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Cohomology eigenvalues of equivariant mappings

Tor Skjelbred

Let X be a topological space which is paracompact Hausdorff and of finite
cohomology dimension over a fixed field fc. Let G be a compact Lie group acting
continuously on X such that there is a finite number of conjugacy classes of
isotropy groups Gx, x e X. Conner conjectured in [2] that if H*(X; fc) is acyclic,
then H*(X/G; fc) is also acyclic, and he proved the conjecture in case fc Q. The

conjecture was recently proven in ail characteristics by Robert Oliver [8]. The
problem of relating H*(X/G; fc) and H*(X; fc) is still largely unsolved even in
case X is the unit sphère of a linear représentation. In this paper we will consider

equivariant mappings f:X-*X and relate the eigenvalues of the induced en-
domorphisms of H*(X/G; fc) and of H*(X; fc). The resuit obtained should be

seen as a generalization of the Conner conjecture to G-spaces which are not
necessarily acyclic.

THEOREM 1. Let f be an equivariant self-mapping of a G-space X. Then
each eigenvalue of the induced endomorphism of H*(XIG\ fc) is an eigenvalue of
the induced endomorphism of H*(X; k), provided dimkH*(X; fc)<oo.

More generally we consider the monoid Map (G, X) of ail equivariant
mappings X —> X, and a homorphism from a monoid & into Map (G, X). Then
H*(X; fc) and H*(X/G; fc) become right ^-modules. Let M be an abelian group
which is a right ^-module. A simple subquotient of the 2F-module M is a simple
^-module isomorphic to M2IMX where Mx <= M2 <=¦ M are ^-submodules. M may
be a module over a field fc and 2F commuting with fc. Even if M is not finitely
generated, the following lemma is straightforward.

LEMMA 1. Let

be an exact séquence of 2F-modules. Then a simple 2F-module is a subquotient of M
if and only if it is a subquotient of M'® M1.
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Our main resuit then is,

THEOREM 2. Let X be a G-space and let 3* be a monoid of equivariant
self-mappings of X. Then every simple subquotient of the ^-module H*(X/G; k) is

a simple subquotient of the ^-module H*(X; k). If Y<=X is a closed subspace

invariant under G and under ail fe&*, then every simple subquotient of the

^-module H*(X/G, Y/G; k) is a simple subquotient of the ^-module H*(X, Y; k).

This resuit may be interprétée! in terms of Serre classes of ^-modules. Let N
be a simple ^-module over fc. Then by Lemma 1, those ^-modules which do not
hâve N as a subquotient from a Serre class, say CN. Theorem 2 says that if
H*(X; k) belongs to CN, then so does H*(X/G; k). It is then a Conner conjecture
modulo the Serre class CN. If we forget equivariant mappings and consider the
Serre class of finitely generated abelian groups, we obtain,

THEOREM 3. Let X be a G-space, and assume that X has finite cohomology
dimension over Z. Then if H*(X;Z) is finitely generated, so is H*(X/G;Z).

We use Cech cohomology with closed supports. We use some results on
cohomology dimension [9] and the localization theory of Borel-Segal-Hsiang-
Quillen [1, 6, 9,10] without further comments. When G is finite or abelian, the

proof of Theorems 1-3 is based on the localization theory. When G is connected

simple, the proof is based on the Conner conjecture and on the existence of the

sphères of Floyd-Hsiang [3, 5]. We first simplify the group G.

LEMMA 2. (i) Let N^G be a closed normal subgroup such that Theorem 2

holds for actions of N and of G/N. Then Theorem 2 holds for actions of G.

(ii) It suffices to prove Theorem 2 when G is either a finite group of prime order,

a circle group acting semifreely, or a simple connected Lie group.

Proof. (i) Let & be a monoid of equivariant self-mappings of the G-space X.
There is a natural homomorphism & —» Map (G/N, X/N), and hence every simple
subquotient M of the ^-module H*(X/G; fc) H*((X/N)/(G/N); k) is a subquotient

of H*(X/N',k). Because ^c:Map(G,X)c:Map(N,X), and Theorem 2

holds for actions of N, the simple module M must be a subquotient of H*(X; k).
Hence Theorem 2 holds for the G-action on X.

(ii) By (i) we may assume that G is a finite group, a circle group, or a

connected simple group. If G SO(2), let Z<= G be a finite subgroup containing
ail finite isotropy groups. Then the action of G/Z on X/Z is semifree. By (i), it
suffices to prove Theorem 2 for actions of cyclic groups and for semifree circle
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actions to give a proof for ail circle actions. If G is finite, let S be the p-Sylow
subgroup of G, where p char (k), and where S {1} if p 0. Then by [1] (p. 38),
we hâve H*(X/G; fc)<= H*(X/S; k). Therefore, it suffices to prove Theorem 2 for
the group S. Because S is solvable, it follows from (i) that we can reduce the
problem to finite groups of prime order.

Proof of Theorem 2 for G connected simple.

We shall construct a compact G-space Z such that for each closed subgroup H
of G the orbit mapping Z —» Z/H induces an isomorphism

H*(Z/H; Z) —=-* H*(Z; Z).

Z is a compact G-CW complex in the sensé of Matumoto [7], and G has no fixed
points in Z. We construct Z by using,

THEOREM (Floyd-Hsiang [3, 5]) Each simple connected compact Lie group
G admits a real linear représentation without one-dimensional direct summands
such that the unit sphère admits an equivariant self-mapping of degree 0.

Let S be the unit sphère, and n : S -» S an equivariant self-mapping of degree
0. Let Z—T{n) be the mapping torus of n, that is the space obtained from
Sx[0,1] by identifying (x, 1) with (n(x), 0) for xeS. Let 7r:T(n) -» S1 be the
projection on the second factor where S1 [0, l]/{0,1}. T(n) is a G-CW complex
because n is constructed by extending a piecewise linear map of a fundamental
domain into the fixed point set of a principal isotropy group, where the simplicial
structure is compatible with the orbit type stratification. (This is actually done for
an action of some SO(2r + l) on S, and the action is restricted to G by a

représentation of G of degree 2r +1. This construction is found in [3, 5] and with
more détails in [11].) T(n) is a G-space in a natural way such that the fibres
7r"~1(z), z e S1, are canonically G-homeomorphic to S. Since n is nullhomotopic, it
follows that 7T is a homotopy équivalence, and hence that the mapping cône C(tt)
of 7T is contractible. Since C{tt) is a finite CW complex, the Conner conjecture,
proved by Oliver, implies that H*(C(tt)JH; Z) Z for each closed subgroup H of
G. Clearly C(tt)IH is the mapping cône of T(n)/H —? S1, and hence

H*(T(n)/H; Z)-H*(SX; Z) -H*(T(n); Z).

The G-CW structure on Z defines a finite cell complex structure on Z/G ([7]).
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For each cell c of Z/G, choose xeZ such that G(x) is in the interior of c, and set
Gc Gx. The cellular System (Gc) will be used in the Borel construction. Given
two G-spaces X and Z, we consider ZxXasa G-space with the diagonal (joint)
action, and there are projections of orbit spaces,

prt:(ZxX)/G -> Z/G, pr2:(ZxX)/G -* XIG.

The fibres of prx and pr2 are, for x e X, zeZ,

prAG{z)) (G(z) xX)/G X/Gz

and

pr2\G{x)) (Z x G(x))/G Z\GX.

We apply the Leray spectral séquence to the mappings pr2 and p2 of the following
commutative diagram where the vertical arrows are induced by m

Z/Gx

p2

—>X/G

Hère pr2 and p2 are proper mappings. Since tt induces cohomology isomorphisms
of the fibres, we hâve

«?(S1)® H*(A7G) - H*((Z x X)/G)

for any coefficient ring. This clearly is an isomorphism of ^-modules. For the

mapping

pri:(ZxX)/G^ Z/G

we obtain a spectral séquence defined by the skeleton filtration of the cell

complex Z/G, with
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and converging to H*((ZxX)IG)**H*(S1)®H*(XIG). For reduced cohomol-

ogy, there is the spectral séquence Ë with Ëx C^U(Z/G; 3€*(X/GC ; k)) converging

to H^iS^^H^iX/G; k). This is a spectral séquence of ^-modules. A simple
subquotient of the ^-module ÏÏ*(X/G; k) must be a simple subquotient of Ét and
hence of some H*(X/GC; k). Because Z is without fixed points, GC<G for each

c. By induction on dim G, we may assume that Theorem 2 holds for actions of Gc.

Hence each simple subquotient of H*(X/GC; k) is a subquotient of H*(X; fe), and
this proves Theorem 2 for the given action of G. The proof for a closed pair
(X, Y) of G-spaces is similar, using a spectral séquence converging to

Y/G; k)

with

E, CZniZ/G; 2e*(X/Gc, Y/Gc ; k)).

Proof of Theorem 2 for G Z/p and G SX.

By Lemma 2, we may assume that G is acting semifreely. Let XG be the Borel

space of the G-action; it is the total space of a fibre bundle X —> XG —» BG

where BG is the classifying space of principal G-bundles. We set H%(X)
H*(XG) and refer to [1,6,9] for the basic properties of this functor.

PROPOSITION 1. Let G be a compact Lie group acting semifreely on a space

X with fixed point set F. Then there is a long exact Mayer- Vietoris séquence of the

form

2-* Hq(X/G) -+ *

Proof. Because the action is semifree and X is paracompact, there is an

isomorphism

induced by the projection tt\Xg -* XIG, for any coefficient group. it induces,
with its restriction to FG, a homomorphism of long exact cohomology séquences,

H*(X/G)
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The Mayer-Vietoris séquence is deduced from (*) by a standard argument, see p.
3 of [4]. Let P be a one-point space with its unique G-action. We set H%(X)
coker (H%(P) -» H%(X)). There is then a reduced Mayer-Vietoris séquence if

(RMV) 2-* H*(X/G)

LEMMA 3. Let G Z/p or S1 be acting semifreely on X with fixed point set

0. Let & be a monoid of equivariant self-mappings of X. Then every simple
subquotient of any of the three ^-modules H%(X; fc), H%(F; fc), and JÎ*(F; fc) is a
subquotient of the ^-module H*(X; fc).

Proof. If fc is of characteristic p, then G Z/p or S1. Because H%(F;k)
H*(F; fc)®iTic(BG; fc) and the restriction homomorphism HS(X; fc) -> H^(F; fc)

is surjective in high degrees, it follows that every simple subquotient of the
^-modules H*(F; fc) and H%(F; fc) is a subquotient of H%(X; fc). The fibre
bundle X —» XG —» BG gives a spectral séquence converging to HS(X; fc) with

Hence every simple subquotient of the ^-module H%(X\ fc) is a simple subquotient

of the ^-module JÏ*(X; fc).

COROLLARY 1. IfF*0, then Theorem 2 holds forG Z/p, S1.

Proof. The reduced Mayer-Vietoris séquence (RMV) shows that every simple
subquotient of ÏÏ*(X/G; fc) is a subquotient of «S(F; fc)©HS(X; fc)©H*(F; fc).

By Lemma 3, it is a subquotient of the ^-module H*(X: fc).

When F=0, G=Z/p or S1 is acting freely, and there is an isomorphism
H*(X/G; fc) — HS(X; fc). There is the spectral séquence of the fibring XG —> BG
with

Ef Ha(Z/p;Hb(X;k)) for G Z/p, and

Ef Ha(CF°)®/fb(X;fc) for G S\

and converging to H*(X/G; fc). To prove Theorem 2 in this case, it suffices to
show that every simple subquotient of the ^-module EJk (where fc c E2° is the
field of coefficients) is a subquotient of H*(X; fc). Clearly, for r>l, fe>0, every
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simple subquotient of E^b is a subquotient of Hb(X; fc). Hence, for r>2, every
simple subquotient of dr(Er) is a subquotient of H+(X; fc) £b>0Hb(X; k). For
a>c, c the cohomology dimension of X over fc, E™ 0. It foliows that for
a>c, each simple subquotient of E™ is a subquotient of H+(X; fc). As &-
modules, Ef =* E%+2° for a > 0, and hence the last statement is valid for ail a > 0.

It remains only the module £}°°/fc which is contained in H°(X; k), and the proof is

complète for the case F= 0.
The proof of Theorem 2 for a closed pair (X, Y) of G-spaces is quite similar to

the proof in the absolute case with F^ 0. There is a Mayer-Vietoris séquence of
a semifree group action,

H*(X/G, Y/G)-+ H*(F, Ffl y)0HS(X, Y)

and there is a spectral séquence with

£i Cc*ell(BG;^*(X,Y;fc)) converging to Hg(X, Y; fc).

This complètes the proof of Theorem 2.

Next we give a proof of Theorem 3 which states that H*(X/G;Z) is finitely
generated when H*(X; Z) is finitely generated. A preliminary resuit is,

PROPOSITION 2. Let X be a G-space with a closed invariant subspace Y.

Assume that X has finite cohomology dimension over a field k. Then if f/*(X, Y; fc)

is finite dimensional over fc, so is F[*(X/G, Y/G; fc).

Proof, The proof is basically the same as the proof of Theorem 2, but with
simplifications. Lemma 2 is valid for the présent proof. If G X/p or S1 acting
semifreely, the proof is a direct conséquence of the Mayer-Vietoris séquence of a

semifree group action and the fact that the restriction homomorphism
H%(X, Y; fc) —» HS(F, Ffl Y; fc) is an isomorphism in high degrees. The exact

séquence

?-> H*(X/G; Y/G; k) -* H*(F, FD Y; fc)0HS(X, Y; fc)

then implies that jfiT*(X/G; Y/G; fc) -» H*(F, Fd Y; fc) has finite dimensional
kernel and cokernel. But dimk H*(F, F H Y; fc)<dimkH*(X, Y; fc)<°°, and it
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follows that dimk H*(X/G, Y/G; k)<™. In case G is connectée! simple, we use the

spectral séquence of the first part of the proof of Theorem 2 with

Et C^n(Z/G; ^*(X/GC, Y/Gc; k))

and converging to H*(S1)®JFf|:CX7G; Y/G; k). By induction on dim G, we may
assume that dimkH*(X/Gc, Y/Gc; fc)<oo for each cell c of Z/G Since Z/G is a

finite cell complex, it follows that dimfc 1^ < », and hence that
dimkH*(X/G, Y/G; fc)<oo. This complètes the proof of Proposition 2.

THEOREM 3'. Assume that a compact Lie group G is acting on a space X
which is paracompact Hausdorff and has finite cohomology dimension (over Z).
Assume that there is a finite number of conjugacy classes of isotropy groups. Let Y
be a closed invariant subspace. Then if H*(X, Y; Z) is finitely generated, so is

H*(X/G, Y/G;Z).

Proof. Again, the proof is basically the same as that of Theorem 2, with some
changes for finite G. Let G be finite. Let q :(X, Y) -* (X/G, Y/G) be the orbit
mapping, and let t:H*(X, Y;Z)-» JFf*(X/G, Y/G;Z) be the transfer mapping
([1] p. 38). Then fq* is multiplication by m \G\ in H*(X/G, Y/G; Z), and hence,
coker (tq*) c H*(X/G, Y/G; Z/m). Since tq* factors through the finitely generated

group H*(X, Y;Z), it suffices to show that H*(X/G, Y/G; Z/m) is finitely generated.

This is the case because, by Proposition 2, ff*(X/G, Y/G;Z/p) is finitely
generated for each prime p. Now let G be a circle group. We may assume that G
is acting semifreely, in which case the localization theory for circle actions is valid
for cohomology with arbitrary coefficient group. Hence the argument in the proof
of Proposition 2 is valid with intégral coefficients. To prove Theorem 3' for
gênerai G, we may assume that G is connected, and that the theorem holds for ail
H with dim H<dim G, and hence that G is a connected simple group. Using the

spectral séquence converging to H*(S1)®H*(X7G, Y/G;Z), with Ex

Ctn(Z/G; W*(X/GC, Y/Gc; Z)) where dim Gc <dim G, it follows that
H*(XIG9 Y/G;Z) is finitely generated.

Example. There is a pair (X, Y) of G-spaces and an equivariant mapping

/ : (X, Y) -» (X, Y) such that a certain eigenvalue ^1 is of multiplicity one in
H*(X/G9 Y/G; k), and of multiplicity at least two in H*(X, Y; k). Let V be the
linear space of ail real n by n symmetric matrices of trace 0, and let X be the
unitsphere in V. The group SO(n) acts on X by conjugation with principal
isotropy group JFf — (Z/2)n~\ Let Y be the subspace consisting of ail xeX such

that Gx is not principal, equivalently such that dim Gx >0. In the author's paper
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[11] there is constructed equivariant mappings /s : X -> X for 0< 2s < n, n > 3 of

degrees deg/s 1 — where 2m<n<2m + l. Those mappings generalize the

mapping fm of Floyd-Hsiang, which is of degree 0 when n 2m + l. The mapping
f's in the orbit space A =X/G is a self mapping of the orientable manifold-with-
boundary A which is a simplex of dimension n — 2 In H*(A, dA ; Z) Z f's induces

lt
s /

follows that in H*(dA;Z)=*Z, f's induces multiplication by l-( Because

(\ is an eigenvalue of
s

(/s I ^0* in H*(^; fc). From the exact séquence

0 -> H*(Y; k)-^ H*(X, Y; k) ^ H*(X; fc) ^ 0

it follows that the eigenvalue 1 - f j has multiplicity at least two in Jf*(X, Y; k),

while it has multiplicity one in H*(X/G, Y)G; k)^H*(A,dA; k)^k
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