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A long homology localization tower

E. Dror and W. G. Dwyer*

1. Introduction

Let JR be fixed as a subring of the rational numbers or a finite field of the form
21pZ, p prime. The purpose of this paper is to give a new description of the
R-homology localization XR of a space X [1], The main ingrédient is an inverse
limit construction for XR (complementary to Bousfield's direct limit construction
[1, 11.5]) which is obtained by transfinitely iterating the R-nilpotent completion

process of [3]. Thus one immédiate benefît is a clearer understanding of the

relationship between XR and the .R-nilpotent completion R^X of X.
A space X is said to be R-Bousfield if XR is homotopy équivalent to X. The

possibility of two constructions for XR is suggested by the fact that the natural

map X-*XR has two universal properties:
(i) X -> XR is terminal, up to homotopy, in the category of ail maps X -» Y

which induce isomorphisms H*(X; R)~H*(Y; R).
(ii) X —» XR is initial, up to homotopy, in the category of ail maps X —» Y

which hâve an JR-Bousfleld target space Y.

In order to exploit property (ii) efïectively, it is necessary to study the

1.1. Structure of R-Bousfield Spaces. For each ordinal a >0, let Ia be the class of
jR-Bousfield spaces defined inductively as follows.

(i) /0 contains ail fibrant spaces with the property that each connected

component has the homotopy type of a simplicial i?-module.
(ii) Ia (a > 0) contains ail fibrant spaces which are of the homotopy type of

holinu_D [3, p. 295], where D is a small diagram of spaces, each of which

belongs to Ip for some j3 < a.

The spaces in /0 are i?-Bousfield by [1, §4] and, inductively, the spaces in /„
(a>0) are JR-Bousfield by [1, §12]. Using [2] it is not hard to prove (see §5)

1.2. PROPOSITION. If X is an R-Bousfield space, then Xg2« for some

ordinal a.

* Supported in part by National Science Foundation grant MPS72-05055 A03.
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186 E DROR AND W G DWYER

1.3. The Long Tower. Let £1 be the opposite category of the category of ail
ordinals, that is, O is the category with one object for each ordinal a and one
morphism |3 —> a for each f$>a. A long tower in a category C is a functor
F: il -» C, usually written {F(a)}a. The long tower is said to be augmentée by the
object X of C if there are compatible maps X—> F(a), aeO.

For any space X we will construct a natural long R-homology localization
tower {TaX}a of spaces, naturally augmented by X, such that

1.4. (i) ///:X-> Y induces an isomorphism H*(X; R)-> H*(Y; R) then f in¬
duces homotopy équivalences TaX—TaY,

(ii) for any X or a, TaXeIa, and
(iii) if Xela, then the natural map X-* Ta+1X is a homotopy équivalence.

In view of 1.2, thèse properties imply that

(iv) for each space X there is some ordinal a such that for ail /3 > a, the map
X—> TpX is up to homotopy the R-homology localization map X—» XR.

In fact, a can be chosen to be any ordinal such that XReIa. Thus the point at
which the localization tower fînally stabilizes for a given X dépends explicitly on
the minimal number of homotopy inverse limits needed to construct XR from the

spaces in /0 (that is, from disjoint unions of products of i?-module Eilenberg-
MacLane spaces [6, 24.5]). This ordinal is an intrinsic measure of the homotopical
complexity of XR or of the homological complexity of X itself.

1.5. Relationship to the R-completion. The fîrst few spaces in the tower {TaX}a
appear at least implicitly in [3]. The space T0X is exactly RX [3, p. 14], T\X is

homotopy équivalent to R»X, and T2X is homotopy équivalent to the homotopy
inverse limit of the cosimplicial resolution of X [3, p. 20] constructed using the

triple structure of Roo [3, p. 26]. The whole tower {TaX}a is obtained by imitating
the process of passing from .RX to JRooX at successor ordinals and taking inverse
limits at limit ordinals (see §6). The main technical innovation is the substitution
of augmented functors (§3) for triples [3, p. 13].

This paper was inspired by Bousfield's algebraic work in [2], but, although we
use his results heavily, our constructions do not seem to be related in a simple way
to his.

1.6. Organization of the Paper. Section 2 gives a simplifled outline of our général
approach. Section 3 contains some preparatory material of a category-theoretical
nature; Section 4 gives a generalization to transfinite towers of a resuit which is

well known for towers indexed by the natural numbers; and Section 5 présents a

proof of 1.2. Section 6 contains the construction of the tower {TaX}a and the



A long homology localization tower 187

proof of its properties; Section 7 has an inductive "Artin-Mazur-like" interprétation

of the functors Ta, and the final section contains some examples.

1.7. Notation and Terminology. Although our arguments are not usually com-
binatorial, the word space is used as a synonym for simplical set ([3, VIII], [6],
[7]); S dénotes the category of spaces. For convenience we will sometimes use

the terminology of homotopical algebra [7: I, 1.1 and II, 3.14]; for instance, a

cofibration is an injection of simplicial sets, a fibration is a Kan fibration, and a

space X is fibrant if the unique map of X to the one-point space is a fibration, Le.,

if X satisfies the Kan extension condition.

2. Outline of the proof

This section présents the main arguments of the paper in a schematic setting in
which most of the technicalities disappear. We hope that this will help the reader
to catch sight of the underlying simplicity of the basic ideas.

Warningl This section is independent of the rest of the paper in notation and
terminology.

Let C be a category closed under inverse limits. An augmented functor (T, 4>)

on C is a functor T:C-> C together with a natural transformation <t> : le-* T.

2.1. An Equalizer Construction. Let (T,<f>) be an augmented functor on C. For
XeC, let TA(X) dénote the equalizer of the two maps 4>(TX), T(4>(X)):TX-+
T2X, that is, let TA(X) be the inverse limit of the diagram

The construction of TA(X) is a functorial in X; moreover, since

T(</>) o </>, TA(X) cornes equipped with a natural map 4>A(X) : X -» TA(X) such that
the obvious diagram

TA(X)

T(X) commutes.

2.2. Collapse Lemma (cf. 3.6). If4>(X):X-+ TX has a left inverse, then the map
<£A(X):X-*TA(X) is an isomorphism.
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Proof. Let s : TX-* X be a left inverse for <f>(X), and let i :TA(X)-> TX be the
natural map. Then it is easy to see that s ° i is a two-sided inverse for </>A(X).

2.3. Bousfield Objects. Let E be a distinguished class of morphisms of C called
équivalences (or homology équivalences). An object ZeC is said to be Bousfield if
any équivalence /:X—» Y induces a bijection Hom (Y, Z)—? Hom(X, Z). The
class of Bousfield objects is closed under inverse limits. A localization map for
Xe C is a map e : X-^ Z such that e is an équivalence and Z is Bousfield. Such a

Z is called a localization of X; if one exists, it is unique up to a canonical
isomorphism.

2.4. Assumption. Every object XeC fias a localization.

Suppose that Io is some naturally given class of basic Bousfield objects. By
induction, for each ordinal a > 0 let Ia dénote the class of ail objects which can be
written up to isomorphism as lim<_ D where D is a small diagram of objects in
C each of which belongs to Ip for some j3 < a.

2.5. Assumption (cf. 1.2). For any Bousfield object XeC there is an ordinal p
such that Xe J3.

2.6. A Long Localization Tower (cf. §6). Suppose (R, </>) is an augmented functor
on C such that

(i) for any XeC, RX is Bousfield, and

(ii) if /:X—? Y is an équivalence, then Rf:RX-^RY is an isomorphism.
Thus R fails to be a localization functor only because <t>(X) :X—» RX need not be

an équivalence. Suppose that (R, <f>) satisfies the additional restriction
(iii) if Xe Jo, then the natural map <f>(X) : X —? RX has a left inverse. Define a

long tower {(Ta, <£a)}« of augmented functors by transfinite induction as follows.
The pair (To, <£0) is (R,<t>). If a j3 + l is a successor ordinal, then (Ta, <f)a) is

(Tp, <££). If a is a limit ordinal, then (Ta, <t>a) is the inverse limit of (T3, <£>3) over ail
ordinals @<a.

2.7. PROPOSITION. For any X e C there is some ordinal a such that for ail p > a
the natural map <f>p(X):X—* T$X is a localization map.

Proof. Let e :X-> Z be a localization map for X. It follows from 2.6(ii) that e

induces isomorphisms T«X-» TaZ for ail ordinals a ; thus it sufiices to show that
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there is some ordinal a such that for ail /3 > a the map Z -» TpZ is an isomorph-
ism. This follows from 2.5 and

2.8. LEMMA. If ZeTa, then <fo(Z):Z-> TpZ is an isomorphism for ail

Proof of Lemma. The technique is transfinite induction on a. The case a 0

follows from 2.6(iii) and 2.2. Pick Xela, a >0, with X linu_D, where D is

some diagram of objects each of which belongs to Ip for some j3 < a. Consider
the commutative diagram

X > TaX

•i i
lim D > lim TaD

where the horizontal maps are induced by <£„. The induction hypothesis shows

that the lower horizontal arrow is an isomorphism, since <f>a(Y): Y-* TaY is an

isomorphism for each object Y in the diagram D. Thus (j>a (X) : X -» TaX has a

left inverse, and the inductive step follows from 2.2.

2.9. Remark. The above program does not lead to an inverse limit construction
for homology localizations only because the homotopy category of the category S

of spaces is not closed under inverse limits. This paper is guided around that
obstacle by the principle that the notion of homotopy inverse limit [3, XI] in S

provides a natural substitute for the missing notion of inverse limit in HoS.

3. Categorical préliminaires

3.1. Restricted Cosimplicial Spaces. A restricted cosimplicial space X is a "cosim-
plicial space without codegeneracies," that is, X consists of

(i) for each integer n ^ 0 a space X", and

(ii) for each pair (i, n) of integers with 0< i < n coface maps

such that d]dl dld]-x if i<\ [3, p. 267].

The object X is said to be augmented by X"1 if there is a map
such that d°d° d1d0:X-1-+Xî.
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In 14ie same way in which cosimplicial spaces are associated to triples on S [3,

pp. 20, 323], restricted cosimplicial spaces are associated to

3.2. Augmentée Functors. An augmentée functor (T, <f>) on S is a pair in which
T: S —» S is a functor and <f> : ls —» T is a natural transformation. The fact that <f> is

a natural transformation implies that (T(<f>)) ° <£> (<£>T) « 4>.

Let (T, <f>) be an augmented functor on S and let XeS. The restricted

cosimplicial resolution of X with respect to T is the augmented restricted
cosimplicial space TX given by

(TX)k Tk+1X

in codimension fc, and

1^ (TX)k) (TkX^^ Tk+1X).

3.3. T-Completions. Let ^rest dénote the restricted simplicial category, that is, the

category whose objects are the finite ordered sets [n] {0,1,..., n} (n>0) and
whose morphisms are strictly monotone maps. The restricted cosimplicial space
TX (without its augmentation) can be thought of as a functor

The T-completion of X, denoted TA(Xj, is deflned to be the homotopy inverse

limit of TX [3, p. 295]:

TA(X) holimTX

The augmentation <£(X):X-> TX (TX)° induces a natural map
4>A(X):X-» TA(X). There is also a natural map TA(X)-> T(X) which induces a

morphism (TA <^A)—> (T, <f>) of augmented functors.

3.4. LEMMA. // the spaces T"X (n > 1) are fibrant, then the natural map
T*(X)-»TXisafibration.

This is proVed below in 3.11.

3.5. A Collapse Criterion. Let (T, </>) be an augmented functor on S. It is useful to
hâve a criterion that guarantees, for a given XeS, that the map
0A(X):X-> TA(X) is a homotopy équivalence.

3.6. Collapse Lemma. Suppose that T^X is fibrant for ail n>l and that the
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natural map <£(X):X-> TX has a left inverse. Then the completion map
X-+ TA(X) is a homotopy équivalence.

3.7. Relationship to Cosimplicial Constructions. Let A dénote the full simplicial
category, that is, the category whose objects are the same as those of ^rest, but
whose morphisms are ail weakly monotone maps. If (T, <f>, i/r) is a triple or monad

on the category of spaces [3, p. 13], Bousfield and Kan associate to any space X a

cosimplicial resolution with respect to T [3, pp. 20, 323]; this is a cosimplicial space,

or, equivalently, a functor

Let (T, <j>) be the underlying augmented functor of (T, </>, tp)9 and let J:Arcst->
A be the obvious inclusion functor. For any X there is a commutative diagram

TX\ /T*(X)
S

which induces a natural map [3, p. 316]

hoHm T*(X) -* holim TX TA(X).

3.8. LEMMA. If TnX is fibrant for ail n>l, then the map
holim^ T*(X) -> TA(X) is a homotopy équivalence.

If (T, 4>9 *A) is a triple, let T^X dénote Tôt (T*(X))[3, p. 17].

3.9. COROLLARY. //T* (X) is a fibrant cosimplicial space [3, p. 275], there isa
natural homotopy équivalence T^X—* TA(X).

This follows from [3, p. 300].
The rest of this section contains the proofs of 3.4, 3.6 and 3.8.

3.10 The Over Category. Suppose that C and D are catégories, and that / :C -> D
is a functor. For each d e D the over category J/d is defined as having one object
for each pair (c,/) where ceC and /gHomD (J(c), d), and one morphism
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(c, f) -> (c', /') for each g e Homc (c, c') such that

commutes. The composition rule in J/d is induced by the rule in C.

If C is small, then Jjd is small and thus has a nerve or spatial realization, which
is a space also denoted by J/d [3, p. 29]. In gênerai we will make no notational
distinction between a small category and its spatial realization. For instance, if C
is a small category and ceC, C/c will dénote (the spatial realization of) the

category lc/c, where lc is the identity functor on C. Similarly, CI- will dénote the
functor C —» S which assigns to each object ceC the space C/c.

3.11. Proof of 3.4. Let V(n, k) dénote the space formed by the boundary of
the standard n-simplex with the fc'th face deleted [7, II, 2.1]. There is a

cofibration V(n, fc) —» A[n], where A[n] is the standard n-simplex itself. To prove
the lemma it is enough to show that the dotted arrow exists in any diagram of the
form

i ,.--1
A[n] *T(X).

By an adjointness argument [3, p. 296] this cornes down to showing that there is a

map g:4[n]x(zlrest/-)-*TX which extends both the given map

and the map

which is adjoint to /.
The map g is built up by using induction on m to construct its components

gm : A[n] x (ATeJ[m]) -> T"+1X.

The map g0 is given. The space AlesJ[m] is the first barycentric subdivision
sdA[m] of the standard m-simplex and the prescription of gm_i détermines the



A long homology localization tower 193

restriction of gm to A[n]xsd(À[m]), where À[m] is the boundary of the m-
simplex. In addition, the requirement that g extend /' détermines the restriction
of gm to V(n, k)xsdA[m]. Thus gm must be constructed as the dotted arrow in a
diagram of the form

(V(n,k)xsdA[m])U(A[n]xsdÀ[m])-> T"IflX
I -

*
I

A[n] x sdA[m\ ^^ > *

where * is a one-point space. The existence of such a dotted arrow follows from
the fact that the right vertical arrow is a fibration while the left vertical arrow is a

cofibration and weak équivalence.

The proofs of 3.6 and 3.8 dépend on a basic property of homotopy inverse
limits. Recall that a functor / : C -> D (C small) is said to be left cofinal if for each
d g D the space J/d has the weak homotopy type of a point.

3.12. COFINALITY THEOREM [3, p. 316]. Suppose that C and D are
small catégories, and that

is a commutative diagram such that

(i) J is left cofinal, and
(ii) for each deD, G(d) is fibrant.

Then the induced map holinu_ G —> holim^. F is a homotopy équivalence.

We will apply 3.12 by showing that appropriate functors with domain Arest are

left cofinal. The simplest way to do this is to interpret cofinality geometrically.

3.13. Restricted Simplicial Sets. A restricted simplicial set X is a "simplicial set

without degeneracies," that is, X consists of

(i) a set Xn (of n-simplices) for each n>0, and

(ii) maps d£:Xn-*Xn_!, 0</<n, such that d,d; dJ-_1dI if i<j [3, p. 230].

Restricted simplicial sets can be identified in the usual way with functors
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(^rest)op —> Sets. A restricted simplicial set X has a natural enveloping space,
denoted R(X)9 defined by

Hence A[n] is the standard n-simplex and the équivalence relation ~ is gener-
ated by

(dtx, s)~(x, Ôls) xeXn+i

seA[n]

where 8l :A[n]-+ A[n + l] is the i'th face inclusion.
The functor R is the left adjoint to the forgetful functor from simplicial sets to

restricted simplicial sets. It is not hard to see that the nondegenerate simplices of
R(X) are in one-one correspondence with the simplices of X itself.

3.14. LEMMA. Let /:4rest^D be a functor, and let deD. Then J/d is

weakly homotopy équivalent to R(X), where X is the functor (4rest)°p—? Sets given
by

Proof. A calculation shows that for any small category C and functor /:C
D, the space J/d is isomorphic to

//Hom(J(c),d)x(C/c)

Hère the équivalence relation ~ is generated by

(f°Jg,s)~(f,g*s)

where /eHomD (/(c2), d), g e Homc (cl9 c2), and g* : C/ci -> C/c2 is induced by g.

The proof consists in applying this to ^rest and using the fact that for each n the

space ^rest/[n] is isomorphic to the first barycentric subdivision of the standard

tt-simplex.

An augmentation for a restricted simplicial set X is a map d0 : Xq —> X-x such
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that dodo dodi : Xi -> X_i. A contracting homotopy for an augmentée! restricted
simplicial set X is a family of maps s :Xn—>Xn+i such that

(i) dn+1s =identity, n>-l, and
(ii) dts sdly 0<i<rc.

In the statement of the following lemma, the set X_i is identified with the
discrète space it represents.

3.15. LEMMA. IfX is an augmented restricted simplicial set with a contracting
homotopy, the induced augmentation map R(X)—» X_i is a weak homotopy
équivalence.

Proof. Since R commutes with disjoint union, it is enough to prove the lemma
when X_i is a single point. In this case one computes that the fundamental group
of JR(X) is trivial and that 5 induces a contracting homotopy on the normalized
intégral chain complex of R(X).

3.16 Proof of 3 6. Let A^est dénote the augmented restricted simplicial categ-

ory with a contracting homotopy, that is, A^est consists of

(i) one object [n] for each n^— 1,

(ii) for every pair (i,n) of integers with 0</<n coface maps

such that d]dl ^d'd1'1 if i</, and

(iii) for each n>0a map

s:[rc]->[n-l]

such that

sdn identity, n>-l
sdl dls, i < n.

There is an obvious inclusion functor J:^rest-^ Aîe*t- Suppose that the map
4>(X):X-h> T(X) admits a left inverse r:T(X)^X. The resolution functor
TX:4rest-* S can then be extended to a functor T+X:Aîest-+ S by setting

X^^ TnX)
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and

TX).

This gives a commutative diagram

A J A +

\/S
The category ^st has [-1] as an initial object, so the canonical map

X T+X[-l] lhn T+X -* hoHm T+X

is a homotopy équivalence [3, p. 299]. (This can also be derived from the fact that
the inclusion of the singleton category [-1] into A^t is left cofinal.) Thus, by
3.12, it is enough to show that the functor / is left cofinal.

Pick [m]eArcst- H the restricted simplicial set X given by

is furnished with the augmentation

induced by composition on the right with d°, then composition on the left with s

provides maps

which give a contracting homotopy for X. By 3.15 R(X) is contractible, and the
lemma thus follows from 3.14.

3.17. Proof of 3.8. Let /:4rest-*^ be the inclusion functor. According to
3.12, it is sufficient to show that / is left cofinal. Pick [m]eA and let X be the
restricted simplicial set with
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It is clear that X is just the underlying restricted simplicial set of the standard
m-simplex zi[ra]. An easy calculation shows that R(X) is simply-connected; in
addition, since the normalized intégral chain complex of R(X) is the same
as the unnormalized intégral chain complex of A [m], the reduced intégral
homology of -R(X) vanishes. Therefore, R(X) is contractible and the lemma follows
from 3.14.

4. A tower lemma

4.1. Fibrant Towers. A tower of spaces {Xce}a<fi of length /3 is a functor Op -» S,

where Op is the full subcategory of ù containing ail ordinals less than |8. Unlike
long towers, towers are small diagrams of spaces and thus hâve both inverse limits
and homotopy inverse limits.

The tower {Xa}a</3 is said to be fibrant if

(i) Xo is a fibrant space, and

(ii) for each a < j3 the natural map

is a fibration.

4.2. FIBRANT TOWER LEMMA. If {Xa}a<(i is a fibrant tower, then the

natural map

lim {X«}«<3 -» holim {X^^
is a homotopy équivalence.

The function complex Hom ({Aa}a<(i, {Xa}a<^) of maps between two towers is

the space whose n-simplices (n>0) comprise ail tower maps

and whose face and degeneracy operators are induced by the standard inclusion
A[n]-> A[n +1] and the standard collapses A[n] -» A[n -1] [3, p. 295]. If {*}«<0
is the constant one-point tower, then

Hom ({*}a<3, {Xa}«<3) lim {Xot}fx<3

while if {flpla}a<& is the tower of 3.10, then

Hom ({/Va}«</3, {X«}a<0) holim {X}a<3.



198 E DROR AND W G DWYER

4.3. LEMMA. Suppose that {Aa}a<zfi —» {Ba}a<(i is a tower map which induces a
trivial cofibration A* —> Ba for each a<p. Then for any fibrant tower {Xa}ot<p the

restriction map

Hom ({Ba}a<(3, {X}«o) -* Hom

is a trivial fibration.

4.4. Remark. A fibration or cofibration is trivial if it is also a weak homotopy
équivalence.

Lemma 4.2 is proved by applying 4.3 twice: first to the obvious map

where the second tower is constant, and then to any inclusion

Note that each of the spaces (2&/a is a contractible by [3, p. 293].

Proofof 4.3. The conclusion of 4.3 holds if and only if a dotted arrow exists in

every diagram of the form [7, II, 2.1]

i[n]-> Hom

4[n] -» Hom

where -i[n] -> A[n] is the inclusion of the boundary of the standard n-simplex. By
an adjointness argument this is équivalent to showing that the dotted arrow exists

in each diagram

3 -> {Hom (A[nl

i

{BaLo-> {Hom (A[n], Xa)}a<fi

where in this case Hom dénotes the standard function complex of maps between

spaces [6, p. 16]. This second dotted arrow is constructed by an induction on a.

The case a 0 is straightforward and uses the assumption that Xo is fibrant. The

induction step for a > 0 dépends on the existence of yet another dotted arrow in
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the diagram

Hom
1

Ba -» lim {Hom (A[n], Xy)}7<a xlim{HomU[n]^)K<a Hom (À[n], Xa)

This dotted arrow exists because the left vertical map is a trivial cofibration and
the right vertical arrow is a fibration.

5. i?-Bousfield spaces

The purpose of this section is to prove 1.2. The proof is based on Bousfleld's
algebraic characterization of jR-Bousfield spaces [1, §5].

We will use the terminology of [2] except that HR-local groups and HZ-local
7T-modules will be called R-Bousfield groups and Z-Bousfield 7r-modules. Recall
that R is a subring of the rational numbers or a finite field of the form Z/pZ, p
prime.

5.1. PROPOSITION [2:3.10, 2.6]. The R-Bousfield groups form the smallest
class of groups such that

(i) the class contains the trivial group,
(ii) the class is closed under inverse limits of arbitrary towers,

(iii) // Y is in the class and 1 -» W —> X—> Y-» 1 is a central extension with W
an R-module, then X is in the class,

(iv) ifX is in the class and 1—>W—»X-» Y-> 1 is a short exact séquence with
Y abelian and an R-module, then W is in the class.

Let 7T be a group and let M be a 7r-module. Then M will be called an R-Bousfield
iT -module if

(i) M is .R-Bousfield as an (abelian) group, and

(ii) M is Z-Bousfield as a tt-module.

It is not hard to prove using [2:8.9, 7.3] that

5.2. LEMMA. The R-Bousfield ir-modules form the smallest class of ir-
modules such that

(i) the class contains the zéro tt-module,
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(ii) the class is closed under inverse limits of arbitrary towers,
(iii) // Y is in the class and 0 —» W —» X —» Y -^ 0 /s a/t extension of tt-modules

with W simple trivial tt-action) and an R-module, then X is in the

class,

(iv) ifX is in the class and 0 -» W-~* X—> Y—>Q is a short exact séquence with
Y simple and an R-module, then W is in the class.

In fact, it is clear that the class of J^-Bousfield tt-modules contains the class

described in 5.2. If R^Q the opposite inclusion foliows easily from the fact that
by naturality the HZ-tower of an jR-Bousfield tt -module M is itself a tower of
R-modules. If R=Z/pZ it is possible to use the natural action of tt on the
HR -tower of the underlying abelian group of M and to show by transfinite
induction that each tt -module in this tower belongs to the class described.

5.3. LEMMA [1, §5]. A fibrant space X is R-Bousfield if and only if for every
i > 2 and every choice of basepoint xeX,

(i) tt\{X, x) is an R-Bousfield group, and
(ii) tt,(X, x) is an R-Bousfield tti(X, x)-module.

5.4. Proof of 1.2. Let C dénote the union of the classes Ia. It is necessary to
show that every .R-Bousfield space X belongs to C. Note that by définition C is

closed under arbitrary homotopy inverse limits.
Let rr be a group and let M be a 7r-module. For n ^ 1, L(w, M, n) dénotes the

split fibration over K(tt, 1) with fibre K{M, n) which is determined by the action
of 77 on M.

Every fibrant space X is homotopy équivalent to the homotopy inverse limit of
its Postnikov tower {PnX}n<ÙJ, where co is the first infinité ordinal. Moreover, if B
runs through a sélection of basepoints for X, one for each path component, there
are hQmotopy fibre squares

beB

beB

Thus by 5.3 it suffices to show that for each fixed n>\ every space which is a

disjoint union of spaces of the form L(tt, M, n) for various jR-Bousfield groups tt
and various i?-Bousfield 7r-modules M belongs to C.

This is done by induction on n. We will assume n > 1 and prove that every
(connected) space of the form L(tt, M, n) belongs to C. The gênerai case can be
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proved in the same way by using the fact that homotopy inverse limits over
catégories with connectée! nerves commute with disjoint unions. The initial case

n 1 is similar to the case n > 1 but simpler.
Let 7T be an JR-Bousfield group. It is easily seen that the class of jR-Bousfield

77-modules M such that L(tt, M, n) belongs to C satisfies parts (i), (iii) and (iv) of
5.2, so it remains to show that if {Ma}a<<3 is a tower of i?-Bousfield 7r-modules
such that each L(tt, Ma, n) belongs to C, then L(tt, M, n) belongs to C, where

M lim^{Ma}a<|3. This is done as follows. Using bar construction techniques [6,

p. 83] one devises a way of constructing the spaces L(ir, Ma, n) which is functor-
ial in Ma. Thus the tower {Ma}a<(3 of ir-modules gives rise to a tower
{L(tt, Ma, n)}a<(3 of spaces. Let X dénote holinu_{L(7r, Mtt, n)}a<fi. The space X
belongs to C and by [3, p. 309] and naturality there are 7r-module isomorphisms

Note that the homotopy groups of X actually are 7r-modules by virtue of the fact
that the composite

/:X-> L(tt, Mo, n)-^ K(tt, 1)

has a section K(tt, 1) —> X.

Let Pn-2(f) dénotes the n-2 stage in the Moore-Postnikov factorization of /
[6, p. 34]. The inductive hypothesis implies that Pn-2(f) belongs to C, so the space
Y which is defined as the homotopy inverse limit of the square

Y > X
.1

K(ir,l)-»Pn-2(f)

also belongs to C. Up to homotopy the space Pn_i(g) is a split fibration over
K(ir, 1) with jfiC(7rn_i(Y), n-1) as the fibre, so, by induction, Pn-i(g) belongs to C
too. The proof is finished by noting that there is a homotopy fibre square

L(7r,M,n)-» Y

I



202 E DROR AND W G DWYER

6. Construction of the tower

The object of this section is to construct for each a e fl an augmented functor
(Ta, fa) on S and compatible morphisms (T3, fa) -» (Ta, fa) for |3 > a. For Xe S

the augmented long tower X —» {TaX\a is the R-homology localization tower of X
The construction is by transfinite induction. The pair (To, fa) is the underlying

augmented functor of the triple (JR, </>, $) of [3, p. 13]. If a j3 +1 is a successor
ordinal, (Ta, <f>a) is(T£, <t>p); by 3.3 there is a natural morphism (Ta, fa) -* (Tfi, fa).
Finally, if a is a limit ordinal the pair (Ta, <f>a) is lim^_{(T3, fa)}p<a; this evidently
cornes with a natural map into (T3, fa) for each j8 <a.

The identification of Ti and T2 made in 1.5 follows easily from 3.8, 3.9 and
6.1 below. The rest of this section is taken up with proving that the tower {TaX\a
has the properties listed in 1.4. Recall the

6.1. Homotopy Invariance Lemma [3, p. 304]. Let D be a small category, let

F, G:D—>S be functors, and let t.F-^ G be a natural transformation. Suppose

that for ail deD

(i) the spaces F(d) and G(d) are fibrant, and
(ii) the map r{d) : F(d) -» G(d) is a homotopy équivalence.

Then r induces a homotopy équivalence Holinu- F —» Holinu_ G.

6.2. Proof of 1.4(i). The space T0X RX is always fibrant, since choice of a

basepoint for X makes jRX into a simplicial i?-module [3, p. 14]. Using 3.4 it is

easy to show by induction that TaX is fibrant for ail a.
For any space X, it*RX is naturally isomorphic to H^(X\ R) (reduced

homology). This implies that a map f:X—» Y induces a homotopy équivalence

T0X-*T0Y ifï it induces an isomorphism H*(X; jR)-> H*{Y\ R). Thus 1.4(i)
follows inductively from 6.1 and, in the limit ordinal case, 4.2.

6.3. Proof of 1.4(ii). This follows inductively from the définitions and, in the limit
ordinal case, 4.2.

6.4. Proof of 1.4(iii). We will show by induction on a that if Xe 4 the natural

map <t>a(X):X-*TaX has a left inverse r:TaX-^X. The desired resuit then
follows from 3.6.

In the case a 0, it is possible to assume that each component of X has the

structure of a simplicial i?-module. Thus if X is connected there is an obvious
canonical retraction RX-+X given by evaluating formai sums. A retraction in
the disconnected case can be constructed by using the fact that the map
7ro($(X)) 7roX-» ttoRX is injective, since it is essentially the Hurewicz
homomorphism 7r0X-* Ho(X; R).
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Suppose a > 0. It is enough to show that there is a commutative triangle

\
W

in which the map X—> W is a weak homotopy équivalence. In fact it is clear that
given such a triangle there exists perhaps another one in which TaX-> W is a
cofibration. The map (j>a(X) is a cofibration (since X—» RX= T0X is) so it follows
that X-» W is a cofibration too. The fact that X is fibrant then implies that the

map X—» W has a left inverse.
Note that the induction hypothesis implies that if ($<a and Yelp, then the

map <f>a(Y): Y-» TaY is a homotopy équivalence. This is immédiate if a is a

successor ordinal and follows from 4.2 and a tower cofinality argument ([3, p.
317] and 3.12) if a is a limit ordinal.

It is possible to assume that there is some small category C and functor
F:C-^S such that

(i) X holim F, and

(ii) for each ceC there is a (3<a such that F(c)e ï(i.

Consider the commutative diagram

X > holim con(X) -^-> holim XxC/- > holim F

TaX > hojim con (TaX) +-1— hqlim Ta(X x C/-) > hojim TaF.

Hère con (X) and con (TaX) dénote the obvious constant functors C-» S and C/-
is as in 3.10. The vertical maps are induced by <f>a, the left-hand horizontal maps
by the natural transformation linu_—» holim— [3, p. 298] and the right-hand
horizontal maps by the morphism X x C/—> F which is adjoint to the identity
map X-»holinu-F [3, p. 296]. The map s takes /€Hom (C/-,con(X))
holim- con (X) to / x id e Hom (C/-, con (X)) x Hom (C/-, C/-) holim- X x C/-.
Finally, t is induced by the projection

Ta(X x CI-) -h> con (TaX).

The composite of the maps on the top Une is the identity map, and t is a
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homotopy équivalence by 6.1. Furthermore, the induction hypothesis shows that
the map holinu-F-»holinu- TaF is a homotopy équivalence.

Factor the map t as the composite of a trivial cofibration (4.4)

and a trivial fibration

Y-> hojim con (TaX).

Let Y' be the pushout of the diagram

holim Ta(X x C/-) -* holim TaF

y
so that the map holinu_ TaF—> Y' is a weak homotopy équivalence [7:1, §1, M4].
There results a commutative diagram of solid arrows

X >J Y
i ,-••-1

TaX-* hojim con (TaX)

in which the composite X-> Y' is a weak homotopy équivalence. The dotted
arrow can then be found because the left vertical arrow is a cofibration and the
right vertical arrow is a trivial fibration.

7. An interprétation of the functors Ta

The purpose of this section is to show that the spaces TaX of §6 can be

identified, up to homotopy, with the homotopy inverse limits of Artin-Mazur-like
large diagrams of spaces. This is a natural extension of the identification of
RooX(~ TiX) made in [3, p. 324].

Let (T, <f>) be an augmented functor on S. A space Y is said to admit a

T-structure if the natural map <t>(Y): Y-+ TY has a left inverse r : TY-* Y. For

any space X and ordinal /3>0, let Ta<(3\X be the category consisting of

(i) one object for each map X-» Y of S such that y admits a ^-structure for
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some a < j3, and
(ii) one morphism (X-> Y)-> (X-> Y') for each /: Y-> Y' in S such that

X

commutes.
There is an Artin-Mazur functor

which sends (X-> Y) to the target space Y.

7.1. PROPOSITION. For any ordinal p>0 the space T3X has the homotopy
type of the homotopy inverse limit of AM^X).

From a qualitative point of view the proposition says that the map X —? TpX
cornes as close as homotopy theory allows to being universal for ail maps X —> Y
with the property that Y admits a T«-structure for some a < j8.

Part of the work in proving 7.1 is to show that the homotopy inverse limit of
the large diagram AMp(X) is well defined, up to homotopy. Recall that a (large)
category D is said to be left small if there is a left cofinal (3.12) functor /:C—> D.
(Note that C, as the domain of a left cofinal functor, is necessarily a small
category.)

7.2. PROPOSITION [3, p. 321-322]. // D is a left small category and
F:D—> S is a functor, then the homotopy inverse limit of F is well defined, up to

homotopy. Moreover, if /:C—»D is left cofinal and F(J(c)) is fibrant for each

ceC, then the homotopy inverse limit of F has the homotopy type of holinu_ F°J.

The proof of 7.1 breaks up into two cases.

7.3. The Successor Case. Suppose that j3 y + l is a successor ordinal. The

argument of 6.4 shows that for any space Y the space TyY admits a restructure;
in particular, the spaces TJX (n>l) admit restructures. Thus the restricted

cosimplicial space TyX together with its augmentation détermines a functor
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Since each of the spaces TJX (n > 1) is fibrant (6.2), it suffices to prove that TyX
is left cofinal.

Pick an object X-» Y of Ta<&\X. By 3.14 it is enough to show that R(W) is

contractible, where W is the restricted simplicial set given in dimension n by

wn=Hom (x -* tj+1x, x -* y).

The space Y admits a T^-structure for some a <y; this easily implies that Y
admits a restructure. Let r:TyY->Y be a left inverse for <(>y(Y) : Y-* TyY.
Define maps s : Wn —* Wn+i by

X X

Ty+1X -U Y T^+2X

If W is augmented in the natural way by letting W_i be the one-point set

representing the commutative diagram

X

X > Y

then the maps s provide a contracting homotopy for W. The desired resuit then
follows from 3.15.

7.4. The Limit Ordinal Case. Suppose that |8 is a limit ordinal. Let

be the functor which assigns to each space X the tower {TaX}a<(3 of restricted
cosimplicial spaces. As in 7.3 it is easy to see this lifts to a functor

Since holim^.{TaX}a<p is homotopy équivalent to T&X [3, p. 300, 4.3] it is

enough to show that {T«X}a<3 is left cofinal.
Pick X—» Y in Ta<<3X. We will use the language of homotopy direct limits [3,

p. 325] to sketch a proof that {TaX}a<p/(X-> Y) is contractible.
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First there is a gênerai observation. Let C be a small category and let
/ : C -> D be a functor. For any élément d e D there is a functor Hd : Cop -» SETS

sending ceC to the set HomD (/(c), d). Since any set can be identified with a

discrète space, Hd can be thought of as a functor Cop -» S. The following
calculation was implicitly referred to in the proof of 3.14.

7.5. LEMMA. For each deD there is an isomorphism of spaces

According to the properties of homotopy direct limits over product catégories
[3, p. 331], this implies that

where F: Qf-* S is the functor which sends a e i?£p to T«X/(X-> Y).
If Y admits a ^-structure, the argument of 7.3 shows that F(a) is contractible

for ail a e O%p, a > y. The desired resuit then follows from the fact that since Q°^
is right filtering, holimu F is weakly homotopy équivalent to lim_» F [3, p. 332].

8. Examples

The purpose of this section is to extract some information about the behaviour
of the long homology localization tower {TaX\a for certain spécial classes of
spaces X. In particular, we are interested in how rapidly the tower converges to
XR. The main tool for studying this is 1.4(iii).

8.1. Nilpotent Spaces. It follows from 1.5 that XR~TXX (~ homotopy
équivalence) ifï X is R-good in the sensé of Bousfield and Kan. In particular,

8.2. PROPOSITION [3, V, VI]. If X is a nilpotent space and R is any of the

admissible rings, then XR~TiX.

If JR ç Q we know of no spaces X for which XR ~ TtX and XR is not nilpotent.
If R =Z/pZ, however, there are many such examples ([3, VII], [4]).

8.3. Virtually Nilpotent Spaces. A connected space X is said to be virtually
nilpotent if each Postnikov stage PnX can be finitely covered by a nilpotent space.
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If R =Z/pZ, then ail such spaces are jR-good [4]. The main resuit of [4] shows that
if X is virtually nilpotent and R c Q there is a homotopy fibre square

XR >W,

i i
w3—> w2

in which the spaces Wu W2 and W3 hâve the homotopy type of homotopy inverse
limits of (cosimplicial) diagrams of simplicial i?-modules; that is, Wi, W2, W3eli.
It follows immediately that XReI2, so

8.4. PROPOSITION. // X is a virtually nilpotent space and R^Q, then

XR~T3X.

This resuit may not be best possible. In fact, it is not hard to show that if ttxX
is finite and R ç Q, then XR ~ T2X. The argument for this uses [4] and the fibre
lemma of [3, p. 62].

8.5. Pre-nilpotent Fundamental Groups. A group tt is said to be pre-nilpotent
[5, 3.1] if the lower central séries of tt stabilizes, not necessarily at the trivial
group, after a finite number of steps. Let co be the first infinité ordinal.

8.6. PROPOSITION. Suppose that R=l and thatX is a connected space with
a finitely generated pre-nilpotent fundamental group. Then Xn — T^+iX.

8.7. Remark. Analogous results almost certainly hold for other rings. At least

over Z, the finite génération condition can be replaced by the assumption that
Hi(X; Z) is finitely generated.

We will only sketch the proof of 8.6, since the main point is purely algebraic.
Assume JR =Z. The hypothesis on X implies that tî\Xr is a finitely generated
nilpotent group [1, 7.3, 7.5] so, by 1.4(i)-(iii) it is enough to show that if Y is a

connected .R-Bousfield space with a finitely generated nilpotent fundamental

group, then Yel^. By the Postnikov argument of 5.4 it is enough to show that
whenever tt is a finitely generated nilpotent group and M is an jR-Bousfield

tt -module, then L(tt,M, n)elm for some integer m.

Let E dénote the HZ-localization functor on the category of tt-modules and

let F-* M-» 0 be an epimorphism from the free tt-module F to the .R-Bousfield
tt-module M. Since E is right exact [1, 8.11] there is a short exact séquence
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where K is some R-Bousfield [1, 8.5] submodule of E(F). In view of the

homotopy fibre square

L(tt,M, n-1) > K

it suffices to prove that both L(iT,K,n) and L(tt, JE (F), n) belong to some Im.

Let / be the augmentation idéal inside the intégral group ring Z[tt] of tt. Then
[5, 3.1] asserts that there is an isomorphism E(F)~lim*_{F//s • F}s<a). Since K is

a submodule of E(F) it is clear that K injects into linu- {K/Js • K}s<a>. However,

H0(7t; lùn {K/Js • K}s<J lrni {H0(ir; K/Js • K)}S<(O H0(tt; K)

since tt is finitely generated and limi_{JFfi(7r; K/Js • K)}S<(O, being a quotient of
limi-{Hi(7r;K)}s<<(J, vanishes (compare [5, Proof of 3.7]). It follows from [2, 7.8]
that K~\im^.{KIJs • K}s<o>.

By 8.2 the spaces L(tt, K//s • K, n) and L(tt, F//s • F, n) belong to /^ since

they are nilpotent. The groups

K}s<Oi and lim^F//5 • F}S<(O

vanish, since both of thèse module towers are towers of epimorphisms [3, p. 252].
Thus [3, pp. 287, 254],

L(tt, K, n)~hoUm {L(tt, K/Js • K, n)}s<(oel2

L(tt,F, n)~holim{L(7r,F/Js • F, n)}s<a)el2.
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Added note

An alternative approach to constructing the homology locahzation as an
inverse hmit is given m
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