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Homotopy splittings involving G and GIO

Stewart Priddy1

Introduction

In this note we show that in a strong sensé SG and GIO are factors in the

spaces QBD8 and QBO2 respectively, where D8 is the dihedral group of order 8.

Ail spaces (throughout the note) are localized at 2. Thèse results can be thought
of as analogous to the theorem of D. S. Khan and the author [KP] which states
that Q0S° is a factor in QRP°°. In particular, hère, as in [KP], the transfer is used

to construct the required splittings. Additional difficultés arise in the présent
work, however, because the infinité loop space structure of SG is markedly more
complicated than that of Q0S°. Also, in the case of GIO we must use the
Becker-Gottlieb transfer [BG].

To state our results precisely, we recall that QS° lim QnSn has components
QkS°, fceZ, and that SG Q1S°. We shall dénote by * and # the loop and

composition products of QS°. If &>n is the n-th symmetric group then there is a

well-known map <pn:BSfn -+ QnS° [BKP,P1]. Since D8 « 5?2 J 5P2 c S?4 one has

two natural maps BD8 —» SG, namely the composites

ô, :BD8 -* BSfA-^ Q4S°^~l SG

and

where [n] dénotes the basepoint of QnS° (#[3] is an équivalence at 2).
Let ô 81 or ô2 and let Q(8) : QBD8 -» SG dénote the induced infinité loop

map.

THEOREM A. There is a map t:SG-*QBD8 such that
l O(«)

SG > QBD8 SG is an équivalence at 2.

^upported in part by NSF Grant MPS76-07051
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Homotopy splittings involving G and G/O 471

The affirmative solution of the Adams' conjecture [Q], [S] provides a map
y:BO -h> G/O such that

G/O

BO—>BSO-^-*BSG

commutes up to homotopy, where r is the homotopy fibre of BJ. By abuse of
notation, we shall let Q(y) : QBO2 -* G/O dénote the restriction of the induced
infinité loop map.

THEOREM B. There is a map T:G/O^> QBO2 such that the composite

G/O > QBO2—^ G/O is an équivalence at 2.

The paper is organized as follows: In Sections 1 and 2 we recall the necessary
preliminaries on symmetric groups, the transfer and H*SG (throughout ail (co-)
homology groups are taken with simple coefficients in Z/2). The proof of
Theorems A and B are given in Sections 3 and 4 respectively.

By way of background we mention other splittings derived from the transfer.
Segal [Sg] has shown that BU is a factor in QBUX. Becker and Gottlieb [BG2]
hâve shown that BO and BSp are factors in QBO2 and QBSp1 respectively.

§1. Preliminaries on symmetric groups and the transfer

Consider the symmetric group Sf2u. and 2-Sylow subgroup 5^(2k, 2)

Sf2\' ' ' l^2> the fc-fold wreath product. The transfer homomorphism

-» H*(£#X2\ 2))

in mod-2 homology was studied in [KP2]. We shall recall those results needed for
our work.

Two basic opérations useful in describing the homology of symmetric groups
are the wreath product &k 1^(^1G ^° Gk, the semi-direct product with S^k

acting by permuting factors) and the ordinary product Sfk x yt. One has inclusions
of subgroups

(1.1)

+l. (1.2)
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Now let eleHlB&)2 XI2 dénote the non-zero élément. If H*(BG) has as

Z/2-vector space basis jco= 1, xu x2,.. • then H^{B^f2 l G) has as basis

If / (îi, î2,. • •, îfc) is a séquence of non-negative integers let ël

lx \ ' * ' l e* e H*BSf(2k, 2). Let ç :S^(2\ 2) -» 5^ dénote inclusion and let cf
The length 1(1) of I is defined to be k. I is said to be allowable if

ï1<i2<---<ik.
Nakaoka [N] has shown that H*{B9>2m) is spanned by

K * ' • * * ^ * ep0 | 2m

where * is the commutative pairing induced by (1.2). Furthermore thèse mono-
mials form a basis if the séquences I} are required to be allowable.

THEOREM 1.3 [KP2] Let x elx * • • • * eh * eh * • • • * eI{ g H^B^2, with

l(I,)>2 then

i) fr*(x) êH \êi2\--\êlp\êIl\--\êIl + êx where êx =1 êtl \ • • • | êlp | ên | • • • | êIV
fhe summation being taken over certain éléments of the form indicated {or
permutations thereof) with /(/,) /(/,). Furthermore

ii) Ç*te) 0.

Remark 1.4. The ê,'s occurring in êx can be rearranged into successive even
groupings, e.g. ëH \ èH\ èt\ \ êl3\ • • • è^\ ê^\ • • • | êz;. This fact is obvious for k 2,

for a gênerai fc it follows from an easy induction argument using the commutative
law x | y y | x in H*(B&>\G).

§2. Preliminaries on H^SG

The structure of H%SG as an algebra over the Dyer-Lashof algebra is quite
complicated. In this section we shall recall several results of Madsen [Md], May
[Ml], and Milgram [Mg] needed for our work.

Let Qt : HkQS° -» H2k+lQS° dénote the Dyer-Lashof opérations derived from
the loop product *. Then

H*QS° Z/2[[ -1], [1], Q,[l] 11 allowable]
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The weight function co : H*QS° -> Z+ is defined by

w(jc * y)= wx + wy w( X x») niin{w x,}.

It is known that # does not decrease weight [Ml; 5.6], i.e.

wy

(on the level of homology we dénote the # product by juxaposition). Let
w. O,[l] * [-1], jcj Or[l] * [1 -2I(I)] where /(/)>2 then the fundamental resuit
of Milgram [Mg] states

H*SG E[ul9 u2, .]®Z/2[x(0,a), jcz | a >0, / allowable] (2.1)

There are several connections between *-decomposable éléments of H*QS°
and #-decomposable éléments of H*SG. Let Ik be the set of positive dimensional
éléments of H*QkS°, / £ Ik. If jc, y, z g I then by [Ml; 6.6ii and p. 137]

i) x*y*z*[l- w]eI1#I1 where w w(x * y * z) (2.2)

") Oa[l] * Ob[l] * [~3]+Oa[l]Ob[l] * [~3]e/1#/1
also

O«[l]Ob[l]= I Oi[l] (2-3)

where the sum is taken over certain / with /(/) 2 [Mg, 6.2].
Let A be the subalgebra of H*Q0S° generated by Qr[l] * [-2I(I)], /(I)>2 and

let B be the subalgebra of H*SG generated by xl9 /(I)>2 then B A * [1].
Further if Â, B dénote the augmentation ideals then

H*Q0S° * Â * [1] H*SG # B (2.4)

(see [Mg;6.1]) and

O«[-l]=Oa[l]*[-4] + a (2.5)

where a is a * -decomposable élément of JF/*O0S° * Â * [-2] (see [Mg; §4],
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Let Ô, : HkSG —> H2k+lSG dénote the Dyer-Lashof opérations associated with
the composition product #. The following resuit is due to Madsen [Md; 4.13] (see

also [Ml, 6.12]): let J (/,iC), l(K) 2 then

Xj+ X' xM mod lx#lx (2.6)

Finally we recall

(x * [i])(y * [/]) I x'y' * x"[j] * y"[i] * W (2-7)

(see [Mg; 2.2], [Ml; 1.5]).

LEMMA 2.8. Qa[l] * Qb[l] * [-3]= uaub + £ */ modulo /, # B

Proof. By (2.7),

"*«6= Z crnam • o,t-i] * Qit-i] • m

Thus by (2.5), uaub =1 Q,[l]Ok[l] * (O,[l] * [-4]+o,) * (Q[l_] * [-4] + ft) *
[1] where a,, /3( are * -decomposable éléments of H#Q0S° * A * [—2]. Thus

«a«b O«[l] * Q,[l] * [-3]+Oa[l]Ob[l] * [-3]+7 where yeI0*Â* [1]. By
(2.2) (ii) 7e/,#/,, and by (2.4) 7e J^SG # B and so 7e /, # B. This complètes
the proof by (2.3).

LEMMA 2.9. // xe/k, w(x) l then x[3] x * [2fc]+a where w(a) 2l,
ae(Ik*I2k)n(À*[3k])

Proof. By the distributive law, we hâve x[3] x([l] * [2]) £xj[l] * x"[2]
x * [2fe]+a where

«= I x'1*
deg x,">0

LEMMA 2.10. // x, y, z e I and x * y * z € H*Q3S° * Â rhen x * y * z 6

J1#B#[3]

Proo/. The proof proceeds by downward induction on weight. Let /

w(x* y* 2), x€/k, ye/m, z€/n. By (2.2) (i) and (2.4) x * y * z *[-2]€l1#B
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hence multiplying by [3]

*[3] * y[3] * z[3] * [-6]gIx #B#[3].

Using Lemma 2.9 to evaluate this term we hâve (x * [2fc] + a) * (y * [2m] + j3) *
(z * [2n]+y) * [~6] x * y * z + 3-fold *-decomposable terms in H*Q3S° * Â
of weight greater than l. Thus by induction x*y*z€/1#JB# [3]. Q.E.D.

LEMMA 2.11.

i) (Q«[l] * [1MN Ma + x(aa/2) modulo IX#B
ii) (QaQbtl] * [-IM]^ *(«.b) modulo /t # B

iii) (Oa[l] * Obtl] * [-1])B]= «a"!, + Z *i modulo ^ # B
1(I)=2

Proo/. Since [5] has inverse [3] we can establish thèse équations by applying
[3] to both sides (£(x) x * x)

0 "a

O.[l]*[l]+ I Oa-2,[1] * «O.[l] * t-3]
0<Ka/2

j[l] * ^[1]} * [-9]
J>0

0<i<a/2

+ I «O(a/2)-2|[l] * É2Q|[1] * [-9]

By Lemma 2.10 ail of thèse terms except the leading one belong to Ix # B # [3]
ii) Using the Cartan formula we hâve

OaOb[3] O«Ob([l] * [2]) Qa( X *Q,[1] * Q,-2,[l])

* Oa_2|Q,-2.[i]-
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Thus

W3] (QA[1] * [~3])[3]= OaOb[3] * [-9]

I É(Q,Q,[l]) * O«-2,Ofc-2.[l] * [-9]

OaQ,[l] * [-1]+ I f(O,O.[l]) * Oa-2A-2.[1] * [-9]-
i>0

or ]>0

Each of the trailing terms belongs to lx#B# [3] by Lemma 2.10 and (2.4).
iii) From Lemma 2.8 we hâve

(Q«[l] * Q>[1] * [-3])[3]- uauhm+ X xr[3] mod /, # B # [3]

However Qa[3] * Q6[3] * [-9] (Oa[l] * [4] +a) * (Ob[l] * [4] + jS) * [-9]
Oa[l] * Ob\X\ * [-l]+ 3-fold *-decomposable éléments in H*Q3S° * A which
belong to lx#B#[3] _by Lemma 2.10. Thus Qa[l] * Qb[l] * [-1]

1#B#[3]. Q.E.D.

§3. Proof of Theorem A

Consider the composite

X BZ>2, -U £ QBD-^J. SG

where t S°° |8 ° I°° u o rr', d £°° O(ô) and r/: I°° B^2, -» ^°° B^(2k, 2) is the
stable transfer [KP]. u : B5^(2k, 2) -h> B^2. 21 ff2 \ $f0 is inclusion.

p:B&'2*-*\&>2\y2 E&2*-2Xn~2 (BD)2k2->QBD is the restriction of the

Dyer-Lashof map

E&2*-2X^k_2(QBD)2k~2 -* QBD.

Recall that in homology tr' is équivalent to tr [KP; 1.7]

LEMMA 3.1. d ° r is a homotopy équivalence at 2 in a range of dimensions
which increases with k.

We can now obtain Theorem A in the following manner: Lemma 3.1 implies
that d#: tt^T QBD —» 27r^L°° SG is a surjection. Now arguing as in Adams
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[A, p. 50] one shows that

is surjective for any CW-complex X of dimension <2n, where 8 is defined in the

Introduction and superscript n dénotes the n-skeleton. Now applying this to

X=SGn we see that the composite

f^SGn -* £ SG -Z-» B~SG

(where a is the stable adjoint of SG ——> SG) factors as

X SGn -* £ JBD" —^ fî°° SG

Thus upon applying il00 and including SGn c il00^00 SGn we obtain the homotopy
commutative diagram

OBDn

\Q(8)

Although there is no (obvious) compatibility in thèse diagrams with increasing n,

the use of inverse limits [A] shows (since ail homotopy groups in sight are finite)
that there is a homotopy commutative diagram

(3.2)

which complètes the proof. It remains to consider the

Proof of Lemma 3.1. There is a well-known homology équivalence
H*Q0S° [BKP] also H^B^^H^B^ in a range [N]. Thèse facts, together with
the obvious équivalence Q0S° — SG as spaces, show that it is enough to prove that
d* ° T* is surjective in a range. We do this first for 8 8^. Because Theorem 1.3 is
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our main tool we shall re-express d ° t as

2) -^> £ SG

where d' is the composite d ° £°° |8 ° £°° m.

If x mmm12, u^JCjjX^, jcln we shall write

a(x) m + n, b(x) k (k is the number of terms xI} with /(/,) 2)

c(x) n (n is the number of terms xIt with /(/J)>2).

As usual we extend thèse définitions to sums by setting

a(x + y) min {a(x), a(y)} c(x 4- y) min {c(x), c(y)}

Let i? A # • • • # ^ (u-factors).

1. <i*frjc is surjective modulo I?

i) Consider jc ua and let 2N 2k-2 then by Th. 1.3

ii) Consider JC x(a5b) and let 2N 2k-4 then by Th. 1.3

X(a,b) ^~ 2- X(a',bf) ~ X(a,b)

iii) Consider x xt, I (J,K), l(K) 2. Let 2p 2k-2I(r) then by Th. 1.3

èr I ég) (/'

s jcx + X *r + X *m mod /? (by 2.6)

The terms jcm g Im (dje^ri) mod ï\ by induction on length starting with length 2

which is covered by ii).
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Taken together i), ii), and iii) prove Step 1.

Step 2. d'*tr'* is surjective: Assume by induction that x e Im (d'*tr'%) mod I\ for
ail x such that a(x)< v. Now consider x such that a(x) v say x uH, ul2p xh,

•••> %+1' • ••> *4+n where i\<- • -<i2p, u 2p + fc + n, /(!,) 2 for l</<fc and

l(Ij)>2 for k<j<k + n. Let s wx and set e e£l * • • • * el2p * eh * • • • * eIk+n,

by Theorem 1.3 we hâve (with J, (Jp K,)9 l(K}) 2)

d'*tr'*(e) d*(êtl | • • • | êl2p | êfi | • • • | êjJ êIk+11 • • • | êIk+n (3.3)

(OJ1] * OJ1] * [-3]) • • • (Ql2pJl] * OI2P[1] * [-3])-

h-- xik ' QjkJ*KkJ' • • QJk+n(xKkj

+ Z (OJ1] * OJl] * [-3])- • • (Q^[l] * QJ1] * [-3])-

where

a(ye) u, fc(yc) fc, c(ye)>k + n

a(ôe) u, 6(ye) fc, c(ye) fc + n, w(7e)< s.

The third equality of (3.3) results from (2.6) and Lemma 2.8: The term ae occurs
because of the #-decomposable éléments introduced by (2.6) and Lemma 2.8; the

term pe occurs because the factors Oa[l] * Ob[l] * [~3] can give rise (by Lemma
2.8) to monomials of lesser a-value but higher b -value; the term ye occurs
because the #-decomposable terms introduced from Lemma 2.8 can increase the

c -value without changing (by 2.6) the a or b-values; the term 8e occurs because

the factors Qj(xk) can give rise (from 2.6) to monomials of lesser weight.
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From our analysis of (3.3) we hâve

LEMMA 3.4. b(d'*tr'*(e))>k, Le. d'*tr'# does not decrease the number of
factors of length 2.

Finally we claim £ m,/ • • Ml2pxfl* • • xtk+n 0. By Theorem 1.3(ii)

There are no relations in the * -product except commutativity and eM * eM

e(0M). Since commutativity also holds in H*SG and Q0(xM) xM • xM the claim
follows. We need not consider the relation wJw/ =0 since we are assuming

ii < • • • < ï2p-

Now among those x with a(x) u consider those with maximum b-value and

among those ones with maximum c -value and among those ones with minimum
w-value. Such xelm(d*tr'*)mod I\+1 by 3.3 (we observe that no terms |3e can

occur by induction and Lemma 3.4). Now proceed by upward induction on the
w-value and then downward induction on the c-value. We now must consider

lowering the value of b which will introduce terms of the form ]8e. However by
Lemma 3.4 and induction we may assume such éléments are in
Im (d'%tr'*) mod I\+1. Thus we may proceed by downward induction on b until we
hâve x e Im (d^tr^) mod I\+1 for ail x with a(x) v. This complètes the induction.
To complète Step 2 we must also consider éléments x uh, ul2p x jcfi, jcIk+n

but the proof is entirely analogous.
It remains to consider 8 ô2, however by Lemma 2.11 we can use the same

argument. Q.E.D.

§4. Proof of Theorem B

From the affirmative solution of the Adams' conjecture we hâve a homotopy
commutative diagram

BJSG -2-* GIO —U BSO -££* BSG (4.0)
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where the horizontal maps from the usual fibre séquence. Let e:G/O —> BSO
dénote the map obtained from the KO -orientation of Spin bundles [ABS].
Madsen-Tornehave-Snaith [MST] hâve shown that e is an infinité loop map (the

range of e is actually BSO® but by the theorem of Adams and the author [AP] we

may ignore this point). Further ey=^p3 an équivalence at 2. Let C—^-» GIO be

the homotopy fibre of e, C is usually called the cokernel of J. We recall the

splitting of Sullivan [S], [MST; 5.5], [M2;V.4.7]

y.

Since KO*(C) 0 [H, SI] there is a lifting \\t (unique up to homotopy)

SG

7T

C-^G/O
Now let TG be the composite

TG : SG —U QBD —U QBO2

where t is the transfer of (3.2) and i is induced by the standard orthogonal
représentation of D on R2.

Set tc TG o t/, : C -> QBO2. Let

TB:BO-+ QBO2

be the map induced by Becker and Gottlieb transfer [S2; 1(3.5)] and set tB

TBjj: BSO -> QBO2 where j:BSO->BO is inclusion. Finally let T
u °(tcx tB) o g"1: GIO -> QBO2 where u : Q]3O2 x Q£O2 -» QBO2 is the loop
product.

Theorem B is équivalent to

THEOREM 4.1. GIO-L^QBO2^X GIO is an équivalence at 2.

Before giving the proof of Theorem 4.1 we prépare some necessary lemmas.
Brumfiel and Madsen [BM, Lemma A.l] hâve shown that the following diagram
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is homotopy commutative

(4.2)

Let

Pi ° g"1:

where p2 is projection.

LEMMA 4.3. xQ(y)tc^idc.

Proof.

(by4.2)

(by3.2)

x<P ^c QE.D.

LEMMA 4.4. eQ(y)tB is an équivalence.

Proof. We will show that in mod-2 cohomology (eQ(y)tB)*(w2)^0. From
this and the action of the Steenrod algebra it follows that (eQ(y)tB)*(wl)
vvt 4-decomposables and thus that eQ(y)tB is an équivalence. Snaith [S2,] has

observed that if k : BO2 —> BO dénotes inclusion then

BO2 -£¦* BO -^ QBO2

is the standard inclusion BO2 -> QBO2. Hence T%(w2) w2. It is well-known
(and easy to prove from 4.0 or 4.2) that y* is non-zero on the bottom (2-
dimensional) class in H*G/O. Since ey is an équivalence e*(w2)^0. Thus

(eQ(y)TB)*(w2) ï 0 and the resuit follows. Q.E.D.
Let RB e Q(y)(tc • tB) : CxBSO -*> BSO
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LEMMA 4.5 i) xx^' G/O -» CxBSO is an équivalence.

ii) RB~eQ(y)tBp2.

Proof. i) (xxe)g XgXe£ where we recall g ç • y is an équivalence. eg

y)^e<p • ey^eyp2 since KO*(C) 0 implies eç^O. xg V\g"1 & Pi- This

complètes the proof of i) since ey is an équivalence ii). eQ(y)(tc ' tB) —

eQ(y)tc • eQ(7)rB -eO(7)rBp2 smce XO*(C) 0 implies eQ(y)fc-0. Q.E.D.

Proo/ of Theorem 4.1. Let £ (xxe)Q(y)(tc • fB), flc xQ(y)('c • fB) then
R RcxRB. Let x©yG7TkC©7TkB5O then JR(x©y) Rc(jc©y)©JRB(x©y).
By Lemma 4.5ii) jRB(x©y) eQ(y)tB(y). By Lemma 4.3 Kc(x) jc. Hence

-ROt©y) Jc + xQ(y)fc(y)©eQ(Y)fB(y) an^ so R is an isomorphism since

eQ(y)tB is an équivalence by Lemma 4.4. Thus JR and hence Rg~l
(xxe)Q(y)T is an équivalence. This complètes the proof by Lemma 4.5i).
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