpn or pn, using Âpn only when we are interested to explicit the
field, the adjoint représentation of GL(/, n) on Mn(A) defined by pn(A, M)
A • M • A"1 for A GL(^, n) and MeMn(/), by p* its dual représentation and by
Ak pn, Sk pn, Afc p*, Sk p* the fc-times exterior respectively symmetric power of pn

respectively p*. Dénote by Inv £ the fixed point subspace of the représentation £
The following theorem contains well known facts; since the présent formulation is

not easy to be found in literature we enclose the proof.

THEOREM 2.1. (1) There exists an injective linear map sk:Hk(U(n):^)->
Ak M^U)5 witfi sk(Hk(U(n) : A)) In v Ak (4p*) such that the following diagram is

commutative.

Hk(U(n +1) : A) -X A M*+1U)



M
0

0

0
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where /* is induced by the canonical inclusion U(n) »U(n + l) and 4» is the

canonical Lie algebra inclusion in(M)

(2) There exists an injective linear map

q!|:H2kCBU(n):/)->SM*U)

with

such that the following diagram is commutative

H2k(BU(n) : /) -^» S M*U)

H2k(BU(n +1) : /) — S M*+1(i0

where '/* is induced by the canonical inclusion BU(n) >BU(n + l).

Proof. Since Rp* is a real form of cp* it is clear that the proof for ^ R
implies the resuit for A — C.

Proof of (1). (^ R, Q). Let r\n be the adjoint représentation of U(n) on its
Lie algebra; tï* is a real form of Rp*. Analogously let QTin be the adjoint
représentation of the group

QU(n) {A {^ at] + ij3fJ} | A g U(n), «„ ft, 6 Q}

on the Q-Lie algebra

m {M {mfJ at] + ifr,} \ mn + mt] 0, atp ptJ e Q}

given by Qtîn(A, M) A • M • A"1.

5 For a i vector we dénote by V* its dual.
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Clearly it is enough to prove (1) for R tj* respectively qtj* in order to hâve it
proved for Rp* respectively Qp*.

Let us recall that de Rham theory permits to associate with any closed
differential form on a differentiable manifold a précise singular cohomology class

with coefficients in R.
Therefore we hâve the linear map tn :Inv(Ak 17*)—>Hk(U(n):R) constructed

as follows; an élément of Inv (Ak tj*) is regarded as a fc-form on the Lie algebra
of U(n) which by translation is extended to a k -differential form on the compact
Lie group U(n); since the élément we started with is in Inv(Ak r]*) the obtained
differential form is biinvariant therefore closed.

It is well known (for any compact Lie group) that tn is an isomorphism.
Moreover tJAk qtï* factors through Hk(U(n) : Q) since a form in Inv (Ak r]*) with
rational coefficients (with respect to the canonical base) produces a cohomology
class with rational periods on ail intégral cycles. Consequently we hâve the
cummutative diagram

Inv ARtj* —U Hk(U(n) : R)

Inv A qtj* —U Hk (U(n) : Q)

which implies Qfk is an isomorphism.
We also observe that Akï*:AkTî*+1-^ AkTj* sends InvAkTj*+1 into InvAkTj*

where ^ is the canonical inclusion of the Lie algebra of U(n) into the Lie algebra
of U(n + 1), (analogously AkQf* sends InvAkOrî*+1 into InvAkOT]*) and the
following diagram is commutative

J,,
;.R) >Hk(U(n);R)

since the correspondence "biinvariant forms" »* "cohomology" is a functorial
isomorphism for the category of compact Lie groups. If we take sk (fk)~1 and
Qsk (Qfk)-\ (l)is proved.

Proof of 2. U Q,R). Let us consider cn{Â) the Lie subalgebra of MnU)
consisting of the diagonal matrices and Â@n the représentation of the symmetric

group on cn(d).
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Sk M^(^) respectively Skc*U) can be identifiée! to the vector space of the

degree k homogeneous polynomials on Mn(d) respectively on cn{Â)\ let
nirK:SkMÎ(^)~>Skc*(/C) be the linear map defined by "restriction to cn(Â)r
Clearly we hâve the commutative diagram

where Sk i*(Inv Sk p*+1) c Inv Sk p* and Sk i*(Inv Sk 6>*+1) Inv Sk (0*),
r7rk(InvSkpf)c:InvSk@*; InvSk6>* is the fixed point subspace of Sk (9*. Let
r#k: Inv (Sk p*)-*Inv Sk 0* be the same map as ruK with the target restricted to
Inv Sk ©f. We will prove that r7rk is surjective checking that r7r* ©k=0 r^k>

r7Ï*:Inv Spf -» Inv S0f where S • • • ©fc Sk • • • is. For this purpose we define

/mr:MrU)->r ^ (^,...,^0 with jxlr:Mn(>0-^

by jutr(M) the i-th coefficient of the characteristic polynomial of M. p,r induces

li*:P(£r)—>InvSpf,P(4r) is the space of polynomials defined on Â\ and
r7r* • jLt* is an isomorphism, hence rir* is surjective. To check that ?Trk is injective
it suffices to show that ^7rk is, since ?irk and ^7rk are restrictions of ^7rk ; ^7rk is

injective because there exists an open dense set in Mr(C) consisting of matrices
which are conjugate to diagonal matrices. Consequently we hâve

|sS

By A. Borel's theorem we know that for any k we hâve the commutative
diagram

H2fc(BU(n) : t) *^- H2k(BU(n +1) : d)
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with l1^ isomorphisms; consequently if we take q£ („**) ' Gn)"1 (2) is

proved q.e.d.

Passing to duals we obtain the commutative diagrams

.UJ-^HkOJdi):/)
I-

and

which induce (si)*:Ak Nt.GO-^HfcttJ («>):*) and (q*)*:Sk M.W-^^^BUH; A)
(s*)*, (^n)* restricted to InvAkpn respectively InvSkpn are isomorphisms

therefore (sk)* and (qk)* are, since Inv Apl(fc) limn Inv (A kp*U)) and
Inv Sk (p*(d)) limn Inv (Sk p*0O).

COROLLARY 2.2. For any / and fc

(1) ,mï:H,(GL(Z); {Ak V})-^H,(GL(Z); Hk(U(oo):jf) and
(2) ,mk :H^GLCZ) :Sk V})—H,(GL(Z); H2k(BU(œ) : t)f induced by (sk)*

respectively (qk)* are isomorphisms.

Proof of Corollary 2.2. It is enough to prove the statement for A — R. Since the

proof of (1) and (2) are the same we give only the proof of (1). We observe that
.mi^linimmS with .mJ-.HKGUZ; n), {Ak RpJ)->H,(GL(Z,n); Hn(U(n):R))
induced by (s£)* hence it suffices to check that xm\ is an isomorphism for n big
enough, for instance (n -1)>4/. Let us recall that if t is an GL(R, n) irreducible
représentation, it remains irreducible if restricted to SL(R, n); by Theorem
1.1 [F, H] Hi(SL(Z,n), {t}) 0 if I<(n-l)/4, hence H,(GL(Z,n):{T}) 0 for

6H* • • (G;{t}) dénotes the homology of G with coefficients in the G-module defined by the

représentation t, H • • • (G; N) the homology of G with coefficients in the trivial G-module N.
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l<(n-1)/4 (applying Lindon's spectral séquence [M] ch XI Theorem 10.1). Since
Ak pn décomposes as sum of irreducible représentations and the trivial représentation

on Inv Ak Rpn =Hk(U(n):R) we conclude that imk is an isomorphism for
(n-1)2*41.

q.e.d.

Let V be a /£-vector space, {V, r} be the graded vector space with ail but r-th
components trivial (i.e. {V r}, 0 if i ^ r) and the r-th component isomorphic to
V. We dénote by L({V, r}) the /^-graded commutative7 algebra generated by the

graded vector space {V, r}. Clearly L({V, s})s 0 if s^O (mod r) and L({V, r})ir
A1 V, respectively S1 V if r is odd respectively even. As algebra L({V, r}) is

isomorphic to an exterior respectively symmetric algebra if r is odd respectively
even.

Ifp:GxV—»Visa représentation of G on V, p induces the représentation
L(p, r) of G on L({V, r}); let Inv L(p, r) be subalgebra of L(p, r) consisting of the
invariant éléments.

Clearly Inv L(p, r) is a A free algebra therefore Inv L(p, r) L(W) where W is

a A graded vector space. We are particularly interested to détermine the graded
vector space W in the case p pî. The resuit is contained in the following
theorem:

THEOREM 2.3. Inv L^pt, r) L(W) where W is the following A graded
vector space (n 1,2, 3,..., oo)

dim,(Wa)

0 if s^O(modr)
dim Il^U/n)) ® A if r is odd and s ri

dim ÏI2l(BU(n)) ®A if r is even and s ri

Proof Choose a graded preserving linear injective map i:W->
Inv(*p*, r)L(W) where Ws 0 if s^O (mod r) and Wir J1/U(ii)®i0* respectively

172/BU(n)(8>^)* if r is odd respectively even and «^ sln • o[ respectively
Wr= Qln ' o2l where o[ is a right inverse of the Hourewicz-homomorphism
Hl(U(n): A)-^>ïïf([J{n))®A and o2l a right inverse of the Hourewicz
homomorphism H2l(BU(n):^)^>J7jl(BU(n))(8>/Ctir is injective because o[ and o2l

are injective. Since t is injective and Inv (?p*9 r) is free t extends to L(t) : L(W) -^
Inv (*p*9 r) which is injective. To prove it is an isomorphism it suffices to check it

7 "Commutative" should be understood in "graded sensé," namely a • b (-l)dega degbb - a if a
and b hâve pure degree.
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is an isomorphism in any degree or else it suffices to show
dim Inv ('p*, r)r Or, if r is odd then

0 if s^O(modr)

dim,L(W)s card \(au a2,..., ap)/ *
L / /«!+ • • • +2ap—p i,

dimHl(U(n):>0 if s ir
and if r is even

0 if s^O(modr)

{ ° ~ a< ~ "dim, L(W)S card {(a^ • • • an) /
if s ir

For n oo the resuit follows from the observation that for any fixed degree
InvL(p*, r) «—InvL(p*+1, r) is an isomorphism if n is big enough. This happens
because of Theorem 2.1 and the stability property for the cohomology of U(n)
and BU(n).

§3

The restriction of the adjoint représentation px of GL(Q) on MoCQ) to the
subgroup GL(Z) defines the action pœ of GL(Z) on K(M«,(Q), r) and therefore
the fibration K(V, r) -> E -^-> BGL(Z), V MOO(Q). If r>l then n,(B)
/TiCBGLCZ)) GL(Z) whose commutator is a perfect normal subgroup, hence one
can apply the Quillen " + " construction.

THEOREM 3.1. E+ BGL(Z)+ xTr, tt+ is the projection on BGLoo(Z)+ where

Tr has the homotopy type of nT==1K(Q;(2s + l)(2î-l)) if r 2s + l and of

Proof The proof will be given in two steps. In step 1 we will produce an

explicit construction of F1? F2, /:F!->F2, F1? F2 CW-complexes (semisimplicial
complexes), / continuous (semisimplicial) map, together with a continuous

(semisimplicial) action /ul : GL(Z) x Fx -? F1 so that the following properties are
satisfied

(a) Ft is homotopy équivalent to K(MOO(Q), r) and F2 to Tr;
(b) The action /x induces on the r-th homotopy group of Ft the représentation

poo.
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(c) If F2 is endowed with the trivial action of GL(Z) then / is equivariant.
(d) The minimal model (in the sensé of Sullivan) [S] of Fx is the commutative

graded algebra L(p£, r) endowed with the diflferential 0, the minimal model of F2

is the graded commutative algebra Inv L(p%, r) L(W) with difïerential 0 and the

morphism induced by / is the inclusion L(W) Inv L(p*, r) ci L(p*, r).
To construct F1? F2, /, & we use the "spatial réalisation" functor < of D.

Sullivan [S]8 and take Fx <L(M*(Q), r), d 0>, F2 <Inv L(pî, r), d 0) f
(inclusion of Inv L(p*,r) into L(pï, r) L(M*(Q), r)> and /lla:F1-»F1 for any
AeGL(Z) is <L(p*(A):M*(Q)->M*(Q), r)). (a), (b), (c) are trivially satisfied and
(d) follows simply remarking that (L(p*, r), d 0) and (Inv L(pî, r), d 0) are
actually minimal models. We recall from Sullivan's theory of minimal models that
a 1-connected space X has trivial rational Postnicov invariants iff the difïerential
in the minimal model te trivial, hence F2 is a product of Eilenberg MacLane's.

Theorem 2.3 gives the homotopy équivalence of F2 and Tr.
Step 2. We consider the diagram

F2 >E2 >BGL(Z)

>EX >BGL(Z)

F

]

with horizontal lines the fibrations induced by the action and the trivial action of
GL(Z) on F2 and observe that Fi -> Et -» BGL(Z) is actually the fibration
K(V, r)-»E-*BGL(Z) while F2 -» E2 -> BGL(Z) is the trivial fibration with F2

homotopy équivalent to Tr • (/, /E, id) induces a morphism of the spectral
séquence (in homology) of the first fibration in the spectral séquence of the second
and Corollary 2.2 claims that this morphism is an isomorphism for E2..., hence

/B induces an isomorphism on intégral homology and on I^ hence /E+ :E1+ —» E2+

is a homotopy équivalence; this proves Theorem 3.1. q.e.d.
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