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Comment. Math. Helvetici 53 (1978) 334-363 Birkhauser Verlag, Basel

On a class of foliations and the évaluation of their characteristic
classes

Daniel Baker

Introduction

This paper gives a detailed exposition of the results appearing in [B]. Specific-
ally, we develop an algorithm for analyzing the images of characteristic classes

from H*(WOn) and H*(Wn) for a certain class of foliations. The foliations are on
spaces of the form F\G/K where G is a semi-simple Lie group, K is a compact
subgroup, and F is a discrète subgroup of G such that F\G/K is a compact
orientable manifold. The leaves of the foliation are the left translates of a

parabolic subgroup P^>K. When K=l, the normal bundle of the foliation is

trivialized by left invariant sections and we obtain characteristic classes from
H*(Wn). For K non-trivial, the normal bundle is also non-trivial, and the
characteristic classes corne from H*(WOn).

The examples yield new linear independence relations for the images of thèse
classes in H*(BFn, R) and H*(FFn, R). Spécifie examples of foliations of this type
hâve been anayzed by others (see, for example, [BR], [KT1], [KT2], [Y]).

The contents of this paper are as follows: In Chapter I we give some basic

facts, références for others, and we set our notation.
Chapter II uses the results of Cartan ([CA]) to replace the relative complex of

forms on the Lie algebra, yl*(^, Â, C), with a finitely generated complex Â having
the same cohomology. This is done by observing that H*(% Â, C) has the same

cohomology as a certain homogeneous space which is also a fibre bundle. The

complex Â is basically the E2 term of the spectral séquence for this fibre bundle.
Chapter III contains the basic classification theorem for parabolic subgroups.
Chapter IV contains the main results for Computing the image of the characteristic

map for the foliation <P:H*(WOn)-+ H*(F\G/K). The idea is to show
that there is a commutative diagram

H*(r\GIK)
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where F is injective. This reduces the problem to studying the image of p. This is

the same technique that has been used by Kamber and Tondeur (see [KT1]).
We now use the isomorphism //*($, ^)«//*(Â) to replace p with a map

À*:H*(WOn)-»H*(Â). The map A* is a nice map in the sensé that it has a

géométrie interprétation in terms of characteristic classes for principal fibre
bundles, and this fact renders its image computable. We emphasize that the
construction of À* relies heavily on the structure theorem for parabolic sub-

groups.
Chapter V contains calculations for spécifie examples. Sample results are the

following - (see corollaries 5.15 and 5.19):
For n ^ 2, r > 2 the set of classes

{cffciMv * • K^2c\n-2Kh2hH' • • fcïk€H*(Wr2n,R)|2<î1< • • • <ik^n}

is non-vanishing and linearly independent in H*(FFr2n, R) (this includes the classes

c\nhxh2 and c2c\n~2h1h2)- Hère FFrn is the classifying space for codimension n, Cr
foliations with trivialized normal bundles.

For r>2 the set of classes

{c?nfeA * * * K* c2cîn-2h1hli --hlke H*( WO2n, R) |

1 < ix < - - • < ik < n and i} are odd}

is non-vanishing and linearly independent in H*(BFr2n, R) (this includes the
classes c\nhx and c2c\n~2h^). Hère BPn is the classifying space for co-dimension n,

O foliations.

I. Some preliminary facts and notation

For more detailed information about the Weil homomorphism and TP forms

see [CS] and [KN], Volume IL
Let G be a Lie group with Lie algebra CS. Ie (% V) will be the /-dimensional,

V-valued, Weil polynomials (V R or C). Let I (%V) ®I€(%V) and
Pel€{% V). If tt : E -* M is a principle G bundle with ^ valued connection 6 and

curvature O then we are led to consider the 2^-dimensional forms P(fi)
P(û,..., O). In [CS] the authors construct the forms
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where <f>t tû-h^(t2-t)[O, 0]. In the next proposition we collect some of the facts
which are proven in [CS] and [KN].

PROPOSITION 1.1 Let 0 be any <S valued 1-form on a manifold E and let
/2 d0+è[0, 0]. Then:

(i) dIP(fl) P(fl)
(ii) If 01 and 0O are two <& valued 1-forms on E, let

0, ^

Then the form

satisfies

(iii) When 0O, 0X are <ê valued connections on a principle G bundle tt:E-^> M,
then AP(OU 0O) is in the image of tt* and can be thought of as a form in
A2e~x{M, V) (in the future, when it causes no confusion, we will do this).

(iv) When 0 fa a connection on tt:E-*M, TP(d) AP{6,0)eA2€~\E, V).

Remarks, (a) In [CS] and [KN] thèse facts are proven only in the case where 0

is a connection form on a bundle. The more gênerai case where 0 is an arbitrary ^
valued 1-form on E, which need not commute with the action AdG, can be

obtained by means of the following construction:
On the trivial bundle Ex G; let <o be a connection form defined by a)(x, g)

g + Adg-i(0(x)) (Here we identify g with the left invariant vector field on G
taking the value g at g e G.) Then using the section s : E -» E x G, s(e) (e, 1),

Thus if something from the above proposition holds for co, it will also hold for 0.



On a class of foliations 337

(b) To see that AP(6,0)=TP(6) note that

AP(090) t[ P(0,n€t-x

where

Let 9 be a C(r>2) codimension n foliation on a manifold M. We will use the
construction given in [BT] for the characteristic maps J/*( WOJ-* H*(M, R) and
(in the case where the normal frame bundle to & is trivialized by a section)
H*(Wn) -> H*(M, R). We caution only that, if V° and V1 are two connections on a

real vector bundle with p€(n, R) valued connection forms 60 and 6± on the
associated bundle of bases, then the form that is referred to as À(V°, V1)(P) in
[BT] is just AP(0l9 6O) in this paper.

For computational purposes the following lemma is useful (see [G] or [KT1]
for proofs).

LEMMA 1.2. (i) A basis for H*(Wn,R) consists of the classes determined by
the cocycles cH • • • clkhh • • • hj€ where

ï'i + • • • + ï'k + /i > n,

(ii) A bas/s /or H*(WOn, R) is given by the cocycles listed above where

ju j€ are odd, and by the monomials c2ll * • * c2lk where 2(i\ + • • • + ik) < n.

Note that if BF^ is the classifying space for Cr codimension n Haefliger
structures and FPn the homotopy theoretic fibre of the map v : BPn —» BGUn R)

which classifies the normal bundle of BFrn, then we obtain a commutative diagram
(see [BT] for détails).

H*(Etrn,R)
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Now if Â is a subalgebra of ^ we can consider the Lie algebra cohomology
H*{% V) and the relative Lie algebra cohomology H*(% Â, V). For the basic
facts and définitions concerning thèse objects, and a proof of the following
theorem see [CE].

THEOREM 1.3. (i) If <S is a semi-simple Lie algebra, then H*(% V) is an
exterior algebra on a finite number of generators (called primitive éléments), each

having odd degree.

(ii) // G is a compact Lie group with Lie algebra CS, K a closed connected

subgroup with subalgebra Âa <ê then H*(S, Â, V)~H*(GIK, V).

We remark only that, if 7r:G->G/lC is projection, then A*(% Â,C) is the
image under tt* of the left invariant forms on G/K. This induces a map
ift: A*((S, £,C)-+ A*(GIK,C) which induces the above isomorphism.

Assume now that K is a compact, connected subgroup of a (not necessarily
compact) Lie group G. If there is a compact G with closed subgroup K such that

«®C~«<g>C (1.4)

and this isomorphism restricts to an isomorphism k(8>C~>£®C, then it foliows
that

H*(% Â, C) « H*(#, k, C) « H*(G/K, C).

In particular, H*(%Â,C) must satisfy Poincare duality.

PROPOSITION 1.5. (see also [KT1], Lemma 4.88). Suppose that G and K
satisfy the above hypothèses, and suppose F^G is a discrète subgroup such that

F\G/K is a compact manifold. Then there is a cochain map

which is injective on cohomology.

We remark only that the map ifr is constructed in the same fashion as the map
$ above.

In gênerai the isomorphism (1.4) does not restrict to an isomorphism ^®R«
S®R. For this reason it will be easier to do ail our cohomology computations
using complex coefficients.

Finally we note that, when G is semi-simple, a F satisfying the hypothèses of
Proposition 1.5 always exists (see [BO2]).
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IL On the cohomology of homogeneous spaces G/K.

In this section we construct several différent complexes which can be used to
compute the cohomology H*(%£,C) using the isomorphism of Theorem 1.3.
This material is well known and can be found in, for example, the text [GHV].
Unless otherwise specifîed, ail Lie groups in this chapter will be compact,
connected. Cohomology is always taken with complex coefficients.

We first fix some notation. For G a Lie group, let gl5..., gn e H*(G) dénote
the primitive generators for the cohomology algebra. Write SG H*(BG), where
BG is the classifying space for principle G bundles. SG is a polynomial algebra on
generators gl9..., gn where & transgresses to g, in the classifying bundle EG -»

Given a continuous homomorphism of Lie groups, p:G-^H, dénote by
p:SH-+ SG the map on characteristic classes induced by p

Finally, we use the same notation conventions for ail Lie groups, e.g. fc, are
the primitive generators in H*(K), transgressing to kt e SK, etc.

Suppose K is a closed, connected subgroup of a compact Lie group G. Form
the complex SK®H*(G) with differential d satisfying

where p : K —> G is inclusion. The differential d is extended as an antiderivation.

THEOREM 2.1. (see [GHV], 11.5, Vol III) (i) There is a commutative
diagram, where A is induced by a cochain map SK<g)H*(G)^> A*(% ^,C)

H*(SK®H*(G))

SK H*(G)

H*(G/K)

where h'.SK-+ SK®H*(G) is the natural inclusion. The map

ir1:SK®H*(G)-»H*(G)

is obtained by composing the natural projection SK®H*(G)—> H*(G) with the

isomorphism pi*:H*(G)—»/J*(G) induced by the homeomorphism /ul:G-»G,
/Lt(g) g~1. The map a* is induced by a classifying map a:G/K-*BK of the

bundle tt : G -? G/K.
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(ii) If rank K=rank G, then cr* is onto and H*(GIK)^SK/I where I is the

idéal generated by p(&)> i — 1,..., rank G; deg (g,)>0.

We now consider nested groups Xc[/cG, ail compact, and construct a

complex whose cohomology is that of G/K but which reflects the fibre bundle
structure

UIK—+G/K

GIU.

Specifically consider the complex A S^® Jf*(G)®SK®H*(L0 with

where p1:U—> G and p2:K^> U are inclusions. The differential is extended as a

antiderivation.
Note that the complex A is filtered by giving SuteH*^)®!®! filtration

equal to its degree and l<g)l®SK<g>//*([/) filtration 0.

THEOREM 2.2. (i) There is a cochain map a : A -» A*(%Â,C) which be-

comes a map of filtered complexes when we filter A*(%d, C) using the fibre bundle
structure U/K —? G/K -> G/ U. The map a induces isomorphisms on the E%q level,

so a induces cohomology isomorphisms as well.

(ii) If rank (U) rank (G) then we hâve a map

$:A-*SuII<g>SK<g>H*(U) Â

which is the identity on 1®\®SK®H*{U), sends 1®Jï*(G)®1®1 to 0, and
sends Û,®1®1®1 to its réduction mod I in Sull®\®\. Hère I is the idéal
generated by the Pi(gj). The map ij/ induces isomorphisms on cohomology.

(iii) The map j8 : A -» SK<8)H*(G)

induces isomorphisms on cohomology.
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Proof. (i) follows from [GHV], 12.10, Vol III for the complex A*(<ë, %C)®
SK<g)H*(U) where the differential is the usual one on A*(% %,C)<g>l(g)l,
d(l®fci®l) 0 and d(l®l®uI)= l®^^)®!-?^^)®!®!. Hère PUi(O) is

the Weil form for ût evaluated on the curvature fl of a left invariant connection
6 : « -> m for the bundle G^G/U.

Using Theorem 2.1 we can construct a map A -> A*(% %C)<8>SK®H*(U)
again inducing isomorphisms on E£q. The composition of thèse two maps gives a.

(ii) follows as well because ^ induces isomorphisms on E%q by Theorem 2.1

(ii).
To prove (iii) filter A by giving 1®H*(G)®1®1 filtration 0 and S^OKg)

SK®H*( 17) filtration equal to its degree. Filter SK<8)H*(G) by giving 1®H*(G)
filtration 0, SK®1 filtration equal to its degree. One then vérifies that j3 induces

isomorphisms on E%q.

Remarks, (i) Theorem 2.2 is valid when K is the trivial group {1}. (ii) An
analysis of the map a shows that a maps the subcomplex Su®!®SK®H*(U)
into forms which are polynomials in the connection 6 and its curvature (2 in
A*(% C). This fact is important and will be used in Chapter IV.

In Chapter IV we shall be interested in the following application of this
theorem. Let G, K, F satisfy the hypothèses of Proposition 1.5. In particular
assume that G is a non-compact semi-simple Lie group and G is the compact
form. Then, by Proposition 1.5, we hâve the injective map y which is the

composition

H*(A) -^> H*(<ë, k, C) - H*(», A, C) -?-» H*(r\G/K, C).

As has already been noted, we use complex coefficients because the isomorphism
§ does not restrict to an isomorphism ^

III. Some facts about parabolic subgroups

The basic référence for this is [S]. Throughout this chapter, Gc dénotes a

connected semi-simple algebraic group defined over C. Ail subgroups of Gc are
assumed algebraic unless otherwise specified.

DEFINITION 3.1. A Borel subgroup of Gc is a maximal connected solvable
subgroup of Gc. Any subgroup of Gc which contains a Borel subgroup is called a

parabolic subgroup of Gc.
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Now let T^ be a maximal torus in Gc, V the set of roots for Xe, V+ is the set
of ail positive roots with respect to some linear order, /!<= V+ is the set of simple
roots. For every root aeV there is a unique 1-dimensional subgroup of Gc, P£,
whose Lie algebra, 0>£, is the root space for the root a.

THEOREM 3.2. (i) The semi-direct product Bc= T0 • (TLev+ K) is a Borel
subgroup of Gc and ail other Borel subgroups are conjugate to it.

(ii) There is a 1-1 correspondence between parabolic subgroups containing Bc
and subsets of vertices {Le. simple roots) in the Dynkin diagram for Gc. Let A^ II
be such a subset, Tf <= 7e is the subtorus annihilated by 4, Vx c V is the subset of
roots generated by A. Then Vx is the set of roots for a unique semi-simple subgroup
G? of Gc and the centralizer of Tf, Z(Tf) Gfx Tf. Then the 1-1 correspondence

is given by associating to each A the semi-direct product

-( II Pï
WV+-V!

(iii) From (i) it follows that this classifies ail parabolic subgroups of Gc up to

conjugacy.

For the proof see [S]. We remark that Y[aeV+-v1P«==N(A) is a nilpotent
subgroup and that a given parabolic F$ décomposes the Lie algebra ^c into

«fe^e^e^r0. Hère «f is the Lie algebra of G?, 9% for Tf, Jf° is the Lie
algebra of N(A)C and Jf~c is the Lie algebra of the group l\aeV-v1 P%> (V" is the
set of négative roots.) The following relations holds:

Finally we will be interested in real forms G of Gc where the Lie algebra

:^ has the form

with

<sx «fn », etc.

Then 0> ^cn«= ^©^©JV is a subalgebra of «, and the following
relations also hold:
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IY. Construction of the foliations and évaluation of their characteristic classes

We continue to examine the situation appearing at the end of the last Chapter.
Fix a parabolic Pc and a real form G of Gc with CS ^©^©^©JV",
P= G DP0. Choose a compact form G of Gc satisfying

(i) There are closed subgroups Gt and Tx of G with the same complexifica-
tions as Gt and Tl9 and Gxn Gx is maximal compact in G1.

(ii) The Lie algebra $ splits as# =$1©5T1©£ where the complexification of
A equals JfCQJT0.

Such a compact form can be constructed using, for example, the contents of
Chapter III of Helgason [H].

In what follows K will either be the trivial group 1 or K= G1C\G1. The left
translates of P détermine a foliation on F\G/K. When K= 1 this foliation has a

normal bundle trivialized by left invariant sections, and we obtain characteristic
classes from H*(Wn). For K^ 1 we obtain characteristic classes from H*(WOn),
and we do this case fîrst.

There are the complexes

À SOiXtJI®Sk®H*(G1 x 7\)

and

A Sô1xt1®H*(G)(8)SK(8)H*(G1 x ft)

defined in Chapter IL Let w, e/f^x 7\) (resp. & eif*(G), kt eH*(K)) be the

primitive generators transgressing to ûl (resp. gp kt). As noted at the end of
Chapter II, there is an injective map y :H*(A,C)^ H*(r\G/K,C)9 and by
Theorem 2.2 there is the isomorphism <p:H*(A,C)-*H*(Â,C).

We will define a map À : WOn —> Â where n is the codimension of P in G, and
the composition y ° (ipT1 ° A* : H*(WOn) -+ H*(r\G/K) will be the characteristic

map for the foliation on F\G/K. First note that there is a homomorphism
(T.PC-*GL((SCI0>C) where GL(«c/^c) is the gênerai linear group on the
complex vector space

<r(p)(x)

Choose an Adô^tt invariant Hermitian metric on <SC/0>C and an orthonormal
basis xl9..., xn which is also a basis for ^/^ when the scalar fîeld is restricted to
R. By means of this basis we can identify GL(^C/^C) with GL(n,C), GL(<§I&)
with GL(n,R), etc. In particular, because K=G1DG1, and criGJ^ U(n),
a(K) c JJ(n) H GL(n, R) O(n). Let c^ a|ôlXÎl and cr2 <r\K. Then â2(C2l-1)
0 where C2l_i e SGL(n>C) is the (2i-l)th Chern class.
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Consider the subcomplex B Sô1xt1®1®Sk®H*(G1 x T1)c: A, and the maps

K'Sg^t^B, i 1,2, givenby A1(iîl)= ^®1®1®1, A2(wl)= 1(8)1(8)

The À, clearly induces the same maps on cohomology. It follows that

for some ^2i-\e S^x^® 1®SK®H*(G1 x Tx), Let |2l_! dénote the image of ^2l_x
in Â.

Now define A : WOn -> Â as follows: A(Q) is the mod / réduction of

It is easily verified that A commutes with the differentials and is a cochain map.

Remarks. The reason for the coefficient (V—I)k is that the Weil polynomials
for Chern Classes are given by the formulae

kf0

Thèse polynomials are real valued on the Lie algebra for U(n), but complex
valued on the Lie algebra for GL(n, R). To avoid complex numbers, one uses the

définition

when defining characteristic classes for foliations. Thèse polynomials are real
valued on the Lie algebra for GL(n, R) and difïer from the first définition by a

factor of (Vzl)k.
Note also that, because the dimension of G/Gt x Tx is 2n, the algebra S&^tJI

is 0 above dimension 2n. This is necessary if A is to be a cochain map, since

products of dimension greater than 2n in the Chern classes are zéro in WOn. It is

for this reason that we cannot map WOn into A instead of Â.

THEOREM 4.1 There is a commutative diagram

H*(Â, C) —î—> H*(r\G/K, C)

H*(WOn, R) > H*(r\G/K, R)
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where i is induced by inclusion R c: C, 0 is the characteristic map of the foliation
determined by P and F= y ° (<Â*)~\

The point of this theorem is that, because F is injective, linear independence
of classes in the image of À* implies the linear independence of their image by <f>.

The image of À* is fairly computable because of its topological interprétation in
terms of characteristic classes.

To prove Theorem 4.1, we define the auxiliary notion of a classifying
homomorphism. The initial data is a Lie group U and subgroup K, a principle U
bundle ir.E^B with dimension of B equals 2n, and a représentation r:U->
GL(n,C) with r(K)<= O(n,C).

Let 77 : EGL —» BGL be a finite dimensional smooth approximation to the

classifying space for GL(n, C) bundles and choose a bundle map

E/K f
>EGL/r(K)

B >BGL

where /: B -+ BGL classifies the bundle ExvGL(n, C) -> B where the action of U
on GL(n, C) is given by the représentation r.

Choose forms akeA*(BGL, C) representing the kth Chern class Ck. Since

r(K)<^ O(n, C), the odd Chern classes vanish on EGL/r(K), so choose j32k-iG
A*(EGL/r(K), C) with d/32k-i ^*a2k-i- Then define a cochain map v : WOn ->

Define the classifying homomorphism H to be the induced map

M, R) -+ H*(E/K, C).

The next Lemma will show that H is actually independent of the various choices

made in defining v.

LEMMA 4.2 Let tt.E^B be a U bundle with dimension B 2n. If
<Êo> <t>i' WOn -^ A*(E,C) are two cochain maps with 4>t{Ck)eImage tt*,

and <f>x induce the same map on cohomology.
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Proof. It suffices to prove that <£0 and <fr\ are cohomologous on the basis for
H*(WOn,C) given in Lemma 1.2 (ii). This is fairly straightforward, keeping in
mind that, since dimension of B is 2n, any form in the image of tt* of dimension
greater than 2n must be 0. We leave the détails to the reader.

Now to see that H is well defined, suppose first that we are given two différent
classifying maps

(/, /), (ft g) : (E/K, B) -* (EGL/r(K), BGL).

Then thèse maps are homotopic, so there are cochain homotopies /*-g*
dK+Kd and f*-g* dK + Kd and one can choose K and K to satisfy ir*K
Kit*. Then ir*f(ak)-n*g*(ak) >x*{dK{ak)) and /*O2k-1)-g*(jB2k.1)
dK(P2fc-i)+K:#*(a2k-i) dK(/82k_1) + ir*K*(a2k_1). So by Lemma 4.2 H is inde-
pendent of the classifying map. If ak, j32k-i and àk, p2k-i are différent choices of
forms determining v, then ak — àk — di\k and d(p2k-i~^2k~i~^V2k-i) — ^^ so,
since A*(EGL/r(K),C) is acyclic in low odd dimensions, P2k-1~P2k-l
/^*TÎ2k-i + ^2k-i and again Lemma 4.2 shows that H is independent of this
choice.

Finally note that we can use the diagram

E >

i
B *

l *

BU >
R

EGL
I

BGL

where EU'—» BU is a smooth finite dimensional approximation to the classifying

space for U bundles, and JR is induced by the représentation r. Then we can
define v by choosing akeA*(BU, C) to represent R*(Ck) and /32fc-ie
A*(EUIK,C) with dp2k_t <ir*ak. Again since H*(EU/K,C) 0 in odd dimensions,

v will induce the same map H.

Remark. Let B^(nC) be the 2n-skeleton of BGUnC) using the cell décomposition

by Schubert cells. By taking the restriction E(GL) -> B^Un>C) of the classifying

bundle to its 2n-skeleton, we obtain a classifying space for bundles whose

base has dimension <2n. One can show that H*(E{GL)IO{n, C)) « H*(WOn) and

that H is induced by a classifying map f:E/K-*E(GL)/O(n,C).
The point now is that À*:H*(WOn,R)->H*(Â,C) is the classifying

homorphism H when we compose with the isomorphism a © (i^*)~*
H*(G/JK,C) of Chapter IL Hère the représentation is a1j,G1xj
and G -> G/Gi x ft is the principle bundle with dimension G/G1xf1 2n (recall
dim G1/G1xf1 dim(^V©^~) in the Lie algebra % and dim Jf dimJf~ n).
For the map a°(i^*)"1 sends classes in the image of A* to Weil polynomials in a
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1 valued connection and its curvature (see the remark after Theorem 2.2).
We must show that thèse forms are pull-backs of forms from a classifying space
and to do this it suffices to show that the connection is the pull-back of a

connection on a finite dimensional approximation to E^*^ —? BgxxtX' This fol-
lows by a theorem of Narasimhan-Ramanan on universal connections (see [NR]).

Thus to prove Theorem 4.1 we must do the following:
(i) Show that i ° <P:H*(WOn,R)-> H*(r\G/K,C) is induced by a cochain

map </> : WOn -> A*(«, Â, C) * A*(#U, C) and

(ii) Show that <f> induces the classifying map for the bundle G—» G/G1xT1
under the isomorphism H*(»,*,C)«H*(G/K,C).

We show (i) first. Let 6 : Sc —» 0*c be the projection induced by the splitting

LEMMA 4.3. TTie normal bundle to the foliation on F\G/K is just
r\GxKGL(n,R)-»r\G/K wftere the action of K on GL(n,R) is given by the

représentation cr2- The form

is a basic-connection form on this bundle. (See [BT] for the définition of a basic

connection.)

Proof. Let T be the GL(n, R) bundle associated to the normal bundle to the
foliation. We give a bundle isomorphism r\GxKGL(n,R)-+ T and leave the
other détails to the reader. Choose an orthonormal basis xl9..., xn for <§!& and
view each xt as a left invariant vector field in Jf~. Then, given g e G, jc g GL(n, R),
x détermines a normal frame at g and, by using projection, at gK e G/K. This
process is independent of the left action of F and the right action of K, and gives
the desired map.

We must now define a Riemannian connection on the normal bundle to
compute <P. By choosing this connection carefully we can save some work when it
cornes time to prove part (ii) of the proof of Theorem 4.1.

LEMMA 4.4. There is a projection p:#€(n,C)-» a^(Â)c commuting with
Ad^Kyc and a projection 60 : ^c —» £c commuting with AdK such that

(i) 0o(<S)cz£

(ii) p ° cr* ° 0 <r* ° 60.
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Proof. Choose an AdK stable splitting of 3>=Â®N®M where

Â+Ker(a*) and a%(N) 0. Define Oq'.^-^â by projection from $ to 9 (using
0|<0.# ^ —> 0>) composed with projection from 9 onto Â (using the above splitting).

Now choose an Ad^^ stable décomposition of %Z(n, R) <r*(Â)(B<r%(M)(BM.
Define p:p€(n,R) —> o^d) by projection via this splitting. It is easily seen that

One can now extend 60 to ail of ^c and p to ail of p€(n, C) by complexifying
the above maps.

Now define a connection on F\G xKGL(n, R) by û>0(g, x) x
Then o>0 is <to{n) valued on the SO(n) réduction r\G*KSO(n) by Lemma 4.4 (i),
and so is Riemannian.

Thus we hâve a cochain map, inducing 4>

given by

Â^ Ô d(o +|[w, a)]

.1(a>, o>o).

It follows that the image (<£)<= 7r*(A*(r\G/K,R)). We hâve a bundle map,
where s(g) (g, 1),

and from this it follows that s* ° 4> maps into the image of tt* and also induces <P.

Note that a left invariant form in the image of tt* must factor through
A*(%d,R). Since s*o) v#0 and s*a)o ^eo> we have a map
4>:WOn-»A*(%â9R)

n de+

and <^ induces 0. This proves (i).
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As before, we move to complex coefficients and view <\> as a map (f> : WOn —»

A*(%Â,C). Now consider the bundle GxùiXtiGL(n, C)-» G/G1x fx and let
<â(g, x) * + <Adx-i(cr:|e0(g)) be ^ connection on this bundle. Note that p°<ô is a

o*OOc valued connection on the bundle GxùiXfiGL(n, C)->
G xôiXti GL(n, C)/cr(K)c. Now, in the diagram

iXtiG

r
>G/G1xT1

d

s(g) (g, 1)> we hâve

s*<5

by Lemma 4.4 (ii). It then follows that the classifying map determined by <o

is the same map as <£, and this proves (ii) and complètes the proof of Theorem
4.1.

When K 1, the complexes A and Â are given by

A Sô^t,® H*(G)(g)H*(G1 x ft)

In A the class â1(Ck)®l®l d& for & g S^xf^lSH^GiX T^) by a similar

argument to the one used when K^l. Let fkGÂ be the image of ÇkeA and

define À : Wn —» Â as follows: À(Ck) is the mod I réduction of

THEOREM 4.5. There is a commutative diagram

H*(Wn,R) >H*(r\G,R)
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where i is induced by inclusion RcC, <P is the characteristic map for the foliation
déterminée by P and F= y <> («p)"1.

The proof is basically the same as that for Theorem 4.1. We omit the détails.

V. Examples

Note. In the computations in this chapter, the scale factor (V-l)1 appearing in
À(c,) and ACfy) will be ignored. Because we are interested only in questions of
linear independence, this will make no différence, and to include it would
unnecessarily clutter the notation.

In the examples which follow it is necessary to evaluate the maps on characteristic

classes induced by the représentation cr1:G1xT1-+ GL(n, C) and by the
inclusions Gx x 7^ —» G and K-+ G1xT1. We do this by evaluating the associated

maps on Weil polynomials. Since the domains of our homomorphisms are always

compact, there is a Weil polynomial representing each characteristic class

associated to thèse groups. To evaluate thèse maps on Weil polynomials we usually
restrict to a Cartan subalgebra. This technique is standard (see [KN], Volume II,
for an excellent exposition).

The following proposition will be useful:

PROPOSITION 5.1. Consider a parabolic subgroup obtained by removing one

vertex from the Dynkin diagram for Gc. Then FPiG/Gi x 7\, C) is one dimensional
and, for 0 5e x € H2(G/G1 x Tl9 C), a power of x is a non-zero top dimensional class

m H*(G/G1x f^C).

Proof. Since Gx has rank one less than G, f1 must be a circle. Since Gx is

semi-simple, H\Gl9 C) 0 (see Theorem 16.1 of [CE]). Thus HH^xf^C) is

one dimensional and a generator must transgress to a non-zero class in
H2(GIG1 xf1?C). (Otherwise H^GX) would not be 0.) Conversely, any two
dimensional class in H^iG/Gx x fu C) must be in the image of the transgression
in Ga x fx-? G-* G/Gi x T\, since H2(G,C) 0. Thus there can be only one
such class which shows that fPiGIGi x T^C) is one dimensional.

To see that a power of x is a non-zero top dimensional class note that G/Gx x T\
is Kaehler and je must be a multiple of the fundamental two form.

EXAMPLE l(a). The Dynkin diagram for ^(n + k) is just:

o o ^ o (n + fc-1 vertices).
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If we remove one of thèse vertices we get a parabolic of the forai

{||aj e<*(n + k)\ aX] 0 for i > k, j< k}

Hère

or i < k, j < k}.
The codimension of the associated foliation is nk.

_i 1

i a/*— ^s ^t^ @r i

Set K=l.
In doing compilations, it is simpler to find maps on Weil polynomials if we

replace ^(n + k) with y€(n + k) and <t(t€(n)(B?€(k)) with tf(n)@ï€(k). One

easily vérifies that doing the computation in #€(n + k) and then restricting to
&€(n + k) is équivalent to doing the computation in <j€(n + k). In fact, this

corresponds to working with the foliation on F\SL(n + k, R)xR
r\GL(n + fc,R) whose leaves are of the form LxR where L is a leaf in
F\SL(n + fc,R).

So let Â Suin)xUik)II<8>H*(U(n)xU(k)). The ring Suin)xUik)II is the

cohomology ring of fc planes in n + fc-space. Let dx eH*(U(n)) (resp.

£,€//*([/(&))) represent the primitive generators transgressing to the /th Chern
classes dx in Su(n) (resp. ët in Smk)). Then Sl/(n)xLr(k) C[J1,..., dn, êl9..., êk].

To evaluate the map on characteristic classes pl9 induced by inclusion pt: U(n)x
^ t/(n + fe) recall the Whitney sum formula

(5-2)

where g, is the ith Chern class in Su(n+fc) and do êo= go= 1. Thus I is generated

by the relations 1 (IS Jjdg ët).

THEOREM 5.3. Suppose k<n. Then the classes c\nhx • • • hkhH • • • ftt/ for ail

k<it< - - • <i^<n are non-zero and linearly independent in H*(P\SL(n + fc,R),
R)

Notation. In Theorem 5.3 and throughout this chapter, "for ail k<ix< • • • <
i€ < n" includes the class involving no indices, i.e. c\nhv - • • hk in the above case.
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Proof. The représentation <r1 cr\Gl><Tl:GL(n)x GL(k)-> GL(kn) is the
représentation of GL(n)xGL(k) on Rn®Rk where the action of GL(n) on Rn is the
usual one and the action of GL(k) on Rfc is gîven byAi-> (A')"1. It is not difficult
to show that

âx{ct) kdx + (-l)tnël +mixed terms (5.4)

where a mixed term is a product of two or more of ël9 ë2,..., dl9 d2,.. •. (For
ease in notation, assume that dt dt=0 for i > n, ëx ex 0 for î > fe.)

In particular â1(c1) kd1 — në1 and in Su(n)xU(k)/I the relation ë1 + d1 0

implies â1(c1)^—(n + k)ë1 mod L Thus the map \:Wn-*Â of Theorem 4.5
sends c\n to [—(n + fc)^]1™ which, by Proposition 5.1, is a non-zero top dimen-
sional class in SLr(n)xLr(k)//, hereafter referred to as V.

Now H*(Â, C)«H*([/(n + fc), C) is an exterior algebra on gênerators
gi> • • • -> 8n+k where the dimension of g, is 2i -1. We show that À*(cik/i1 • • • hk) is

non-zero by taking its product with gi a • • • a gn and obtaining a non-zero
multiple of the top dimensional class V® et a • • • a ek a dx a • • • a dn e Â. Because

À(cïk)= V is top dimensional in SLr(n)xL7(k)//, we can ignore ail terms involving
ël9...9ëk,d1,...,dn when multiplying V by a à(/î,). With this in mind we set

terms

and the other terms will drop out when multiplied by V (see équation 5.4). Thus

hk)= VQflfa + i-lYne^. (5.5)

We now give cochain représentatives for the generators gl9..., gn e H*(Â, C).
Using Theorem 2.2 (ii) and (iii), and the fact that K= 1, we obtain from (5.2)

g, 1®dl + l®e, +mixed terms

where, again, the mixed terms will vanish when multiplied by V. Thus
A*(cîkh1 • • • hk)gx - • • gn has a cochain représentative in Â,

(5.6)

Since k ^ n, this is a non-zero multiple of V® et a • • • a ek a dx a • • • a dn so that
À*(cîkh1 • • • hk) must be non-zero.
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The proof that À^c^hx • • • hkhH • • • hl€) is non-zero for k < ix < • • • < i€ < n is

the same except that we multiply by

n s,

Furthermore, suppose a linear combination

fc<
<Z<

^
«., wA*(cî"hi • • • *A • • • K) °- (5-7)

Then, for fixed il9..., i€ multiply équation (5.7) by

n g.

to show that alx lf 0 so that thèse classes are linearly independent in H* (A, C),
hence by Theorem 4.5 in H*(r\SL(n + fe, R), R). Q.E.D.

Remark. An examination of the proof shows that the stipulation fc ^ n is not
necessary when k n 1. This is Roussarie's example on F\SL(2, R). (see [GV]).

We now examine the remaining classes in H*(Wkn, R). We start by restricting
our attention to the case where k 1.

THEOREM 5.9. (see [KT2]). On the foliation of T\SL(n + 1,R) w/iose Zea/is
determined by the parabolic SP ={\\al]\\\alJ=0 for î>l, /=1} tfie image o/ fhe

characteristic map

fias fhe following properties:

(0 Lef q(c!,..., cn) 6e a monomial of deg. 2i. Then the classes

<P(q(cx>..., cj/t^+x/^ • • • hl€) for ail n - i +1< ix < • • • < i£ ^ n are linearly
independent in H*(r\SL(n + 1),R), R). Thèse classes are multiples of the classes

<t>{cïhxhH • • • hlt) e H*(r\SL(n +1, R), R).

^f P(ci> • • • cn) and ^[(ci,..., cn) are monomials of degree 2i then
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^(p(cl9..., cJK-i+iK ' ' ' K) and *(<?(ci> • • > Cn)K-i+iK ' ' ' K) are multiples

of each other.

(H) The image of the rigid classes under <P is 0.

This theorem yields (in ail codimensions) non-vanishing (in H*(Frrn, R)) of ail
the classes which form the basis for H*(Wn) in Lemma 1.2 and which are
deformable (see [HI1]). To obtain linear independence of thèse classes as we vary
the monomial q(cl9..., cn), we must examine the other foliations we hâve

analyzed, and compare them with this one. If we find that in other examples
q(cu cn) is a différent multiple of c\ from the one it is in the k 1 example,
then new linear independence relations can be obtained. In particular we hâve the

following resuit:

PROPOSITION 5.10. Fork<n, consider the GL(kn,C) bundles associated to

the bundles

U(kn) xU(l)-*U(kn + l)

¦l)/l/(fcn)xl/(l)
I

U(k)xU(n)-> U(k + n)

I

by the représentations a used in Theorem 4.1. Let p(ct,..., ckn) and q(cl9..., ckn)

be any polynomials of dimension 2kn in their Chern classes. Then if the ratios of the

Chern numbers associated to p(cu ckn) and q(ct,..., ckn) are différent on thèse

two bundles, the set of classes

{qic^ O&! • • • hkhH • • • hu, p(cu ckn)hx • • • hkhH • • • hlr k< ix

< • • • < i€ < n}

are linearly independent in H*(Frkn,R), r>2.

Proof. On the I\SL(nk + 1,R) example, we know that for any linear combi-
nation of thèse classes which is 0, the terms involving
q(cl9..., ckn)hx - - • hkhh • • • hu and p(cu ckn)ht - • • hkhH • • • hX( must vanish

pairwise. The same is true for the example P\SL(n + k, R). Thus we obtain two
équations of the form

9..., ckn)ht • • • hkhh • • • hu + $p{cly..., ckn)hx • • • hkhlx • • • hXt
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and the ratios of a to |3 in thèse two examples are différent. But this can't happen
so the classes must be linearly independent.

Of course this proposition has analogues involving three or more Chern
numbers evaluated on three or more différent bundles associated to différent
foliations.

We will compute the ratios of the monomials c2c\n~2 and c\n for the
codimension 2n foliations on F\SL(2n + l,R) and on F\SL(n + 2, R), but,
before proceeding further, we digress to analyze the ring structure of

PROPOSITION 5.11. The cohomology algebra SLr(n)xLr(k)// is isomorphic to an
algebra which is generated as a vector space by n-tuples of integers (£l9..., €n)

satisfying 0 < tx < €2 — ' ' ' — ^n — k. The cohomology class associated to

(€l9..., €n) has dimension 2(€x+ • • • +/„). The class ëx e Su(n)xU(k)U is sent to

(0,..., 0, î) under this isomorphism and we hâve the following formula for cup
products of classes with ët:

(0,..., 0, Î)U(A,- •., O I (*i, • • •, O (5.12)

where the summation is taken over n-tuples satisfying dim (<rl5..., crn)

dim(€l9...,€n) + 2U i^a^i^ for j 1,... n-1,

Proposition 5.11 is proven in [HP], Volume II, but it is stated there in terms of
homology classes and intersection cycles instead of cohomology and cup products.
Formula (5.12) is referred to there as Pieri's formula. The fact that êl corresponds
to the class (0,..., 0, 0 is shown in [C]. We caution that thèse two références use
différent notation conventions.

Now let k 2 and write

^ (0,...,0,1,...,1,2,...,2)
j entnes

Then we can write

«î=

where
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LEMMA 5.13.

Proof: From formula (5.12)

where 8tJ is the Kronecker delta. From this we get

f Note that a,_x, I 1)~( ^ )• T^e lemma is easily proven for arbit-

rary i and / 0 or / 1 (for / 0, use the convention 1) 0-) Proceeding

inductively, assume the lemma proven for ail i < k and / < i and ail i k and

/</<k. Then

so

(k + e-l
\

(h— \ j \ h -j-1 j~ /f^-hiV

From Proposition 5.11 it is not difficult to deduce that in Su(2)xu(n)II

ë2ë\n-2 aM_1)n_!4,n and ë\n an,n|n,n.

From Lemma 5.13, it follows that

4w-2 an,n

We now return to the computation of the monomials c2c\n~2 and c\n. Recall
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that, if dx is the îth symmetric polynomial in bl9..., bn, and ët is the ith symmetric
polynomial in al9..., ak, then cr^c,) is the ith symmetric polynomial in {&,—

a} | 1 < / < n, 1 < / < fc}. Computation then yields that

Since Jj + ê1 0 mod I and d2 + ê2 + ê1d1 0 mod I we get

(7i(ci) — (n + fc)^ mod /

We want to show that the ratios of â^cl") and â1(c2cln~2) are différent in
S U(n)xU(2)l *

^(c2cï-2) (2n +1)2-2(2"2+

(since in this case ë2 0). In Sl/{n)xU(2)// we hâve (using 5.14)

It is tedious but not difficult to show that the ratios ô-1(c2c2n"2)/<T1(cf") are equal
in thèse two cases if and only if n 1. As a corollary to Proposition 5.10 we get

COROLLARY 5.15. For r>2, n>2 in H*(Fr2n,R) the set of classes

f cf^M,, • • • K

is linearly independent.

EXAMPLE l(b). We now do the same calculations done in Example l(a), but
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we consider the foliations on P\SL(n + fc, R)/SO(n) x SO(k). This will give linear
independence relations for classes in H*(WOn, R).

Note that there is a commutative diagram:

H*(Brn,R)<-H*(WOn,R)

H*(Frn,R)*-H*(Wn,R)

where i* is induced by inclusion FPn^ BPn and 17 : WOn -» Wn is also the natural
inclusion. The horizontal maps are the characteristic maps for the classifying
spaces. Thus linear independence in H*(FI^,R) of classes in the image of 17*

proves linear independence of thèse classes in H*(BFrn, R). For this reason, using
Example l(a) when k 1, we automatically obtain

THEOREM 5.16. (see [KT1] and [KT2].) Let q(cl9..., cn) be a monomial of
degree 2i. Then for fixed n — i +1 odd and ail séquences of odd numbers il9... 9i€
with n-i + l<i1< • • • <i€<nthe classesq(cl9..., cn)hn_l+1htl • • • hX( are linearly
independent in H*(BFrn,R).

In particular for dimension q(cl9..., cn) 2n thèse classes are of the form
q(cu cn)h1hI1 • • • hu.

However, when fc> 1 and dimension q(cl9..., ckn) 2kn the non-vanishing
classes are ail of the form

q(cu OM2 " * ' hK ' • ' K-

Thèse classes are ail divisible by h2 and so they are not in the image of 17*. Thus
we get no information about H*(WOkn,R) from thèse examples. We reduce by
SO(n)xSO(k) to rectify this situation.

THEOREM 5.17. Suppose fe<n and consider the characteristic map
<P : H*(WOkn9 R) -» H*(T\SL(n + k, R)ISO(n) x SO(k), R) induced by the

foliation determined by the parabolic Lie algebra

9 {||aj g o€(n + fc) | aXi 0, i > k, j < k}.

Then the classes #(cïn(TLodd=sk K)K' ' ' K where k<it< • • • <i€<n and
il9..., i€ are odd, are linearly independent.

Remark. Note that fc n is now allowed. This is because the cancellation in
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Equation 5.6 which occurs when k n happens only when dealing with hx for i
even.

Proof. À Su(k)xUin)II® SSO(k)xso(n)®H*([/(k)x[/(n)). Let V, (resp. 0t)
dénote the *th Pontrjagin class in SO(k) (resp. SO(n)). H*(A,C)~
H*(LT(n + fc)/SO(n)xSO(fc),C)«£(g)P. Hère E is an exterior algebra on the
suspensions of the odd Chern classes in U(n + k), and in Â gênerators are of the
form

gli-1 L _s+t=2i-l s+t=2t-l
s odd todd

where 2i-l< n + k. P is the algebra C[Ùl9 VrXk,Xn]/J where Xk (resp. Xn) is

the Euler class in SSO(k) (resp. SSO(n)) if k (resp. m) is even, and Xk O
(resp.Xn O) otherwise. J is generated by the relations (£ ÛJÇ^ Vt) 1 and

X^= V^ (for k even), X^= t/n/2 (for n even).
The proof now proceeds along lines similar to the proof of Theorem 5.3. We

multiply the class A*(cin(TLoddsk K)hH ' ' ' K) by the class Iln>lodd^i1, ,t, & to
obtain a non-zero multiple of the top dimensional class V^dlcxid^k^)
(II; odd=sn dj) in Â. (When n or k is even, we must also multiply by the Euler classes

Xn or Xk to get a top dimenisonal class.) At any rate since

À*(cîk(TIkaSiodd KïKi ' ' ' K<) CUPS >vith a non-zero class to give a non-zero multiple

of the top dimensional class, it must also be non-zero. We leave the rest of the
détails to the reader.

An analogue to Proposition 5.10 and the computations done in l(a) yield:

COROLLARY 5.19. In H*(Br2n,R), r>2 the set of classes

*!, ...,i€ odd

is linearly independent.

In Examples 2 through 4 the techniques for calculations are the same as in
Examples l(a) and (b). We state the results but omit the détails.

EXAMPLE 2. The Dynkin diagram for Sp(n, C) is o o o <z o

with n vertices. By removing the vertex with a double bond at the end, we obtain
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In

where A g and Sl9 S2 are symmetric nXn matrices,

x S2 0}

and

The représentation or is the usual représentation of GL(n, C) on symmetric
2-tensors on Cn.

THEOREM 5.20. In H*(r\Sp(n, R), R) tfie c/asses

4>(cï("+1)/2(nn^odd M^., • • • h2l(for 2^2ix<"' <2/,<n
are linearly independent for the codimension rc(rc + l)/2 foliation determined by <3>.

To obtain linear independence relations as the monomial q(cu cn(n+1)/2)

varies, one can use an analogue to Propositions 5.10. For example,

PROPOSITION 5.21. (i) In H*(J3rrn(n+1)/2,R), r>2, n>3, the classes

cï(n+1)/2n«.odd** and clc^"^723-4 IL^oddfc» are linearly independent
(ii) In H*(FTnin+1V29 R), r>2, n>3, rhe ser of classes

t
c2c[n(n+l)/2]-4 FI h)h2ll

\n 2:1 odd /
2le

i€ < n/2

are linearly independent

Proof. One compares the ratios of Chern numbers c|ccr(n+1)/2]"4 and cï(n+1)/2

for the codimension n(n +1)/2 foliations on F\Sp(n, R) and on F\SL(n(n +1)/2 +
1,R). Thèse ratios are always différent and the proof proceeds as in Proposition
5.10.
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EXAMPLE 3. Consider SO(2n, C) as ail non-singular complex n x n matrices
which préserve the bilinear form

Then

^ A e and Bt are skew symmetric L

The Dynkin diagram for SO(2n,C) is o o • • o

vertex at the fork, we get the parabolie P° with Lie algebra

C) | A B2 0}.

.By removing a

rr~At b ni
{n, n) \ —— —-

t L Bi A JI

For a real form we use

.— M A e #€(n, R) and JB. are real skew symmetric \.
A J| J

THEOREM 5.22. Suppose n is not a power of 2. Then the set of classes

n h)hnh2H---h2l)
-l2riodd / /

n-\.^<-

are linearly independent in H*(r\SO(n, n), R) for the codimension n(n —1)/2

foliation determined by <3>.

EXAMPLE 4. Let SO(2n + 1,C) be ail non-singular complex matrices pre-
serving the form

0

/

0 • •

I
0

• 0

0

0

1
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Then
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-A'
Si
-b

B2
A
-a

a
b

0

Ae9£{n,C)
Bt are skew symmetric

and a, b e Cn

The Dynkin diagram for SO(2n + l,C), is °

the end vertex with the double bond, we get
0=^0 By removing

J{-° {Xe <M2n +1, C) | A B2 0, a 0}.

For a real form we use SO(n + l, n),

9 n)
-A1
B1

-b

B2

A
—a

a
b

0

ail entries are real,

THEOREM 5.23. Suppose n + 1 is not a power of 2. Then the classes

4>(cï(n+1)/2(nnSiodd K)h2l€ • • • h2le) where 1 < i\< • • • < i€ < n/2 ar^ /mear/y m
pendent in H*(T\SO(n, n +1), R).
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