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The Jacobi équation on naturally reductive
compact Riemannian homogeneous spaces

WOLfGANG ZlLLER*

It is known that the Jacobi équation on a globally symmetnc space has

particularly simple solutions Some results hâve been obtained for the Jacobi

équation on a normal homogeneous or naturally reductive space Compare
[3]-[5], [7], [9] One knows that there exists a connection D on a naturally
reductive homogeneous space so that the curvature B and torsion T of D is D
parallel and D has the same geodesics, and thus also the same Jacobi fields, as the

given metnc But the Jacobi équation wntten down in terms of D is nicer since it
is a differential équation with constant coefficients

D2cY-T(c,DcY) + B(Y9c)c 0

Rauch mentioned in [9] that there are no exponential Jacobi fields appeanng if
the curvature of D is positive, but this condition is seldom satisfied One can

express a basis of (complexified) solutions of the Jacobi équation as

Y(t) A(t) emt

where A(t) is a vector valued polynormal with complex, D parallel vector fields as

coefficients and m is a complex number In this paper we show that for a compact
naturally reductive riemannian homogeneous space

(î) m is imaginary or 0,
(n) if m is imaginary and #0, then A(t) is a constant polynomial,

(m) if m 0, then A(t)-Ai t + A0

The statement of (î) is a generahzation of Rauch's resuit since there are thus no

exponential Jacobi fields, but hère we need no condition on the curvature of D

* This work was supported by the Sonderforschungsbereich Theoretische Mathematik (SFB 40)"
at the University of Bonn and completed at the Institute for Advanced Study with partial support from
a National Science Foundation grant
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574 WOLFGANG ZILLER

(ii) and (iii) say that the Jacobi fields are either oscillatory or of linear polynomial
growth compared with a D parallel basis.

The proof is given by combining local information one gets from the differen-
tial équation with constant coefficients with global information one gets from the

structure of the set of Killing vector fields.
We finally give a large class of examples of metrics (the ones studied in [6])

which are naturally reductive but not normal homogeneous. In some examples
some of the eigenvalues of B, and of the sectional curvature of the metric, become

négative. But the influence of the torsion in the Jacobi équation still guarantees
that no exponential Jacobi fields exist.

This is not true anymore for a gênerai riemannian homogeneous metric. In
fact, H. Karcher gave an example of a riemannian homogeneous metric which is

not naturally reductive and which has exponential Jacobi fields. This example is

written down in [10].
The methods used in this paper are similar to the ones in [10], but we resta te

the ideas for completeness.
In 1. we give the necessary preliminaries about riemannian homogeneous

spaces. In 2. we prove the main theorem and in 3. we give examples.

1. Preliminaries

Let M G/H be a homogeneous space. The residue class g • H is denoted by
g. If a metric on G/H is invariant under the opération of G on G/H it is called
riemannian homogeneous. Let g be the Lie algebra of left invariant vector fields

on G and ï) the Lie algebra of H. We can assume that G/H is reductive, i.e., there
exists a complément p of ï) in g:g ï)©p so that Ad(H) leaves p invariant. We

can associate to each Xe g a Killing vector field X* on G/H defined by the one

parameter group cxpGtX acting on G/H. Then [X*, Y*] -[X, Y]*, p can be

identified with Të(G/H) by sending Xep to X*(ê). We will always make this
identification and compute Lie brackets in g. The metric on Té(G/H) thus induces

a metric on p denoted by Ad(H) acting on p is identified with taking the
derivative at ë of the corresponding left translation on G/H. Left translation by g

on G/H is denoted by Lg. We will assume that G acts (almost) effectively on G/H
which is équivalent to saying that Ad(H) opérâtes (almost) faithfully on p. M
being reductive implies [ï>,p]cp. If X, Yep then we dénote by [X, Y\, [X, Y]p
the \) and p component of [X, Y]. M is called naturally reductive (with respect
to the complément p) if:

[X,-]p:p-»p

is skew symmetric for ail Xe p and is called normal homogeneous if there exists a
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biinvariant metric on g whose restriction to p ^ is the given metric. In
particular ail [X, *]:g-»g are skew symmetric, and thus a normal homogeneous
metric is also naturally reductive. We will dénote the Levi-Cevita connection and
the curvature tensor of > by- V and R.

If M is naturally reductive, the connection V can be described as follows:
Let X* be a Killing vector field and v e TëM. Then

j [X,v] if Xel)
lè[X, v]p if Xep '

The curvature tensor at ë is given by:

R(X, Y)Y [Y,[Y,X]l,]-|[Y,[Y,XU, Y, Xep.

If M is normal homogeneous it follows that the sectional curvature is:

so that K>0. But for a naturally reductive space one can hâve négative sectional
curvature too.

One knows that on a naturally reductive space there exists a metric connection
D with torsion T and curvature B so that T and B are D parallel.

D has the same geodesics as V so that

VxY=DxY-hT(X,Y)

and D, T and B at ë can be expressed in terms of the Lie brackets:

Ct>] if
*,t>]p if X€P

T(X, Y)=-[X,Y]P x y Z£
B(X, Y)Z=-[[X, Y],,Z]

Notice that R(X, Y)Y=B(X, Y)Y~\T{T(X, Y), Y). Since T is skew symmetric
it follows from the symmetry of R that B(-, Y)Y\ p -» p is symmetric.

If M is normal homogeneous, one has in addition that B(-, Y)Y is positive
semidefinite. The geodesics in a naturally reductive space are images of one

parameter groups in G: For vepLexpot „ (ê) is the géodésie through ë with initial
condition v*(ë).
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The derivative of LexpaV at ë is parallel translation along LexpGtv(ê) with respect
to the connection D.

Since DB 0, the curvature tensor B of D is invariant under d(LexpGt;)ë and

B(-, v)v commutes with d(LexpGt>)ë.

Since V and D hâve the same geodesics, they also hâve the same Jacobi fields.
But the Jacobi équation with respect to D along c(t) Lexpotv(ë), c(0) v:

D2X- T(c, DéX) + B(X, c)c 0

is much simpler since T and B are D parallel.
If we write X as X(t) d(Lcxpotv)é(Y(t)), then the Jacobi équation reads:

Y"-T(Y') + B(Y) 0

where T(Y)=T(v, Y) -[«, Y]p, B(Y) B(Y, v)v=-[v,[v, Y]J.
This is a differential équation in the vector space p with constant coefficients, T is

skew symmetric and B is symmetric. The solutions of this équation are obtained
by substituting Y(t) A(t) • em\ where m is a complex number and A(t) a

complex vector valued polynomial. The real and complex parts of thèse solutions
then give a basis of the Jacobi fields along c.

Since the differential équation is linear with Y also Y' is a solution. Therefore,
with Y(0 (Anfn+ • • • +A0)emt, also An - emt is a solution.

But substituting we get that Anemt is a solution iff:

(m2Id-mT+B)An 0.

Therefore only the solutions of

det(m2W-mT+B) O

are possible exponents for Jacobi fields.
For later purposes we remark that (Aif + A0)emt is a solution iff

(m2Id-mT+B)A1 0

(m2ld -mT+ B)A0 =-{2m- T)AX.

We will be particularly interested in the case m 0 later on:
m 0 is only possible if det B 0 and X(f) d(LexpGft>)ë(Ao) is a Jacobi field

(X(0 is D parallel) iff B(Ao) 0.
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Furthermore, X(t) d(LexpGtv)ë(Alt + Ao) is a Jacobi field iff

B(Al) 0

and

B(A0)=T(A1).
Notice that by complexifying, B becomes hermitian and T skew hermitian, so that
m2Id — mT+B is hermitian if m is imaginary.

2. The Jacobi équation

A vector field X is called a Killing vector field if the operator Ax — VX is skew

symmetric. This is équivalent to saying that the one parameter group <ps generated
by X consists of isometries.

The vector fields X* in 1. are Killing vector fields. A Killing vector field X
restricted to a géodésie c is a Jacobi field since X ° c(t) dlds/s=0<ps ° c(t) and for
each s, <ps ° c(t) is a géodésie. Jacobi fields which are restrictions of Killing vector
fields are called isotropic Jacobi fields.

Since in our case we hâve a transitive group of isometries we expect a lot of
isotropic Jacobi fields.

In fact, it is known that on a globally symmetric space ail Jacobi fields which
vanish at two points are isotropic Jacobi fields [2] and ail periodic Jacobi fields

along closed geodesics are isotropic [11].
But not ail Jacobi fields need to be isotropic; in fact, the Jacobi fields t • X

with X parallel and R(X, c)c 0 are not isotropic on a compact globally symmetric

space.
It is also known that on a normal homogeneous space the Jacobi fields which

vanish at two points need not be isotropic [4] and also the periodic Jacobi fields

along closed geodesics need not be isotropic [10]. From 1. it follows that an

isotropic Jacobi field Y along c(t) exp tv, vep coming from the Kilh'ng vector
field X*, Xe g, i.e., Y(t) X* ° c(f), satisfies:

if X g p

[X,v] if XgI)
U[X,i;]p if Xep'

Let JE {w€ TëM\(v, w) 0}. We are only interested in the Jacobi fields

orthogonal to c, i.e., in Jacobi fields Y having initial condition (Y(0), VY(0)) in
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E©R If XeEav then also [X, v%eE:

Thus the Jacobi fields coming from X £ p can be restricted to X e E and ail Jacobi
fields with initial condition:

Y(0), V Y(0)) (X, è[X, t>],), X€ E,

are isotropic. Thèse are already half of ail Jacobi fields.
To study the Jacobi fields coming from Xel) we examine the symmetric

endomorphism B(X)= —[v, [v, X]ï)]. Since B(v) 0, B maps E into itself and we
let X,, A, be the eigenvectors resp. eigenvalues of B/E:B(Xl) A,X, and we set

Z, [u,Xt]i,Gl). Then [Z,, i>] [|>, X,]*, t>] -B(Xl)= -À.X.. Therefore, if A^O,
the Jacobi field Y, corresponding to Z,ei) does not vanish identically since

Let E E0©E! with Eo the O-eigenspace of B and Ei the sum of the

eigenspaces with A, 5*0. Then the Jacobi fields with initial condition

(Y(0),VY(0)) (0,X), XeEu

are isotropic Jacobi fields.
If X€E0, i.e., JB(X) 0, we showed in 1. that the D parallel vector field

Y(t) d(Lexpatv)ë(X) is a Jacobi field (which is not necessarily isotropic). The
initial conditions are:

VvY(0) D,Y(0)-èT(t>, Y(0)) {[% X]P.

Thèse Jacobi fields together with the two sets of isotropic Jacobi fields previously
mentioned would generate ail Jacobi fields if they were linearly independent, but

(X,i[v,X]p), XeE0, could be a linear combination of (X,|[X, v]p), XeE0, and

(0, Z), ZeEu if [X, u]pgEi. But in 1. we also pointed out that

Y(t)=d(LcxpGtv)ë(tX + Z)

is a Jacobi field iff

B(X) 0 and B(Z) T(X) [X, v]P.

Since B/Eo 0 and B/EX is an isomorphism, we have in the above situation
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([X, u]peEi) a vector Z with B(Z)= T(X) [X, u]p and thus we hâve a new
Jacobi field

d(Lcxpotv)é(tX + Z)

with initial conditions

Y(0) Z

V. Y(0) Dv Y(0)-êT(i;, Y(0)) X + è[u, Z]p.

We will now show that thèse Jacobi fields together with the previous ones
generate ail Jacobi fields. Hère the compactness of M= G/H, which has not been
used up to now, cornes in in an essential way. Set Eo E2®E3 with

E2 {XeE0\[X,v]PeE1}

and E3 E2. Thus E EX®E2®E3. Define the subspaces Vt^E@E by:

V1 {(XA[X,v]p)\XgE1®E3}

V2 {(09X)\XeE1}

V5 {(Z, X + èb, Z]p) \XeE2, B(Z) T(X) [X, t;]p}.

We will now show that E©E= ©f=1 V,. The éléments of Vx+ V2+ V3+ V4 are

linearly independent as one sfces by looking at the first and second components.
But also the éléments of V5 cannot be a linear combination of the others for the

foliowing reason: The Jacobi fields with initial condition in Vx and V2 are

isotropic and so are the Jacobi fields with initial conditions in V3 since for XeE2:

(X, Hv, X]p) (X, ê[X, v\) + (0, [i;, X]p)

and the two Jacobi fields with initial condition given by the right-hand side are
both isotropic. But since isotropic Jacobi fields are restrictions of Killing vector
fields and since M is compact they are bounded in length.

The Jacobi fields with initial condition in V4 are also bounded in length; in
fact, they hâve constant length since LeXpOft> are isometries.
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But the Jacobi fields with initial condition in V5 are of the form

and are thus unbounded in length since M is complète. They can therefore not be

linear combinations of the others. Thus we hâve proved:

THEOREM 1. E©E ©f=i V,. On a compact naturally reductive homogène-
ous space, the Jacobi fields along c can be written as linear combinations of Jacobi
fields with initial conditions in Vv

We can draw several conclusions from this.

THEOREM 2. If one solves the Jacobi équation on a compact naturally reductive

riemannian homogeneous space in the form Y(t)- A(t) • emt with A(t) a

polynomial with D parallel complex vector fields as coefficients and m a complex
number, one has:

(i) m is imaginary or 0;
(ii) if m is imaginary and ^0, then A(t) is a constant polynomial so that the

corresponding Jacobi fields are of the form:

Y(t) Re A cos at - Im A sin at

Y(t) Re A sin at + Im A cos at

with m i - a and A(t) A a D parallel vector field with (m2ld- mT+B)A - 0;
(iii) //m=0, then A(t) A1t + A0 with Ax and Ao D parallel (real) vector fields
are the only possible Jacobi fields where B(Ai) 0 and B(A0)= T(Ai).

Proof. (i) If there exists a solution Y(f) A{t)emt where m has a nonzero
real part, then either 1^(011^°° as t^> <x> and ||Y(0||-* 0 as r-> -» or ||Y(0||-* °
as r-»oo and ||Y(0||—»°° as r—> — oo. But from our description of the Jacobi fields

we see that ail Jacobi fields hâve either bounded length or their length goes to o°

as t -> oo and as t —» -oo. Thus m cannot hâve a nonzero real part.
(ii) If X(t) A(t)em\ m5^0 and imaginary and degree A(f)>l is a solution with
A(0 Antn+ • • • +A0 (An7*0), then (nAnt + An_x)emt is a solution too.

We will now show that there are no solutions of the form {Axt + A0)emt with
and Ai^O. From 1. we know that (Ait + A0)emt is a solution iff

(m2Id-mT+B)A1 0

(m2ld -mT+ B)A0 ~ (2m -
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From this we can conclude that B(Ai) ^ 0 since if B(Ai) 0 we get T(Ai) mAx
from the first équation and

(m2ld -mT+ B)A0 - mAx

from the second équation. Then

-m(A1, Ai) ((m2ld - mT+ B)A0, At) <A0, (m2ld - mT+ B)AX) 0

so that Ai 0 which we assumed not to be the case. Since B(Ai)^0 it follows
that

is a vector field of unbounded length.
But from our description of the Jacobi fields we know that for a Jacobi field Y

the vector field B(Y) is of bounded length: This is clear for Jacobi fields Y which
are of bounded length themselves since B B(-, c)c is bounded. (The curvature
tensor B is bounded since M is compact and c has constant length.) The only
Jacobi fields of unbounded length are of the form

and since in this case B(X) 0 and since d(Lexpotv)ë commutes with B we hâve

that

B(Y) d(Lexpatv)ë(B(Z))

is of constant length.
Thus (Aif + A0)emt cannot be a Jacobi field.

(iii) If m 0 then A(t) cannot hâve degree >2 since no Jacobi field has this kind
of growth.

Remarks

(1) In [10] we proved Theorem 1 for Jacobi fields along a closed géodésie without
using the compaetness of M.
(2) If X(t) is a D parallel vector field, then

is the V parallel vector field with X(0) X(0) [5]. Thus the description of Jacobi
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fields in Theorem 2 can be easily interpreted in terms of a V parallel basis too.
(3) In [9] Rauch mentioned that m is 0 or imaginary if B is positive definite. But
notice that this condition is satisfied globally only if M is a symmetric space of
rank 1 since B > 0 implies that the sectional curvature is positive, in which case M
is symmetric of rank 1 or one of the two Berger examples [1]. But for the two
Berger examples B has 0 eigenvalues [4] and [5]. Of course B>0 is possible
along a particular géodésie. Notice also that positive sectional curvature does not
imply B > 0 as seems to be assumed in [9] and that C in Theorem 4 in [9] has to
be a complex vector valued polynomial and not just a vector.
(4) As J. Rawnsley pointed out to me, the proof of Theorem 2 is easier if M is

normal homogeneous. In this case one does not hâve to apply Theorem 1, which
uses global properties of Jacobi fields, but can dérive the claims from the local

properties of the diflEerential équation. We give a sketch of the proof hère.
For M normal homogeneous one has the additional information that B is

positive semidefinite:

<B(X), X> - ([v, [v, X\% X) <[t>, X]ï>, [v, X]f)) > 0.

To prove (i), if (Antn + • • • + A0)emt is a solution, then also Anemt is a solution
and thus

(m2Id-mT+B)An 0

and m2(An,An)-m(TAn,An) + (BAmAn) 0. But (An,An) and (BAn,An) are
real and >0 and (TAn, An) is purely imaginary or 0. Thus m is imaginary or 0.

To prove (ii) we show that if (A1t + A0)emt is a solution and m 5*0, then

Ai 0. We have from 1.:

(m2W-mT+B)A1 0

(m2W-mT+B)Ao=-(2m-T)A1.

Since B-m2 is a positive definite symmetric opérator and since

(Au (B - m2)A^ <A1? m(-2m + T)At) (Au m(rn2ld -mT+ B)A0)

((m2ld - mT+ B)AU mAQ) 0

we have Ai 0.
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To prove (iii) we show that A2t2 + Ait + A0 cannot be a solution. If it were, it
would satisfy

BA2 0

2TA2 BA1

Multiplying the third équation with A2 we get:

0 2<A2, A2)-(TAl9 A2) + (BA0, A2) 2<A2, A2)-(TA1, A2>.

Thus (TAUA2) is real and (Al9 TA2)= -2(A2, A2>. Multiplying the second

équation with A! we get

0 2<TA2, At) - (BAU Ax) - 4<A2, A2> - (BAU At)

and thus (A2, A2) 0.

(5) On a naturally reductive space JB>0 is not necessarily satisfied. In fact, in 3.

we give an example where B < 0 and also some of the sectional curvatures
become négative. But the influence of the torsion T in the Jacobi équation
guarantees that no exponential Jacobi fields exist.

There are lots of naturally reductive spaces which are not normal homogène-
ous as will be shown in 3.

COROLLARY. If G I0(M) and M G/H is a compact normal homogène-
ous space, then a Jacobi field is isotropic iff it has initial conditions in Vi © V2 ©
V3. Thus if V4© Vs^O, there exist nonisotropic Jacobi fields.

Proof. As we mentioned before, the Jacobi fields with initial conditions in

Vi © V2 © V3 are isotropic. If G 1O(M) the isotropic Jacobi fields hâve initial
conditions

]p) Xep
(0,Z)

The first ones are contained in Vi © V2 © V3, and we claim that the second ones

are contained in V2 which is équivalent to saying:
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Since M is normal homogeneous:

and thus Eo [v, î)Y or Ex [v, t)].

Remark. The relationship between the description of the Jacobi fields in
Theorem 2 and in Theorem 1 seems complicated.

Clearly the Jacobi fields in (iii) are contained in V3 © V4 © V5, but it is not
clear which Jacobi fields in (ii) are contained in Vx © V2, and are thus isotropic,
and which ones are linear combinations of isotropic Jacobi fields and Jacobi fields
with initial condition in V3© V4© V5.

Such a relationship would also give a description of the Jacobi fields vanishing
at two points where one could see which ones are isotropic and which ones are
not. One could then examine conjectures like: Ail naturally reductive spaces with
the property that ail Jacobi fields vanishing at two points are isotropic are locally
symmetric.

3. Exemples

We wiil now study a gênerai class of homogeneous metrics which is naturally
reductive but not normal homogeneous.

If g is a G invariant metric on M G/H we will say that g is G-naturally
reductive if there exists some Ad(H) invariant splitting g ï) © p with respect to
which g is naturally reductive. If g is G-naturally reductive with respect to one

splitting, it is in gênerai not G-naturally reductive with respect to another

splitting, but the spitting does not hâve to be unique either.

Similarly we say that g is G-normal homogeneous if there exists a biinvariant
metric on g whose restriction to p \)± is g.

Let Gi <= G2 c /o(M) be two subgroups which act transitively on M. Notice that
Gi-naturally reductive (resp. normal homogeneous) does not necessarily imply
G2-naturally reductive (resp. normal homogeneous) nor vice versa. For normal

homogeneous metrics we will demonstrate this in a simple example. Therefore we
will always mention the group G with respect to which the metric is or is not
naturally reductive resp. normal homogeneous.

Let M G/H be a compact homogeneous space with a normal homogeneous
metric g and an Ad(H) invariant splitting g ï)©p. Assume that p Pi©p2
(orthogonal splitting) and [ï), p2] 0, [p2, p2] <= p2.
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Then we define a variation gs of the normal homogeneous metric g on G/H
by:

gs g/Pix Pi + s2 - g/p2 x p2, s > 0.

Let K be the connected subgroup of G with Lie algebra p2. Then if H is

connectée, the right translation on G/H with éléments of K are well defined since

[ï)> P2] 0 and are thus isometries of M, which differ from the left translations if
the center of G is empty.

We will assume from now on that the center of g is empty (which is équivalent
to saying that G is semisimple, since G is compact) and that H is connected. We
therefore hâve GxXasa subgroup of the isometry group (at least locally). We
will show that the metrics gs on G/H are ail G x X-naturally reductive.

Note that we could also define our spaces as follows: In the above situation
H x K is locally a subgroup of G and conversely if H x K is locally a subgroup of
G, then G/H satisfies the above properties with p2 f. Thus our class of metrics
coincides with the ones studied in [6]. But notice that in [6] the author studied the

question whether gs is naturally reductive or not only with respect to a fixed

splitting g ï)ffi p and thus obtains that only gt g is naturally reductive.
Let G=GxK where (g,k) opérâtes by left translation with g and right

translation with fc"1 on G/H. The isotropy group is then H= HxK with imbed-
ding (h, k)->(hk, k).
Thus

CJ=ï)©pl©p2©ï

and

As an Ad(H) invariant complément p we can choose p Pi©p2 where p2

{(0, aX, bX) e p! © p2 © f | X e p2 ï}, and we normalize a - b 1.

The isomorphism between G/H and G/H on Lie algebra level sends px to px

as id and (0, aX, bX) to aX-fcX X€p2, so that the above metric gs looks as

follows on p:

i x Pi as before, gs(pi, p2) 0,

and on p2, gs((0, aX, bX), (0, aY, bY)) s2 • g(X, Y). For gs to be naturally
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reductive we need. e.g., for X, YepuZe p2:

g,([(X, 0, 0), (Y, 0, 0)], (0, aZ, bZ)) - gs([(X, 0, 0), (0, aZ, bZ)\ (Y, 0, 0)).

The left-hand side is equal to

gs(([X, Y],V[X, Y]Pa, 0), (0, aZ, bZ))

]Pi, a[X, Y]Pa, 6[X, y]P2), (0, aZ, 6Z))
s2-g([x,y]P2,z)

and the right-hand side is equal to

-gs((a[X, Z]Pi, a[X, Z]P2, 0), (Y, 0, 0)) - ag([X, Z]Pi, Y).

Using the fact that g is naturally reductive we get the condition a s2 and one
can easily check that a s2 is also sufficient for gs to be naturally reductive.

Thus each gs has exactly one complément ps with respect to which it is

naturally reductive. We will now examine which metrics are GxK normal

homogeneous. For that purpose let us assume that G is simple. (Thus only gi g
is G-normal homogeneous.) Let us first restrict ourselves to K being simple too.
Then the biinvariant metrics on G x K are of the form

where is a biinvariant metric on g. p |x is then equal to

p Pi © p2

€p2=î}. Thus s2 a d2/(d2 + l), and we
see that gs is G x K-normal homogeneous iff s < 1 (notice that gi g is not
GxK-normal homogeneous). If K were not simple, then the metric on fxf
would be a multiple of on each simple factor of î. Then pi is still contained in
f)x but p2 would not consist of (0, d2X, X) anymore, unless the metric is a

multiple of )/fxf and thus px and p2 would not be orthogonal anymore, and
the metric is not of the form gs. But we do need G simple since if G Ki x X2,

Ii =pi> Ï2=p2> and H a Kx we hâve GIH (KjlH)xK2 and ail metrics gs are G
and G x JFC2-normal homogeneous. We summarize:

THEOREM 3. Let M= G/H be a compact normal homogeneous space with

g l)©p and assume that G is semisimple, H connectée and that p pi©p2 with
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[ï),p2] 0, [p2, p2]ŒV2- Then the metric gs g/piXpj + s2 • g/p2xP2 is GxK-
naturally reductive, where K is the connected subgroup of G with f p2.

If G is simple gs, s^ 1, is not G-normal homogeneous and gs is G x K-normal
homogeneous iff 5 < 1.

Remark. One can compute the sectional curvature of gs in terms of the
sectional curvature of g and show that it is not nonnegative anymore if G is

simple and s is large enough >1. Thèse metrics are then not normal homogeneous
with respect to any transitive subgroup G

We will now give some spécifie examples.
(1) The Berger sphères: S2n+1 SU(n + l)/SU(n). Since SU(n + l) contains the
subgroup S(U(n)x 1/(1)) which is a product Sl/(n)xS\ the conditions of the
above theorem are satisfied. For s<l, gs is known as the Berger sphère [1], [3]
and for s > 1, gs is a naturally reductive metric which is not SU(n + 1) x S^normal
homogeneous. We will now compute T, B, and jR for this example. Let G
SU(n + DxS1 and H= S(U(n)x L/(l)) Sl/(n)xS1. We will use the notation in
[3].

Let A]k i(En-Ekk), Bjk E]k-Ekl, C]k i(E]k + Ekj) and S,

(lMj)Ii-i JAifi+i, a, (/(/+1)/2)1/2. For the biinvariant metric (X, Y)= -3 trace
XY, p= t)x has as an orthonormal basis:

A Sn, er Br,n+ij /r Cr>n+i, r 1, 2,..., n.

One easily shows that [l), A] 0 so that

where the brackets « » mean that thèse vectors are a basis of pt. Let D be a basis

of the Lie algebra of S1. Then, according to the above, the metric gs is naturally
reductive with respect to the décomposition 9 ï) © p« ps

«s2A + (s2-l)D, er, /r» where we will abbreviate

ds (s2A + (s2- l)D)/\\s2A + (s2- 1)D||, i (s2A + (s2- 1)D).
5

Thus ds, er, /r, r 1,..., n, is a gs orthonormal basis of ps. We will now détermine
Bv B(-, v)v and Tt, T(u, •)• Since Ad(H) maps any v, \\v\\s 1 into a vector

va — cos ads + sin a6i,

we can restrict ourselves to v va.
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Then E «êi sin ads - cos aeu e2,..., en, /i,..., /n». The Lie brackets [p, p]
are easily determined to be:

r. -, n + 1 rj n + 1

[er,f,]=Cr,t if rît
(A + D)

H Sr_iH Sr + • • • H

«r-l Oùr «n_
and thus

s—«n

e,) s cos a • /„ TMt) - s cos ael, i ^ 2
«n Un

OL

sin2 ae B(/) sin2Bv(e.) sin2 ae,, Bv(/,) sin2 a • /„ i > 2.

Thus for s2 > 2n/(n + 1) one eigenvalue of Bv becomes négative. If n 1 (Ms S3)

one even has B,,sO. Since RV BV—*TÎ we hâve

4oî

I sin2 a + s2
2

cos2 a \
l 4an J

Thus for s2>8n/(3(n +1)) some of the sectional curvature becomes négative, and

we can conclude that such a gs is not G-normal homogeneous for any transitive
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lo(M)- The minimum and maximum sectional curvatures are:

for
2n 2n n + 1

and

4-3s2——, s2—— for
2n 2n n + :

so that the pinching is equal to

-t 2^ 2n
if s ^-

if s2s-

8n-3s2(n + l) " "
n +

8n-3s2(n + l) 2 2n
5

s2(n + l)

Thus gs with s2 2n/(n + l) is the standard metric on S2n+1. It is the only metric
gs, s> 1, which is G-normal homogeneous with respect to some G. This is clear
for n 1 since the only transitive groups G are S3, S3x S1 and SO(4). Note that
the standard metric on S3 is S3-normal homogeneous and SO(4)-normal
homogeneous but not S3x S^normal homogeneous. We can conclude that if gt is

the metric on S2n+1 which is obtained from the standard metric by multiplying
with t2 in the direction of A* then gt is isometric to gs with s2= f2(2n/(n + l)).
Notice that A* is the vector field on s2n+1czCn+1 obtained by multiplying the
base point with i. Thus gt is naturally reductive and has some négative sectional
curvature for t2>j and g, with r2^(n + l)/2n is normal homogeneous, whereas gt
with (n + l)/2n <*2<1 or f2>l is not normal homogeneous.

Looking at the computations in [3], one sees that the metrics gs, s<l, (resp.

gf, t < (n + l)/2n) are isometric to the Berger metrics where sin a s. One can also

compare the metrics gs with the metrics on the distance sphères in complex
projective space [12]. Comparing minimum and maximum sectional curvature one
can see that the metric on the distance sphère of radius r is isometric to the metric
gs, multiplied with a factor 4 sin2 (r/2) and where cos2 (r/2) s2(n + 1)/2m t2.

Only the distance sphères with r > 2 arc cos ((n + l)/2n)1/2 are thus isometric to the

Berger sphères (up to a factor) and the other distance sphères are not normal
homogeneous. (This fact was also known to J. E. D'Atri.) One can solve the
Jacobi équation for gs explicitly, just like in [3]. One gets the same resuit as

obtained there after substituting sin a s. This example shows that ail the
Jacobi-fields described in Theorem 2 actually do occur.
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(2) In [8] some of the sectional curvatures of the metnc gs on SO(n + 2)/SO(n)
(K SO(2)) were computed and at least for s2>| some of them become négative
(3) In [6] one finds a hst of the spaces G/H satisfymg the conditions of Theorem
3 under the additional hypothesis that G/HxKisa simply connected irreducible
globally symmetnc space, but there are lots of other spaces

Remark The following generahzation of the metnc gs îs also naturally reduc-
tive If K îs not simple, let f ïo©fi© ©îr where î0 is the center of î and

ïi, ,ïr are simple Then g* g/Pl + h/lo+fig/fl+ + *?g/i, with h arbitrary on
ï0, is easily shown tobeGxK-naturally reductive
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