Homotopy Theory for the p-adic Special Linear Group.

Autor(en): Wagoner, J.B.
Objekttyp: Article
Zeitschrift: Commentarii Mathematici Helvetici

Band (Jahr): 50 (1975)

PDF erstellt am: 26.04.2024
Persistenter Link: https://doi.org/10.5169/seals-38824

Nutzungsbedingungen

Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern.
Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den korrekten Herkunftsbezeichnungen weitergegeben werden.
Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

Haftungsausschluss

Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot zugänglich sind.

Homotopy Theory for the \mathfrak{p}-adic Special Linear Group

J. B. WAGONER ${ }^{1}$)

If E is al ocal field, complete with finite residue field, the special linear group inherits a topology from E which makes it a locally compact, totally disconnected topological group and hence its homotopy groups in the usual sense are trivial. This paper proposes a definition for the higher homotopy groups of $S L(\mathfrak{l}+1, E)$ which on the one hand, agrees with the fundamental group computed by Moore [7] and by Matsumoto [5] from the viewpoint of universal topological central extensions and, on the other hand, is related to the algebraic K-theory of E viewed as an abstract field. The idea is to define groups $K_{i}^{\text {top }}(E)$ which carry that part of the algebraic K-theory of a local field which comes from "continuous" invariants such as the continuous Steinberg symbols in the work of Matsumoto and Moore. We also define homotopy groups $K_{i}^{\text {top }}(\mathfrak{D})$ for the special linear group over a compact discrete valuation ring \mathfrak{D}, and in a forthcoming joint paper of the author and R. J. Milgram we use the continuous cohomology of $S L(\mathfrak{l}+1, \mathfrak{D})$ to compute the rank of the free part of $K_{i}^{\text {top }}(\mathfrak{D})$ considered as a module over the p -adic completion of the integers where p is the characteristic of the residue field of \mathfrak{D}. The theory as developed in this paper is closely connected to $B N$-pairs and buildings and in the last section we briefly discuss the relation of the spaces constructed in the first section to the \mathfrak{p}-adic building associated to $S L(\mathfrak{l}+1, E)$. We shall treat only the special linear group and the root system $A_{\mathfrak{I}}$; it seems likely that a similar program can be worked out for other simply connected algebraic groups. Useful background references are [1], [4], and [6].

Throughout this paper E will denote a field with a discrete valuation $v: E^{*} \rightarrow \mathbf{Z}$. Let \mathfrak{D} be the valuation ring consisting of those $x \in E$ with $\nu(x) \geqslant 0$ and let \mathfrak{p} be the maximal ideal consisting of those $x \in E$ with $v(x)>0$. Let π be a generator for \mathfrak{p}.

§1. Definition of $\pi_{i}^{a b}$ and $\pi_{i}^{\text {top }}$

In this section we define "abstract" homotopy groups $\pi_{i}^{a b} S L(I+1, E)$ and homotopy groups $\pi_{i}^{\text {top }} S L(\mathfrak{l}+1, E)$ which take into account the topology on E. These definitions correspond respectively to the "linear" and "affine" $B N$-pair structures on $S L(\mathfrak{l}+1, E)$. For standard terminology in the theory of $B N$-pairs and root systems see [1] and [4, Chap. II].

[^0]Let $\mathbf{R}^{\mathrm{I}+1}$ be the set of all $(\mathfrak{l}+1)$-tuples $\left(x_{0}, x_{1}, \ldots, x_{\mathrm{I}}\right)$ of real numbers. Let $e_{i}: \mathbf{R}^{\mathfrak{I}+1} \rightarrow \mathbf{R}$ be the i th coordinate function. The linear stratification of $\mathbf{R}^{\mathfrak{1}+1}$ is the decomposition of $\mathbf{R}^{\mathrm{I}+1}$ into facettes determined by the hyperplanes $e_{i}-e_{j}=0$ of the linear root system of type A_{I}. As the fundamental chamber we take

$$
C_{0}=\left\{x_{0}>x_{1}>\cdots>x_{\mathrm{i}}\right\}
$$

so that the positive linear roots are $e_{i}-e_{j}$ with $i<j$ and the negative linear roots are $e_{i}-e_{j}$ with $i>j$. The affine stratification of \mathbf{R}^{1+1} is the decomposition into facettes determined by the hyperplanes $e_{i}-e_{j}+k=0, k \in \mathbf{Z}$, of the affine root system associated to A_{I}. The fundamental chamber is

$$
C=\left\{x_{\mathrm{I}}+1>x_{0}>\cdots>x_{\mathrm{I}}\right\}
$$

If F and F^{\prime} are both facettes in the linear stratification or in the affine stratification we write $F<F^{\prime}$ to mean F is contained in the closure of F^{\prime}. Actually, our terminology is not quite standard in that one usually speaks about the linear and affine stratifications of the subspace $V \subset \mathbf{R}^{I+1}$ given by the condition $x_{0}+\cdots+x_{\mathrm{I}}=0$. However, the correspondence $F \rightarrow F \cap V$ is a bijection of facettes for both the linear and affine stratifications, and in the affine case the geometric realization of the nerve of the partially ordered set of facettes is precisely the first barycentric subdivision of the space V triangulated by the open rectilinear simplices $F \cap V$. The realization of the nerve of the linear stratification of \mathbf{R}^{I+1}-diagonal is S^{I-1}. In the present situation it is convenient to use $\mathbf{R}^{\mathfrak{I}+1}$ instead of V because then the natural stabilization $\operatorname{map} \mathbf{R}^{\mathfrak{I}+1} \rightarrow \mathbf{R}^{\mathfrak{1}+2}$ given by

$$
\left(x_{0}, \ldots, x_{\mathrm{t}}\right) \rightarrow\left(x_{0}, \ldots, x_{\mathrm{I}}, x_{\mathrm{I}}\right)
$$

takes facettes to facettes and preserves the " $<$ " relation.
The "linear" $B N$ structure on $S L(\mathfrak{l}+1, E)$ has
$B=$ upper triangular matrices
$N=$ matrices with exactly one non-zero entry in each row and each column.

The linear Weyl group $W_{0}=N / B \cap N$ is isomorphic to $S_{\mathrm{I}+1}$, the symmetric group on $\mathfrak{I}+1$ letters generated by reflections in the hyperplanes $e_{i}-e_{j}=0 . W_{0}$ acts on \mathbf{R}^{I+1} by permuting the coordinates. The "affine" $B N$ structure on $S L(\mathfrak{l}+1, E)$ has
$B=$ subgroup of $S L(\mathfrak{I}+1, \mathfrak{D})$ consisting of matrices $\left(m_{i j}\right)$ with $v\left(m_{i j}\right)>0$ whenever $i>j$.
$N=$ same as for the linear case.

The affine Weyl group $W=N / B \cap N$ fits into an exact sequence

$$
1 \rightarrow T \rightarrow W \rightarrow W_{0} \rightarrow 1
$$

where T is a free abelian group of rank \mathfrak{I}. W is isomorphic to the group generated by the reflections in the planes $e_{i}-e_{j}+k=0$. An element w of W acts on \mathbf{R}^{I+1} as follows: Choose a representative for w in N of the form $\sigma \cdot d$ where σ is a permutation matrix and d is a diagonal matrix with entries $\pm \pi^{n_{0}}, \ldots, \pm \pi^{n_{1}}$ such that $n_{0}+\cdots+n_{1}=0$. Then w acts as translation by $\left(-n_{0}, \ldots,-n_{\mathrm{I}}\right)$ followed by permutation of coordinates according to σ.

If F is a facette in the linear stratification, let $U_{F} \subset S L(\mathfrak{l}+1, E)$ denote the subgroup generated by the elementary matrices $e_{i j}(\lambda)$ where $e_{i}-e_{j}>0$ on F and $\lambda \in E$. If F is a facette of the affine stratification and n is a positive integer, let $k\left(F, e_{i}-e_{j}\right)_{n}$ be the least integer $k \in n \cdot Z$ such that $e_{i}-e_{j}+k>0$ on F. Let $U_{F}^{n} \subset S L(I+1, E)$ denote the subgroup generated by the $e_{i j}(\lambda)$ where $v(\lambda) \geqslant k\left(F, e_{i}-e_{j}\right)_{n}$ and by the elements of the subgroup H^{n} consisting of those diagonal matrices with entries in the subgroup of units $1+\mathfrak{p}^{n}$ in \mathfrak{D}^{*}.

LEMMA 1. (A) If $F<F^{\prime}$ in the linear stratification, then $U_{F} \subset U_{F}$.
(B) If $F<F^{\prime}$ in the affine stratification, then $U_{F}^{n} \subset U_{F}^{n}$.

Furthermore, if m divides n, then $U_{F}^{n} \subset U_{F}^{m}$.
The proof of this lemma will be given later on in this section.
For any two cosets $\alpha \cdot U_{F}$ and $\beta \cdot U_{F}$, where $\alpha, \beta \in S L(\mathfrak{l}+1, E)$ define $\alpha \cdot U_{F}<\beta \cdot U_{F}$, to mean that $F<F^{\prime}$ and $\alpha \cdot U_{F} \subset \beta \cdot U_{F^{\prime}}$. Similarly, define $\alpha \cdot U_{F}^{n}<\beta \cdot U_{F^{\prime}}^{n}$ to mean $F<F^{\prime}$ and $\alpha \cdot U_{F}^{n} \subset \beta \cdot U_{F^{\prime}}^{n}$.

Now let $S L^{a b}(\mathfrak{I}+1, E)$ be the geometric realization of the simplicial set which has as its k-simplices $(k+1)$-tuples

$$
\left(\alpha_{0} \cdot U_{F_{0}}<\alpha_{1} \cdot U_{F_{1}}<\cdots<\alpha_{k} \cdot U_{F_{k}}\right)
$$

where the faces F_{i} belong to the linear stratification of $\mathbf{R}^{1+1}-\Delta$. Here Δ denotes the diagonal. The group $S L(\mathfrak{l}+1, E)$ acts on $S L^{a b}(\mathfrak{l}+1, E)$ by the formula

$$
\alpha \cdot\left(\alpha_{0} \cdot U_{F_{0}}<\cdots<\alpha_{k} \cdot U_{F_{k}}\right)=\left(\alpha \alpha_{0} \cdot U_{F_{0}}<\cdots<\alpha \alpha_{k} \cdot U_{F_{k}}\right) .
$$

Define

$$
\pi_{i}^{a b} S L(\mathfrak{l}+1, E)=\pi_{i} S L^{a b}(\mathfrak{l}+1, E)
$$

The stabilization map $\mathbf{R}^{\mathrm{I}+1}-\Delta \rightarrow \mathbf{R}^{\mathrm{I}+\boldsymbol{2}}-\Delta$ induces a simplicial map

$$
S L^{a b}(\mathfrak{l}+1, E) \rightarrow S L^{a b}(\mathfrak{l}+2, E)
$$

and for $i \geqslant 1$ we let

$$
K_{i+1}^{a b}(E)=\pi_{i}^{a b} S L(E)=\underset{\overrightarrow{\mathfrak{l}}}{\lim } \pi_{i} S L^{a b}(\mathfrak{l}+1, E)
$$

The definition of $K_{i}^{a b}$ given here is essentially the same as that of the groups denoted $K_{i}^{B N}$ in [10]. See also [13]. It is valid for any associative ring with unit E and it is a theorem [11] that $K_{i}^{a b}(E)=K_{i}^{Q}(E)$, the algebraic K-theory groups of Quillen [8]. When E is a field, it follows from [6, Cor. 11.2] and [10, Prop. 2] that for $\mathfrak{l} \geqslant 3$

$$
K_{2}(E)=K_{2}(\mathfrak{l}+1, E)=\pi_{1} S L^{a b}(\mathfrak{l}+1, E)
$$

Actually it is possible to show this for $\mathfrak{l} \geqslant 2$ provided $S L^{a b}(\mathfrak{l}+1, E)$ is defined using all linear facettes of R^{1+1}. The reason why facettes in $\mathbf{R}^{1+1}-\Delta$ are used is to get a space which maps to the building corresponding to the linear $B N$-pair structure on $S L(\mathfrak{I}+1, E)$. See $[10, \S 2]$. As far as algebraic K-theory is concerned it is immaterial which method is used to define $\pi_{i}^{a b} S L(E)$ because they both are the same in the limit.

Fix a positive integer n. Let $S L_{n}^{\text {top }}(I+1, E)$ denote the geometric realization of the simplicial set which has as its k-simplices the $(k+1)$-tuples

$$
\left(\alpha_{0} \cdot U_{F_{0}}^{n}<\alpha_{1} \cdot U_{F_{1}}^{n}<\cdots<\alpha_{k} \cdot U_{F_{k}}^{n}\right)
$$

The group $S L(\mathfrak{I}+1, E)$ acts on $S L_{n}^{\text {top }}(\mathfrak{l}+1, E)$ in the same way it acts on $S L^{a b}(\mathfrak{l}+1, E)$. Whenever m divides $n, \alpha \cdot U_{F}^{n}<\beta \cdot U_{F^{\prime}}^{n}$ implies $\alpha \cdot U_{F}^{m}<\beta \cdot U_{F^{\prime}}^{m}$ so the correspondence $\alpha \cdot U_{F}^{n} \rightarrow \alpha \cdot U_{F}^{m}$ induces a simplicial map

$$
\begin{equation*}
S L_{m}^{\mathrm{top}}(\mathfrak{l}+1, E) \leftarrow S L_{n}^{\mathrm{top}}(\mathfrak{l}+1, E) \tag{*}
\end{equation*}
$$

We define

$$
\pi_{i}^{\mathrm{top}} S L(\mathfrak{l}+1, E)=\underset{m \mid n}{\lim _{m}} \pi_{i} S L_{n}^{\mathrm{top}}(\mathfrak{l}+1, E)
$$

The stabilization map induces a simplicial map

$$
S L_{n}^{\mathrm{top}}(\mathfrak{l}+1, E) \rightarrow S L_{n}^{\mathrm{top}}(\mathfrak{I}+2, E)
$$

of inverse systems and we therefore can set

$$
\pi_{i}^{\mathrm{top}} S L(E)=\underset{\mathfrak{l}}{\lim } \pi_{i}^{\mathrm{top}} S L(\mathfrak{l}+1, E)
$$

By analogy with algebraic K-theory we could propose for $i \geqslant 2$ the definition

$$
K_{i}^{\mathrm{top}}(E)=\pi_{i-1}^{\mathrm{top}} S L(E)
$$

In the next section we will construct a homomorphism $\pi_{i}^{a b} \rightarrow \pi_{i}^{\text {top }}$, and in the third section we will use this to prove

THEOREM A. If E is a local field (i.e. E is complete with finite residue field) and $\mathfrak{l} \geqslant 2$, then there is an isomorphism

$$
\pi_{1}^{\mathrm{top}} S L(\mathfrak{l}+1, E) \simeq \mu(E)
$$

where $\mu(E)$ is the group of roots of unity in E.
This result indicates that $\pi_{i}^{\text {top }} S L(\mathrm{I}+1, E)$ may give the "correct" value for the higher homotopy of $S L(\mathfrak{l}+1, E)$ only in the stable range; that is, where i is somewhat smaller than $\mathfrak{I}+1$. A word about the motivation for the definition of $K_{i}^{\text {top }}$: the definition of $K_{i}^{a b}$ using the linear $B N$-pair structure on $S L(\mathfrak{l}+1, E)$ comes directly from the geometry of Morse functions on manifolds as is explained in [10]. The group $K_{i}^{\text {top }}$ came about as an attempt to see if the affine $B N$-structure on $S L(\mathfrak{l}+1, E)$ could be used in an analogous way.

The proof of Theorem A in $\S 3$ together with the partial computation of $K_{2}(E)$ known from the work of Moore [7; also 6, A. 14] gives

COROLLARY. $K_{2}^{a b}(E)=K_{2}^{\text {top }}(E) \oplus D$ where D is infinitely divisible.
The remainder of the section proves some lemmas which will be needed later on.
Proof of Lemma 1. The definition of a facette [1, p. 58] implies that for any facette F in the linear stratification and any linear root $e_{i}-e_{j}$ there are three mutually distinct possibilities: $e_{i}-e_{j}>0$ on $F, e_{i}-e_{j}=0$ on F, or $e_{i}-e_{j}<0$ on F. The same is true of any facette F in the affine stratification and any affine root $e_{i}-e_{j}+k$.

Now let $F<F^{\prime}$ in the linear stratification. To show $U_{F} \subset U_{F}$, it must be verified that $e_{i}-e_{j}>0$ on F implies $e_{i}-e_{j}>0$ on F^{\prime}. Since F is contained in the closure of F^{\prime} there is some $x \in F^{\prime}$ sufficiently close to F such that $e_{i}-e_{j}>0$ on x. Hence $e_{i}-e_{j}>0$ on all of F^{\prime}.

Let $F<F^{\prime}$ in the affine stratification. To show $U_{F}^{n} \subset U_{F}^{n}$, we must show that $k=k\left(F, e_{i}-e_{j}\right)_{n}$ is greater than or equal to $k^{\prime}=k\left(F^{\prime}, e_{i}-e_{j}\right)_{n}$ for each linear root $e_{i}-\dot{e}_{j}$. As in the linear case $e_{i}-e_{j}+k>0$ on F implies $e_{i}-e_{j}+k>0$ on F^{\prime}. Hence $k \geqslant k^{\prime}$.

Finally, $U_{F}^{n} \subset U_{F}^{m}$ whenever m divides n because then $n \cdot Z \subset m \cdot Z$. q.e.d.
Now let F be a facette in the linear stratification. Let ${ }^{+} U_{F}$ be the subgroup of U_{F} generated by the $e_{i j}(\lambda)$ with $i<j$, and let ${ }^{-} U_{F}$ be generated by the $e_{i j}(\lambda)$ with $i>j$. Similarly for any facette F in the affine stratification let ${ }^{+} U_{F}^{n}$ be the subgroup of U_{F}^{n} generated by the $e_{i j}(\lambda)$ with $i<j$ and $v(\lambda) \geqslant k\left(F, e_{i}-e_{j}\right)_{n}$. Let ${ }^{-} U_{F}^{n}$ be the subgroup generated by the $e_{i j}(\lambda)$ with $i>j$ and $v(\lambda) \geqslant k\left(F, e_{i}-e_{j}\right)_{n}$.

LEMMA 2. (A) $U_{F}={ }^{+} U_{F} \cdot{ }^{-} U_{F}={ }^{-} U_{F} \cdot{ }^{+} U_{F}$
(B) $U_{F}^{n}={ }^{+} U_{F}^{n} \cdot H^{n} \cdot{ }^{-} U_{F}^{n}={ }^{-} U_{F}^{n} \cdot H^{n} \cdot{ }^{+} U_{F}^{n}$.

Proof of 2, Part (A). We will show that $U_{F}={ }^{+} U_{F}{ }^{-}{ }^{-} U_{F}$; the argument for $U_{F}={ }^{-} U_{F}{ }^{+} U_{F}$ is similar. To simplify notation let $U=U_{F}$ and $U_{p}=U \cap S L(p, E)$ for $2 \leqslant p \leqslant \mathfrak{l}+1$. The claim (A) is true for $p=2$ because then $U=\left\{e_{01}(\lambda) \mid \lambda \in E\right\}$ or $U=\left\{e_{10}(\lambda) \mid \lambda \in E\right\}$. Now assume inductively that $U_{\mathrm{I}}={ }^{+} U_{\mathrm{I}}{ }^{-} U_{\mathrm{I}}$. Let $V^{+} \subset U_{\mathrm{I}}$ be the subgroup generated by the $e_{i, \mathrm{I}}(\lambda)$ with $e_{i}-e_{\mathrm{I}}>0$ on F and V^{-}be the subgroup generated by the $e_{1, i}(\lambda)$ with $e_{1}-e_{i}>0$ on F. Then the Steinberg relations show
(i) $U_{\mathrm{I}} \cdot V^{ \pm}=V^{ \pm} \cdot U_{\mathrm{I}}$ and ${ }^{-} U_{\mathrm{I}} \cdot V^{+}=V^{+} \cdot{ }^{-} U_{\mathrm{I}}$.

For any $0 \leqslant i \leqslant \mathfrak{l}-1$ we cannot have both $e_{i}-e_{\mathrm{I}}>0$ and $e_{\mathrm{I}}-e_{i}>0$ on F; in other words for $0 \leqslant i \leqslant l-1$ we do not have both $e_{i, 1}(\lambda) \in V^{+}$and $e_{\mathrm{I}, i}(\lambda) \in V^{-}$. Thus the Steinberg relations imply
(ii) given $v_{1} \in V^{+}$and $v_{2} \in V^{-}$, there are elements $u \in U_{\mathrm{I}}, w_{1} \in V^{+}$, and $w_{2} \in V^{-}$such that $v_{2} \cdot v_{1}=u \cdot w_{1} \cdot w_{2}$.

Using (i), (ii), and the induction hypothesis we have

$$
U_{\mathrm{I}+1}={ }^{+} U_{\mathrm{I}} \cdot-U_{\mathrm{I}} \cdot V^{+} \cdot V^{-}={ }^{+} U_{\mathrm{I}} \cdot V^{+} \cdot-U_{\mathrm{I}} \cdot V^{-}={ }^{+} U_{\mathrm{I}+1} \cdot{ }^{-} U_{\mathrm{I}+1} .
$$

Proof of 2. Part (B). The argument that $U_{F}^{n}={ }^{+} U_{F}^{n} \cdot H^{n} \cdot{ }^{-} U_{F}^{n}$ is essentially the same as Proposition (2.6.4.) of [4, p. 29]. The only minor difference is that here the groups U_{F}^{n} are defined using strict inequalities while in (2.6.4) similar groups $P_{(S)}$ are defined using weak inequalities and it is assumed that S has a non-empty interior in order to invoke (III) on p. 27 of [4]. Condition (III) is what allows one to reverse the order of $e_{j i}(\mu) \cdot e_{i j}(\lambda)$ whenever $i<j$. To make the proof of (2.6.4) work here we only need the following statement analogous to (III): Fix a pair of indices $i<j$. Let $\alpha=e_{i}-e_{j}+k$ where $k=k\left(F, e_{i}-e_{j}\right)_{n}$ and $\beta=e_{j}-e_{i}+k^{\prime}$ where $k^{\prime}=k\left(F, e_{j}-e_{i}\right)_{n}$. Let U_{α} be the subgroup generated by $e_{i j}(\lambda)$ where $v(\lambda) \geqslant k$ and U_{β} be the subgroup generated by $e_{j i}(\lambda)$ where $v(\lambda) \geqslant k^{\prime}$. Then the subgroup generated by U_{α}, U_{β}, and H^{n} is

$$
U_{\alpha} \cdot H^{n} \cdot U_{\beta}=U_{\beta} \cdot H^{n} \cdot U_{\alpha}
$$

The proof of this is essentially the matrix identity

$$
\left(\begin{array}{ll}
1 & \lambda \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
d & 0 \\
0 & d^{-1}
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
\mu & 1
\end{array}\right)=\left(\begin{array}{ll}
z & 0 \\
0 & z^{-1}
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
d^{-1} \mu z & 1
\end{array}\right)\left(\begin{array}{ll}
1 & z^{-1} \lambda d^{-1} \\
0 & 1
\end{array}\right)
$$

where $z=d+d^{-1} \lambda \mu$ and we must check that $z \in 1+\mathfrak{p}^{n}$. First note that since $e_{i}-e_{j}+k>0$ on $F, e_{j}-e_{i}-k<0$ on F and so $k^{\prime}=r \cdot n-k$ for some $r>0$. Hence

$$
v(\lambda \mu)=v(\lambda)+v(\mu) \geqslant k+k^{\prime}=k+r \cdot n-k \geqslant n .
$$

Now write $d=1+x$ and $d^{-1}=1+y$ where $x, y \in \mathfrak{p}^{n}$. Then $z=1+x+\lambda \mu+y \lambda \mu$ and $v(x+\lambda \mu+y \lambda \mu) \geqslant \min (n, n, 2 n) \geqslant n$.
q.e.d.

LEMMA 3. (cf. (I) on p. 27 of [4]). (A) If F is a facette of the linear stratification and $w \in W_{0}$ then $w \cdot U_{F} \cdot w^{-1}=U_{w \cdot F}$.
(B) Let F be a facette of the affine stratification and w be a Weyl group element of the form $\sigma \cdot t$ where $\sigma \in W_{0}$ and t is the diagonal matrix $\left(\pm \pi^{n_{0}}, \ldots, \pm \pi^{n 1}\right)$ with $n_{i} \equiv 0 \bmod n$. Then

$$
w \cdot U_{F}^{n} \cdot w^{-1}=U_{w \cdot F}^{n} .
$$

Proof. (A) is left as an exercise. Here is the proof of (B): Let $e_{i j}(\lambda)$ be a generator of U_{F}^{n}. Then $\alpha=e_{i}-e_{j}+v(\lambda)$ is positive on $F, v(\lambda) \geqslant k\left(F, e_{i}-e_{j}\right)_{n}$, and $\alpha \circ w^{-1}=$ $=e_{\sigma(i)}-e_{\sigma(j)}+\left(n_{i}-n_{j}\right)+v(\lambda)$ is positive on $w \cdot F$. Now $w \cdot e_{i j}(\lambda) \cdot w^{-1}=e_{\sigma(i) \sigma(j)}\left(\lambda^{\prime}\right)$ where $\lambda^{\prime}= \pm \lambda \pi^{n_{i}-n_{j}}$ and so $v\left(\lambda^{\prime}\right)=v(\lambda)+n_{i}-n_{j}$. Since n divides $n_{i}-n_{j}$,

$$
v\left(\lambda^{\prime}\right) \geqslant k\left(F, e_{i}-e_{j}\right)_{n}+n_{i}-n_{j}=k\left(w \cdot F, e_{\sigma(i)}-e_{\sigma(j)}\right)_{n} .
$$

Hence $w \cdot e_{i j}(\lambda) \cdot w^{-1} \in U_{w \cdot F}^{n}$.
q.e.d.

LEMMA 4. Let $u_{1}, \ldots, u_{s} \in U_{F}$ where F is a facette of the linear stratification of \mathbf{R}^{1+1}. Also fix $n>0$. Then
(A) there is some facette G such that each $u_{i} \in U_{G}^{n}$ and
(B) the union of all such facettes is a convex subset of $\mathbf{R}^{\mathbf{1 + 1}}$.

Proof of (A). Choose a linear chamber D with $F<D$ and let σ be a permutation such that $\sigma^{-1} \cdot D=C_{0}$, the fundamental linear chamber. Then $U_{F} \subset U_{D}$ and $\sigma^{-1} \cdot U_{D} \cdot \sigma$ $=U_{C_{0}}$. Let $v_{\alpha}=\sigma^{-1} u_{\alpha} \sigma \in U_{C_{0}}$ for $1 \leqslant \alpha \leqslant s$. Write each v_{σ} uniquely as a product of $e_{i j}(\lambda)$'s, $i<j$, ordered lexicographically. For $i<j$ let $k_{i j}$ be the minimum of the $v(\lambda)$'s where $e_{i j}(\lambda)$ appears in at least one of the product expressions. For each $0 \leqslant i \leqslant \mathfrak{I}-1$ choose $s_{i} \in n \cdot Z$ in such a way that, setting $f_{i j}=s_{i}+\cdots+s_{j-1}$ whenever $i<j$, we have $f_{i j} \leqslant k_{i j}-n$. Then any affine facette G of maximal possible dimension in

$$
\bigcap_{i<j}\left\{e_{i}-e_{j}+f_{i j}=0\right\}
$$

is non-empty and any $e_{i j}(\lambda)$ in the product expression for any v_{α} lies in $U_{\boldsymbol{G}}^{\boldsymbol{n}}$. Hence each v_{α} is in U_{G}^{n}. Finally

$$
u_{\alpha}=\sigma v_{\alpha} \sigma^{-1} \in \sigma \cdot U_{G}^{n} \cdot \sigma^{-1}=U_{\sigma \cdot G}^{n}
$$

Proof of (B). Any $u \in U_{F}$ can be written uniquely as a product

$$
\begin{equation*}
u=u_{+} \cdot u_{-}=\prod_{\alpha=1}^{r} e_{i_{\alpha} j_{\alpha}}\left(\lambda_{\alpha}\right) \cdot \prod_{\alpha=r+1}^{r+s} e_{i_{\alpha} j_{\alpha}}\left(\lambda_{\alpha}\right) \tag{**}
\end{equation*}
$$

where $i_{\alpha}<j_{\alpha}$ for $1 \leqslant \alpha \leqslant r, i_{\alpha}>j_{\alpha}$ for $r+1 \leqslant \alpha \leqslant r+s$, each $e_{i_{\alpha}}-e_{j_{\alpha}}>0$ on F, and the terms in u_{+}and u_{-}are arranged lexicographically.

CLAIM. $u \in U_{G}^{n}$ iff for each such $e_{i_{\alpha} j_{\alpha}}\left(\lambda_{\alpha}\right)$ we have $v\left(\lambda_{\alpha}\right) \geqslant k\left(G, e_{i_{\alpha}}-e_{j_{\alpha}}\right)_{n}$.
To prove this write $u=v_{+} \cdot h \cdot v_{-}$as in Lemma 2(B). Then $u_{+} \cdot u_{-}=v_{+} \cdot h \cdot v_{-}$or $v_{+}^{-1} \cdot u_{+}=h \cdot v_{-} \cdot u_{-}^{-1}$. Hence $h=1, u_{+}=v_{+}$, and $u_{-}=v_{-}$. Now v_{+}can be written as a product in lexicographical order of terms $e_{i j}(\lambda)$ where $i<j$ and $v(\lambda) \geqslant k\left(G, e_{i}-e_{j}\right)_{n}$. Since this lexicographically ordered product is unique for elements in the subgroup of upper triangular matrices the expressions for u_{+}and v_{+}are the same. This means $v\left(\lambda_{\alpha}\right) \geqslant k\left(G, e_{i_{\alpha}}-e_{j_{\alpha}}\right)_{n}$ for $1 \leqslant \alpha \leqslant r$. A similar argument works for $r+1 \leqslant \alpha \leqslant r+s$.

Now we complete the proof of (B). Let $u_{1}, \ldots, u_{s} \in U_{G}^{n}$ and $U_{G^{\prime}}^{n}$. Choose points $x \in G$ and $x^{\prime} \in G^{\prime}$ and let $x(t)=(1-t) x+t x^{\prime}$ for $0 \leqslant t \leqslant 1$. Let $G(t)$ be the unique facette containing $x(t)$. We shall show each u_{α} lies in $U_{G(t)}^{n}$ by showing that any $e_{i j}(\lambda)$ which appears in the product expression ($* *)$ for any u_{α} belongs to $U_{G}^{n}(t)$. This amounts to showing that $v(\lambda) \geqslant k\left(G(t), e_{i}-e_{j}\right)_{n}$ for $0 \leqslant t \leqslant 1$. Let $k=k\left(G, e_{i}-e_{j}\right)_{n}$ and $k^{\prime}=k\left(G^{\prime}, e_{i}-e_{j}\right)_{n}$. Let $x(t)_{i}$ be the i th coordinate of the vector $x(t)$. Then by the claim

$$
x(0)_{i}-x(0)_{j}+k>0
$$

and

$$
x(1)_{i}-x(1)_{j}+k^{\prime}>0
$$

Hence

$$
x(t)_{i}-x(t)_{j}+k_{t}>0
$$

where $k_{t}=(1-t) \cdot k+t \cdot k^{\prime}$. Since $v(\lambda) \geqslant k$ and k^{\prime},

$$
\begin{align*}
& v(\lambda) \geqslant \text { smallest integer divisible by } n \text { that is at least as big as } k_{t} \\
& \quad \geqslant k\left(G(t), e_{i}-e_{j}\right)_{n}
\end{align*}
$$

§2. The Homomorphism $\pi_{i}^{a b} \rightarrow \pi_{i}^{\text {top }}$

This section defines a sequence of maps

$$
\phi_{n}: S L^{a b}(\mathfrak{I}+1, E) \rightarrow S L_{n}^{\mathrm{top}}(\mathfrak{I}+1, E)
$$

which are compatible up to base point preserving homotopy with the maps in the inverse system (*) used to define $\pi_{i}^{\text {top }}$ and therefore induce a homomorphism

$$
\phi: \pi_{i}^{a b} S L(\mathfrak{I}+1, E) \rightarrow \pi_{i}^{\mathrm{top}} S L(\mathfrak{I}+1, E)
$$

These in turn are compatible with stabilization and induce a homomorphism

$$
\Phi: K_{i+1}^{a b}(E) \rightarrow K_{i+1}^{\mathrm{top}}(E)
$$

To simplify notation let $X=S L^{a b}(\mathfrak{I}+1, E)$ and $Y_{n}=S L_{n}^{\text {top }}(\mathbb{I}+1, E)$. The base points of X and Y_{n} respectively are $U_{C_{0}}$ and U_{C}^{n} where C_{0} and C are the fundamental linear and affine chambers. Both X and Y_{n} are finite dimensional simplicial complexes of dimension I-1 and I respectively. The map $\phi_{n}: X \rightarrow Y_{n}$ will be constructed inductively over the dual skeletons X_{r}^{*} of the r-skeletons X_{r} of X. Recall that X_{r}^{*} is the subcomplex of the first barycentric subdivision of X consisting of the union of the duals σ^{*} of simplices σ of X of dimension at least r where σ^{*} is all simplices $\sigma_{1}<\cdots<\sigma_{s}$ such that $\sigma<\sigma_{1}$. For each vertex $v=\alpha \cdot U_{F}$ of X choose an element $g_{v} \in \alpha \cdot U_{F}$. If $v=U_{c_{0}}$ let $g_{v}=$ id. For each simplex σ of X let V_{σ} be the finite set of elements $\left\{g_{v}\right\}$ where v is a vertex of σ. The collection of V_{σ} satisfies
(a) $\sigma<\tau$ implies $V_{\sigma} \subset V_{\tau}$
(b) if $\sigma=\left(\alpha_{0} \cdot U_{F_{0}}<\cdots<\alpha_{p} \cdot U_{F_{p}}\right)$, then $g^{-1} \cdot h \in U_{F_{p}}$ for $g, h \in V_{\sigma}$.

In view of Lemma 4, (b) implies
(c) for each σ there is a facette F of the affine stratification such that $g^{-1} \cdot h \in U_{F}^{n}$ whenever $g, h \in V_{\sigma}$.

Using (a), (b), (c) we shall associate to each simplex σ of X a contractible set $C_{\sigma} \subset Y_{n}$ such that $\sigma<\tau$ implies $C_{\sigma} \supset C_{\tau}$. Let $A \subset Y_{n}$ denote the "standard" apartment consisting of simplices ($U_{F_{0}}^{n}<\cdots<U_{F_{s}}^{n}$) and recall from the first section that A is the first barycentric subdivision of $V \subset \mathbf{R}^{\mathrm{I+1}}$. For each simplex σ of X let $D_{\sigma} \subset A$ denote the union of all simplices $F \cap V$ where F satisfies (c). D_{σ} is convex by Lemma 4. Finally let $C_{\sigma}=g \cdot D_{\sigma}$ where g is any element of V_{σ}; this is well defined by (c).

Now we can construct ϕ_{n}. Map each vertex v_{σ} of X^{*} corresponding to a top dimensional simplex σ of X to any point in C_{σ}. Assume inductively that ϕ_{n} has been constructed over X_{r}^{*} in such a way that

$$
\phi_{n}\left(\sigma^{*}\right) \subset C_{\sigma} \text { for each simplex } \sigma \text { of } X \text { of dimension at least } r .
$$

We shall show how to extend ϕ_{n} over X_{r-1}^{*} so that (\dagger) remains satisfied. Let τ be an $(r-1)$-simplex of X and let $\tau^{\prime}=\left(\sigma_{1}<\cdots<\sigma_{s}\right)$ be a simplex in $\partial \tau^{*}$. Thus τ is a proper face of σ_{1} and τ^{\prime} is a simplex in σ_{1}^{*}. By $(\dagger) \phi_{n}\left(\tau^{\prime}\right) \subset C_{\sigma_{1}} \subset C_{\tau^{*}}$. Since $\partial \tau^{*}$ is the union of such simplices τ^{\prime}, we have $\phi_{n}\left(\partial \tau^{*}\right) \subset C_{\tau}$ and hence ϕ_{n} can be extended over τ^{*} so that $\phi_{n}\left(\tau^{*}\right) \subset C_{\tau}$. Continuing this procedure gives the desired map $\phi: X \rightarrow Y_{n}$. To get the base points right note that if σ is the vertex $U_{C_{0}}$, then $C_{\sigma}=A$; hence we can map $U_{C_{0}}$ to U_{c}^{n} in the last induction step.

It remains to show that ϕ_{n} is independent of the choice of elements $\left\{g_{v}\right\}$. Let $\left\{V_{\sigma}^{\prime}\right\}$ and $\left\{V_{\sigma}^{\prime \prime}\right\}$ be two collections satisfying (a), (b), (c) coming from two choices of the g_{v}. Let $\left\{C_{\sigma}^{\prime}\right\}$ and $\left\{C_{\sigma}^{\prime \prime}\right\}$ be the corresponding collections of contractible sets and note that $C_{\sigma}^{\prime} \cup C_{\sigma}^{\prime \prime}$ is contractible. For let $C_{\sigma}^{\prime}=g \cdot D_{\sigma}^{\prime}$ and $C_{\sigma}^{\prime \prime}=h \cdot D_{\sigma}^{\prime \prime}$. Then

$$
C_{\sigma}^{\prime} \cap C_{\sigma}^{\prime \prime}=g \cdot\left(D_{\sigma}^{\prime} \cap D_{\sigma}^{\prime \prime}\right)=h \cdot\left(D_{\sigma}^{\prime} \cap D_{\sigma}^{\prime \prime}\right)
$$

and $D_{\sigma}^{\prime} \cap D_{\sigma}^{\prime \prime}$ is convex.

Now let ϕ_{n}^{\prime} and $\phi_{n}^{\prime \prime}$ be the two maps constructed using the collections $\left\{V_{\sigma}^{\prime}\right\}$ and $\left\{V_{\sigma}^{\prime \prime}\right\}$. For each vertex v_{σ} of X^{*} define the homotopy $H: v_{\sigma} \times I \rightarrow Y_{n}$ by joining $\phi_{n}^{\prime}\left(v_{\sigma}\right) \in C_{\sigma}^{\prime}$ to $\phi_{n}^{\prime \prime}\left(v_{\sigma}\right) \in C_{\sigma}^{\prime \prime}$ with a path in $C_{\sigma}^{\prime} \cup C_{\sigma}^{\prime \prime}$ and assume inductively that the homotopy $H: X_{r}^{*} \times I \rightarrow Y_{n}$ has been defined between $\phi_{n}^{\prime} \mid X_{r}^{*}$ and $\phi_{n}^{\prime \prime} \mid X_{r}^{*}$ so that
$H\left(\sigma^{*} \times I\right) \subset C_{\sigma}^{\prime} \cup C_{\sigma}^{\prime \prime}$ for any simplex σ of X of dimension at least r.
We will extend H over $X_{r-1}^{*} \times I$ so that the condition ($\dagger \dagger$) still holds. Let τ be any $(r-1)$-simplex of X and $\tau^{\prime}=\left(\sigma_{1}<\cdots<\sigma_{p}\right)$ be any simplex in $\partial \tau^{*}$. Then $H\left(\tau^{\prime} \times I\right)$ $\subset C_{\sigma_{1}}^{\prime} \cup C_{\sigma_{1}}^{\prime \prime} \subset C_{\tau}^{\prime} \cup C_{\tau}^{\prime \prime}$ and hence $H\left(\partial \tau^{*} \times I\right) \subset C_{\tau}^{\prime} \cup C_{\tau}^{\prime \prime}$. Since $\phi_{n}^{\prime}\left(\tau^{*} \times 0\right) \subset C_{\tau}^{\prime}$ and $\phi_{n}^{\prime \prime}\left(\tau^{*} \times 1\right) \subset C_{\tau}^{\prime \prime}$, we can extend H to $\tau^{*} \times I$ so that $H\left(\tau^{*} \times I\right) \subset C_{\tau}^{\prime} \cup C_{\tau}^{\prime \prime}$.

This completes the construction of ϕ_{n}.

§3. Computation of $\pi_{1}^{\text {top }}$

This section proves Theorem A which says that whenever E is complete with finite residue field

$$
\pi_{1}^{\mathrm{top}} S L(\mathfrak{I}+1, E) \simeq \mu(E)
$$

for $\mathfrak{I} \geqslant 2$. The proof is based on the following information about Milnor's group $K_{2}(E)$ coming from the work of Moore [7; also 6, A.14], Dennis-Stein [2, §4], and Stein [9, Th. 2.5 and Th. 3.1]:
(i) $K_{2}(E) \simeq \mu(E) \oplus D$
where D is infinitely divisible and there is some $n_{0} \geqslant 1$ (depending on E) such that
(ii) for each $n \geqslant n_{0}$ the group D is generated by $\{u, v\}$ with $u \in 1+\mathfrak{p}^{n}$ and $v \in \mathfrak{D}^{*}$; furthermore D is the kernel of the map $K_{2}(\mathfrak{D}) \rightarrow K_{2}\left(\mathfrak{D} / \mathfrak{p}^{n}\right)$

The plan of the proof is to construct homomorphisms

$$
\phi_{n}: K_{2}(E) \simeq K_{2}(\mathfrak{I}+1, E) \rightarrow \pi_{1} S L_{n}^{\mathrm{top}}(\mathfrak{I}+1, E)
$$

for all $n \geqslant 1$ and

$$
\psi_{n}: \pi_{1} S L_{n}^{\mathrm{top}}(\mathfrak{I}+1, E) \rightarrow K_{2}(E) / D
$$

for n sufficiently large such that
(1) ϕ_{n} is onto with $D \subset \operatorname{ker} \phi_{n}$
(2) for large $n, \psi_{n} \circ \phi_{n}$ is just the map $K_{2}(E) \rightarrow K_{2}(E) / D$.

It then follows that for n sufficiently large ψ_{n} is an isomorphism and it will be clear from the construction of the ψ_{n} that they are compatible with the inverse system (*). Hence

$$
\pi_{1}^{\mathrm{top}} S L(\mathfrak{l}+1, E) \simeq K_{2}(E) / D \simeq \mu(E)
$$

The maps ϕ_{n} will essentially be those defined in $\S 2$ modulo the equivalence $K_{2}(E)$ $\simeq \pi_{1}^{a b} S L(\mathfrak{l}+1, E)$ for $\mathfrak{l} \geqslant 3$ demonstrated in [10]. However to avoid invoking this isomorphism we will give some details of the construction of the ϕ_{n} which will be needed anyway to establish (1) and (2).

Step 1. Defining ϕ_{n} for $n \geqslant 1$ and $\mathfrak{I} \geqslant 2$.
Let $z \in U_{C}^{n}$ be represented as a product

$$
z=z_{1} \cdot z_{2} \cdot \cdots \cdot z_{s}
$$

where $z_{i} \in U_{F_{i}}$ for some facette F_{i} in the linear stratification. To this product we will associate a loop

$$
z_{0} * z_{1} * \cdots * z_{s} \subset S L_{n}^{\mathrm{top}}(\mathfrak{l}+1, E)
$$

from the base point U_{C}^{n} to itself as follows:
(a) First choose for $i=0, \ldots, s+1$ an affine face G_{i} such that $z_{i} \in U_{G_{i}}^{n}$ for $i=1, \ldots, s$ and $G_{0}=G_{s+1}=C$.
(b) Then choose a path γ_{i} from the vertex $U_{G_{i}}^{n}$ to the vertex $U_{G_{l+1}}^{n}$ in the standard apartment $A \subset S L_{n}^{\text {top }}(\mathfrak{l}+1, E)$.

Let $\beta_{0}=1$ and for $1 \leqslant k \leqslant s$ let $\beta_{k}=z_{1} \cdots \cdot z_{k}$. Let $\bar{z}_{k}=\beta_{k} \cdot \gamma_{k}$ be the translate of γ_{k} by β_{k} under the action of $S L(\mathfrak{l}+1, E)$ on $S L_{n}^{\text {top }}(\mathfrak{I}+1, E)$. The endpoint of \bar{z}_{k-1} is $\beta_{k-1} \cdot U_{G_{k}}^{n}$ and $\beta_{k-1} \cdot U_{G_{k}}^{n}=\beta_{k-1} \cdot z_{k} \cdot U_{G_{k}}^{n}=\beta_{k} \cdot U_{G_{k}}^{n}$ is the initial point of \bar{z}_{k}. Hence the paths \bar{z}_{k} can be strung end to end to produce the loop (∇).

First we show (∇) is independent of the choices (a) and (b): It is clearly independent of the choice of path γ_{k} because the standard apartment is contractible. To show the choice in (a) doesn't matter let $U_{G^{\prime} i}^{n}$ be another group containing z_{i}. By Lemma 4 there is a piecewise linear path ϱ_{i} from $U_{G_{i}}^{n}$ to $U_{G^{\prime}}^{n}$ in the standard apartment such that each vertex U_{G}^{n} of ϱ_{i} contains z_{i}. Then (∇) constructed using the $U_{G^{\prime}}^{n}$ is represented, in virtue of the independence from the choice (b), by the concatenation

$$
\beta_{0} \cdot\left(\gamma_{0} * \varrho_{1}\right) * \cdots * \beta_{k} \cdot\left(\varrho_{k}^{-1} * \gamma_{k} * \varrho_{k+1}\right) * \cdots * \beta_{s} \cdot\left(\varrho_{s}^{-1} * \gamma_{s}\right)
$$

We write this as

$$
\cdots * \beta_{k-1} \cdot\left(\varrho_{k-1}^{-1} * \gamma_{k-1} * \varrho_{k}\right) * \beta_{k} \cdot\left(\varrho_{k}^{-1} * \gamma_{k} * \varrho_{k+1}\right) * \cdots
$$

which is the same as

$$
\cdots * \beta_{k-1} \cdot \varrho_{k-1}^{-1} * \beta_{k-1} \cdot \gamma_{k-1} * \beta_{k-1} \cdot \varrho_{k} * \beta_{k} \cdot \varrho_{k}^{-1} * \beta_{k} \cdot \gamma_{k} * \beta_{\kappa} \cdot \varrho_{k+1} * \cdots
$$

Now $\beta_{k-1} \cdot \varrho_{k}=\beta_{k} \cdot \varrho_{k}$ because each vertex in the path ϱ_{k} contains z_{k}. Hence the terms $\beta_{k-1} \cdot \varrho_{k} * \beta_{k} \cdot \varrho_{k}^{-1}$ cancel out to give the loop

$$
\cdots * \beta_{k-1} \cdot \gamma_{k-1} * \beta_{k} \cdot \gamma_{k} * \cdots
$$

which is the path representing (∇) obtained from the original choice (a).

Actually, since the path \vec{z}_{0} is determined by z_{1}, it will be convenient from now on to denote the loop (∇) by $\bar{z}_{1} * \cdots * \bar{z}_{s}$.

The construction of (∇) shows that
(c) if $z_{1} \in U_{C}^{n}$, then $\bar{z}_{1} * \cdots * \bar{z}_{s}=\bar{z}_{2} * \cdots * \bar{z}_{s}$ and if $z_{s} \in U_{C}^{n}$, then $\bar{z}_{1} * \cdots * \bar{z}_{s}=\bar{z}_{1} * \cdots * \bar{z}_{s-1}$
(d) if for some $1 \leqslant k \leqslant s-1$ there is a linear face F and an affine face G such that z_{k} and z_{k+1} both belong to U_{F} and U_{G}^{n}, then

$$
\bar{z}_{1} * \cdots * \bar{z}_{k} * \bar{z}_{k+1} * \cdots * \bar{z}_{s}=\bar{z}_{1} * \cdots * \bar{z}_{k} \cdot z_{k+1} * \cdots * \bar{z}_{s}
$$

Now to get ϕ_{n}, let $y \in K_{2}(E)$ be represented as the word

$$
y=\prod_{\alpha=1}^{s} x_{i_{\alpha} j_{\alpha}}\left(\lambda_{\alpha}\right)
$$

Then

$$
\mathrm{id}=\prod_{\alpha=1}^{s} e_{i_{\alpha} j_{\alpha}}\left(\lambda_{\alpha}\right)
$$

and we let

$$
\phi_{n}(y)=\bar{e}_{i_{1} j_{1}}\left(\lambda_{1}\right) * \cdots * \bar{e}_{i_{s} j_{s}}\left(\lambda_{s}\right)
$$

Any two presentations of y as a product differ by Steinberg relations and these don't change $\phi_{n}(y)$ in view of (d). For example

$$
\cdots * \overline{e_{i j}(\lambda) \cdot e_{j k}(\mu)} * \cdots=\cdots * \overline{e_{i k}(\lambda \mu) \cdot e_{j k}(\mu) \cdot e_{i j}(\lambda)} * \cdots
$$

because all the generators in the third Steinberg relation belong to U_{F} for any linear facette on which $e_{i}-e_{j}$ and $e_{j}-e_{k}$ (and therefore $e_{i}-e_{k}$) are positive, and they also belong to $U_{G}^{\boldsymbol{G}}$ where G is any affine facette contained in

$$
e_{i}-e_{j}+r=0, \quad e_{j}-e_{k}+r^{\prime}=0, \quad e_{i}-e_{k}+r+r^{\prime}=0
$$

for r and r^{\prime} sufficiently negative.
PROPOSITION 5. ϕ_{n} is onto for $\mathfrak{l} \geqslant 2$.
Proof. The construction of (∇) gives a procedure for constructing a path \bar{z} from any coset $\alpha \cdot U_{F}^{n}$ to any coset $\alpha \cdot \omega \cdot U_{G}^{n}$ given any word $z \in S t(l+1, E)$ with $\varrho(z)=$ $=\omega \in S L(\mathfrak{l}+1, E)$. Here $\varrho: S t \rightarrow S L$ is the natural homomorphism. The proof that ϕ_{n} is onto reduces to the special case of showing that a one-simplex of the form $\left(\alpha \cdot U_{F}^{n}<\beta \cdot U_{G}^{n}\right)$ is homotopic with endpoints fixed to the path \bar{z} where $z \in S t(\mathfrak{l}+1, E)$ is chosen so that $\varrho(z)=\alpha^{-1} \cdot \beta \in U_{G}^{n}$.

Write $\alpha^{-1} \cdot \beta=v_{+} \cdot g \cdot v_{-}$as in Lemma 2. The upper and lower triangular matrices v_{+}and v_{-}lift to well defined elements of $S t(\mathfrak{I}+1, E)$ which we continue to denote by v_{+}and v_{-}. Let z_{g} be a lifting of g to a product of words of the form $h_{i j}(u)=$ $=w_{i j}(u) \cdot w_{i j}(-1)$ where $u \in 1+\mathfrak{p}^{n}$. See [6, §9]. Let $z=v_{+} \cdot z_{g} \cdot v_{-}$. Then $\bar{z}=\bar{v}_{+} * \bar{z}_{\mathrm{g}} * \bar{v}_{-}$ is a path from $\alpha \cdot U_{F}^{n}$ to $\beta \cdot U_{G}^{n}$ and we will show it is homotopic with endpoints fixed to the one-simplex $\left(\alpha \cdot U_{F}^{n}<\beta \cdot U_{G}^{n}\right)$. Since $v_{+} \in U_{G}^{n}$ the path \bar{v}_{+}from $\alpha \cdot U_{F}^{n}$ to $\alpha \cdot U_{G}^{n}$ is $\left(\alpha \cdot U_{F}^{n}<\alpha \cdot v_{+} \cdot U_{G}^{n}\right)=\left(\alpha \cdot U_{F}^{n}<\alpha \cdot U_{G}^{n}\right)$. By Lemma 6 below the path \tilde{z}_{g} from $\alpha \cdot U_{G}^{n}$ $=\alpha \cdot v_{+} \cdot U_{G}^{n}$ to $\alpha \cdot U_{G}^{n}=\alpha \cdot v_{+} \cdot g \cdot U_{G}^{n}$ (obtained by translating via $\alpha \cdot v_{+}$the path \bar{z}_{g} considered as a loop from U_{G}^{n} to U_{G}^{n}) is homotopic to the constant path with endpoints fixed. The path \bar{v}_{-}from $\alpha \cdot U_{G}^{n}=\alpha \cdot v_{+} \cdot g \cdot U_{G}^{n}$ to $\beta \cdot U_{G}^{n}=\alpha \cdot v_{+} \cdot g \cdot v_{-} \cdot U_{G}^{n}$ is homotopic to the constant path $\left(\alpha \cdot U_{G}^{n}<\beta \cdot U_{G}^{n}\right)$ because $v_{-} \in U_{G}^{n}$ and $\alpha \cdot U_{G}^{n}=\beta \cdot U_{G}^{n}$. Hence

$$
\begin{align*}
\ddot{v}_{+} * \bar{z}_{g} * \bar{v}_{-} & \sim\left(\alpha \cdot U_{F}^{n}<\alpha \cdot U_{G}^{n}\right) *\left(\alpha \cdot U_{G}^{n}<\alpha \cdot U_{G}^{n}\right) *\left(\alpha \cdot U_{G}^{n}<\beta \cdot U_{G}^{n}\right) \\
& \sim\left(\alpha \cdot U_{F}^{n}<\beta \cdot U_{G}^{n}\right)
\end{align*}
$$

LEMMA 6. The path \bar{z}_{g} from U_{G}^{n} to U_{G}^{n} is homotopic to a constant keeping endpoints fixed.

Proof. The general case reduces to the special case where $z_{g}=w_{i j}(u) \cdot w_{i j}(-1)$ and either $i<j$ or $i>j$. Suppose $i<j$. Then \bar{z}_{g} from U_{G}^{n} to U_{G}^{n} is of the form $\eta * \bar{z}_{g} * \eta^{-1}$ where η is a path in the standard apartment from U_{G}^{n} to U_{C}^{n} and \bar{z}_{g} is considered as a path from U_{C}^{n} to itself. We show that \bar{z}_{g} is homotopic to a constant when viewed as a loop based at U_{C}^{n}. Recall that

$$
C=\left\{1+x_{\mathrm{I}}>x_{0}>\cdots>x_{\mathrm{I}}\right\} .
$$

Let

$$
D=\left\{1+x_{\mathrm{I}}>x_{0}>\cdots>x_{i}=\cdots=x_{j}>x_{j+1}>\cdots>x_{\mathrm{I}}\right\}
$$

and

$$
\begin{aligned}
C^{\prime} & =\left\{1+x_{\mathrm{I}}>x_{0}>\cdots>x_{j}>\cdots>x_{i}>\cdots>x_{\mathrm{I}}\right\}, \quad \text { if } j \neq \mathfrak{l} \\
& =\left\{1+x_{i}>x_{0}>\cdots>x_{i-1}>x_{\mathrm{I}}>x_{i+1}>\cdots>x_{i}\right\}, \quad \text { if } j=\mathfrak{l} .
\end{aligned}
$$

Then $C>D<C^{\prime}$ and each elementary matrix $e_{i j}(\lambda)$ or $e_{j i}(\lambda)$ appearing in the word $w_{i j}(u) \cdot w_{i j}(-1)$ lies in one of the subgroups U_{C}^{n} or $U_{C^{\prime}}^{n}$. This means we can construct \bar{z}_{g} as in (∇) by choosing as in (b) just the path $\gamma=U_{C}^{n}>U_{D}^{n}<U_{C^{\prime}}^{n}$ or its reverse γ^{-1}. Write $u=1+\sigma$ and $u^{-1}=1+\tau$ for $\sigma, \tau \in \mathfrak{p}^{n}$ and note that $e_{i j}(\pm \sigma)$ and $e_{j i}(\pm \tau)$ lie in U_{D}. Then using properties (c) and (d)

$$
\begin{aligned}
\bar{z}_{\mathrm{g}} & =\bar{e}_{i j}(1+\sigma) * \bar{e}_{j i}(-1-\tau) * \bar{e}_{i j}(1+\sigma) * \bar{e}_{i j}(-1) * \bar{e}_{j i}(1) * \bar{e}_{i j}(-1) \\
& =\bar{e}_{j i}(-1-\tau) * \bar{e}_{i j}(1+\sigma) * \bar{e}_{i j}(-1) * \bar{e}_{j i}(1) \\
& =\bar{e}_{j i}(-\tau) * \bar{e}_{j i}(-1) * \bar{e}_{i j}(\sigma) * \bar{e}_{i j}(1) * \bar{e}_{i j}(-1) * \bar{e}_{j i}(1) \\
& =\bar{e}_{j i}(-1) * \bar{e}_{i j}(\sigma) * \bar{e}_{j i}(1) .
\end{aligned}
$$

This last path is $\gamma * \varepsilon \cdot \gamma^{-1}$ where $\varepsilon=e_{j i}(-1) \cdot e_{i j}(\sigma) \cdot e_{j i}(1)$ which lies in each of U_{C}^{n}, U_{D}^{n}, and $U_{C^{\prime}}^{n}$. Hence $\varepsilon \cdot \gamma^{-1}=\gamma^{-1}$ and $\gamma * \varepsilon \cdot \gamma^{-1}=\gamma * \gamma^{-1}$ which is certainly contractible keeping the base point U_{C}^{n} fixed.

The case when $i>j$ is similar.
q.e.d.

PROPOSITION 7. $D \subset \operatorname{ker} \phi_{n}$ whenever n is large enough to satisfy (ii).
Proof. Let $\{u, v\} \in D$ where $u \in 1+\mathfrak{p}^{n}$ and $v \in \mathfrak{D}^{*}$. Then $\phi_{n}(\{u, v\})=\bar{h}_{01}(u) * \bar{h}_{02}(v)$ $* h_{01}(u)^{-1} * h_{02}(v)^{-1}$ which is homotopic to $\bar{h}_{13}(v) * \bar{h}_{13}(v)^{-1}$ by Lemma 6 . This last loop is clearly contractible.
q.e.d.

Step 2. Construction of ψ_{n}.
Throughout this part we will assume $n \geqslant n_{0}+1$ where n_{0} is as in (ii) and we assume $\mathfrak{l} \geqslant 2$. Let $m=$ order of $\mu(E)$ and let $(,)_{m}: E^{*} \times E^{*} \rightarrow \mu(K)$ be the m th power norm residue symbol. Let

$$
1 \rightarrow \mu(E) \rightarrow X \rightarrow S L(\mathfrak{l}+1, E) \rightarrow 1
$$

be the continuous central extension associated to $(,)_{m}$. By [6, A.14 and p. 95] this is algebraically equivalent to

$$
1 \rightarrow K_{2}(E) / D \rightarrow S t(\mathfrak{I}+1, E) / D \underset{\mathrm{e}}{\rightarrow} S L(\mathfrak{I}+1, E) \rightarrow 1
$$

LEMMA 8. For each affine face F there is a homomorphism $s_{F}: U_{F}^{n} \rightarrow S t(\mathfrak{l}+1, E) / D$ such that if $F<F^{\prime}$, then $s_{F^{\prime}} \mid U_{F}^{n}=s_{F}$ and such that $\varrho \circ s_{F}=\mathrm{id}$.

Proof. Given an affine facette F let $X_{F}^{+}\left(\right.$resp. $\left.X_{F}^{-}\right)$be the subgroup of $S t(\mathfrak{l}+1, E) / D$ generated by $x_{i j}(\lambda)$ with $i<j$ (resp. $i>j$) and $v(\lambda) \geqslant k\left(F, e_{i}-e_{j}\right)_{n}$, and let Y be the subgroup of $S t(\mathfrak{l}+1, E) / D$ generated by the words $h_{i j}(u)$ with $u \in 1+\mathfrak{p}^{n}$. Let G_{F} be the subgroup of $S t(I+1, E) / D$ generated by X_{F}^{+}, X_{F}^{-}, and Y. Then

$$
G_{F}=X_{F}^{+} \cdot Y \cdot X_{F}^{-}=X_{F}^{-} \cdot Y \cdot X_{F}^{+}
$$

The proof of this is similar to (B) in Lemma 2 and the main point is that for $i<j$ we have

$$
x_{i j}(\lambda) \cdot x_{j i}(\mu)=h_{i j}(z) \cdot x_{j i}(\mu z) \cdot x_{i j}\left(z^{-1} \lambda\right)
$$

modulo D where $\lambda, \mu \in E$ and $z=1+\lambda \mu \in 1+\mathfrak{p}^{n}$. Here we continue to use the notation of (B) of Lemma 2. Not both k and k^{\prime} are zero because $k^{\prime}=r \cdot n-k$ for $r>0$. Thus the argument breaks down into two steps.

Case 1. Both k and k^{\prime} are non-negative and so at least one of them, say k, is strictly positive. Then $k \geqslant n$ because $k \in n \cdot z$. In particular $v(\lambda) \geqslant n$. Thus when we consider the element

$$
x_{i j}(\lambda) \cdot x_{j i}(\mu) \cdot x_{i j}\left(z^{-1} \lambda\right)^{-1} \cdot x_{j i}(\mu z)^{-1} \cdot h_{i j}(z)^{-1}
$$

of $K_{2}(\mathfrak{D})$ as an element of $K_{2}\left(\mathfrak{D} / \mathfrak{p}^{n}\right)$ it becomes zero. By (ii), i.e. by [2, §4], it lies in D so (α) holds modulo D.

Case 2. One of k or k^{\prime} is negative. Say $k=-s$ where $s>0$. Then $k^{\prime} \geqslant n$ because $k+k^{\prime} \geqslant n$. Let $p \neq i, j$. Since the subgroup D is in the center of $S t(\mathfrak{l}+1, E)$ the equation (α) holds modulo D iff its conjugate by $h_{i p}\left(\pi^{s}\right)$ holds modulo D :

$$
\begin{aligned}
x_{i j}\left(\pi^{s} \lambda\right) \cdot x_{j i}\left(\pi^{-s} \mu\right) & =h_{i j}\left(\pi^{s} z\right) \cdot h_{i j}\left(\pi^{s}\right)^{-1} \cdot x_{j_{l}}\left(\pi^{-s} \mu z\right) \cdot x_{i j}\left(\pi^{s} z^{-1} \lambda\right) \\
& =\{\pi, z\}^{s} \cdot h_{i j}(z) \cdot x_{j i}\left(\pi^{-s} \mu z\right) \cdot x_{i j}\left(\pi^{s} z^{-1} \lambda\right) .
\end{aligned}
$$

Note that $v\left(\pi^{s} \lambda\right) \geqslant 0, v\left(\pi^{-s} \mu\right) \geqslant n, v\left(\pi^{s} z^{-1} \lambda\right) \geqslant 0$ and $v\left(\pi^{-s} \mu z\right) \geqslant n$. Let $z=1+v \pi^{n}$. Then by $[2, \S 2]$

$$
\{\pi, z\}=\left\{\pi, 1+v \pi^{n}\right\}=\left\{-\frac{1+v \pi^{n-1}}{1-\pi}, \frac{1+v \pi^{n}}{1-\pi}\right\}^{-1}
$$

and so $\{\pi, z\} \in K_{2}(\mathfrak{D})$ has the same image in $K_{2}\left(\mathfrak{O} / \mathfrak{p}^{n-1}\right)$ as

$$
\left\{-\frac{1}{1-\pi}, \frac{1}{1-\pi}\right\}^{-1}
$$

which is zero by [6, Lemma 9.8]. The word

$$
x_{i j}\left(\pi^{s} \lambda\right) \cdot x_{j i}\left(\pi^{-s} \mu\right) \cdot x_{i j}\left(\pi^{s} z^{-1} \lambda\right)^{-1} \cdot x_{j i}\left(\pi^{-s} \mu z\right)^{-1} \cdot h_{i j}(z)^{-1} \cdot\{\pi, z\}^{-s}
$$

in $K_{2}(\mathfrak{D})$ therefore goes to zero in $K_{2}\left(\mathfrak{D} / \mathfrak{p}^{n-1}\right)$; so again by [2, §4] it lies in D and (α) holds modulo D. Now to complete the proof of Lemma 8: By [6, Lemma 9.14] the maps $\varrho: X_{F}^{ \pm} \rightarrow{ }^{ \pm} U_{F}^{n}$ are isomorphisms. The map $\varrho: Y \rightarrow H^{n}$ is a surjection. Any element $\omega \in Y$ with $\varrho(\omega)=1$ lies in the kernel of the map $K_{2}(\mathfrak{D}) \rightarrow K_{2}\left(\mathfrak{D} / \mathfrak{p}^{n}\right)$ and therefore in D by $[2, \S 4]$. Hence $\varrho: Y \rightarrow H^{n}$ is an isomorphism also and consequently $\varrho: G_{F} \rightarrow U_{F}^{n}$ is an isomorphism. We define $s_{F}: U_{F}^{n} \rightarrow S t(\mathfrak{l}+1, E) / D$ to be the inverse of ϱ restricted to G_{F}. If $F<F^{\prime}$ then $G_{F} \subset G_{F^{\prime}}$, so $s_{F^{\prime}} \mid U_{F}^{n}=s_{F}$.
q.e.d.

To define the homomorphism ψ_{n} we use essentially the same method as in [10, Prop. 2]. If I denotes the directed one-simplex $\left(\alpha \cdot U_{F}^{n}<\beta \cdot U_{G}^{n}\right)$, we let \mathbb{I}^{-1} denote the same one-simplex directed from $\beta \cdot U_{G}^{n}$ back to $\alpha \cdot U_{F}^{n}$. Any piecewise linear loop γ from U_{G}^{n} to itself is a concatenation

$$
\gamma=\mathfrak{I}_{1}^{\varepsilon_{1}} * \mathfrak{I}_{2}^{\ell_{2}} * \cdots * \mathfrak{I}_{s}^{\ell_{s}}
$$

where $\varepsilon_{i}= \pm 1$. Choose an element in each vertex $\alpha \cdot U_{F}^{n}$ of $S L_{n}^{\text {top }}(\mathfrak{I}+1, E)$. For each \mathfrak{I}_{i} we have the element $g_{i}^{-1} \cdot h_{i}$ where g_{i} is the chosen element in the initial vertex of I_{i} and h_{i} is in the final vertex of I_{i}. Since $g_{i+1}=h_{i}$ the element

$$
u=\prod_{i=1}^{s}\left(g_{i}^{-1} \cdot h_{i}\right)^{\varepsilon_{i}}
$$

lies in U_{C}^{n}. If $\mathfrak{I}_{i}=\left(\alpha \cdot U_{F}^{n}<\beta \cdot U_{G}^{n}\right)$ we let $L_{i}=s_{G}\left(g_{i}^{-1} \cdot h_{i}\right)$. Let w be a lifting of u to $S t(\mathfrak{l}+1, E)$ obtained as in the proof of Lemma 8 and define

$$
\psi_{n}(\gamma)=L_{1}^{\varepsilon_{1}} \cdot L_{2}^{\varepsilon_{2}} \cdots \cdots L_{s}^{\varepsilon_{s}} \cdot w^{-1} \in K_{2}(E) / D
$$

Any two such liftings of u as in Lemma 8 are congruent modulo D so $\psi_{n}(\gamma)$ doesn't depend on which lifting we choose. Using Lemma 8 it is not hard to see that $\psi_{n}(\gamma)$ is independent of the choice of elements in the $\alpha \cdot U_{F}^{n}$ and also is independent of any simplicial homotopy. For example suppose we have a segment in γ which looks like

$$
\alpha_{1} \cdot U_{F_{1}}^{n}<\alpha_{2} \cdot U_{F_{2}}^{n}<\alpha_{3} \cdot U_{F_{3}}^{n}
$$

and that $g_{i} \in \alpha_{i} \cdot U_{F_{i}}^{n}$ are the chosen elements. Let g_{2} be changed to h and write $g_{2}=h \cdot v$ where $v \in U_{F_{2}}^{n}$. The corresponding subwords of $\psi_{n}(\gamma)$ are $s_{F_{2}}\left(g_{1}^{-1} \cdot g_{2}\right) \cdot s_{F_{3}}\left(g_{2}^{-1} \cdot g_{3}\right)$ and $s_{F_{2}}\left(g_{1}^{-1} \cdot h\right) \cdot s_{F_{3}}\left(h^{-1} \cdot g_{3}\right)$. But we have

$$
\begin{aligned}
s_{F_{2}}\left(g_{1}^{-1} \cdot g_{2}\right) \cdot s_{F_{3}}\left(g_{2}^{-1} \cdot g_{3}\right) & =s_{F_{2}}\left(g_{1}^{-1} \cdot h \cdot v\right) \cdot s_{F_{3}}\left(v^{-1} \cdot h^{-1} \cdot g_{3}\right) \\
& =s_{F_{2}}\left(g_{1}^{-1} \cdot h\right) s_{F_{2}}(v) \cdot s_{F_{3}}\left(v^{-1}\right) s_{F_{3}}\left(h^{-1} \cdot g_{3}\right) \\
& =s_{F_{2}}\left(g_{1}^{-1} \cdot h\right) \cdot s_{F_{3}}\left(h^{-1} \cdot g_{3}\right) .
\end{aligned}
$$

The above procedure gives the desired homomorphism from the edge path presentation of $\pi_{1} S L_{n}^{\text {top }}(\mathfrak{l}+1, E)$ into $K_{2}(E) / D$. We have verified (1) in Propositions 5 and 7. Property (2) is an immediate consequence of the construction of ϕ_{n} and ψ_{n}.

§4. $\pi_{i}^{\text {top }}$ for Discrete Valuation Rings

Let \mathfrak{D} be a discrete valuation ring with unique maximal ideal \mathfrak{p}. Let $v: E \rightarrow \mathbf{Z}$ be the associated discrete valuation on the quotient field E of \mathfrak{D}. This section outlines the modifications necessary to define

$$
\pi_{i}^{\mathrm{top}} S L(\mathfrak{l}+1, \mathfrak{D})
$$

so that we have

THEOREM B. If \mathfrak{D} is complete with finite residue field of characteristic p and $\mathfrak{l} \geqslant 2$, then

$$
\pi_{1}^{\mathrm{top}} S L(\mathfrak{l}+1, \mathfrak{D})=\mu(E)_{p}
$$

where $\mu(E)_{p}$ is the p-primary component of the group of roots of unity in E.
Let F be a facette in the affine stratification of \mathbf{R}^{1+1} and let $n \geqslant 1$. Define V_{F}^{n} to be the subgroup of $S L(I+1, \mathcal{D})$ generated by the $e_{i j}(\lambda)$ where $\lambda \in \mathcal{D}$ and $v(\lambda) \geqslant$
$k\left(F, e_{i}-e_{j}\right)_{n}$. The analogue of Lemma 1 remains valid and wel et $S L_{n}^{\text {top }}(I+1, \mathcal{D})$ be the realization of the simplicial set whose k-simplices are $(k+1)$-tuples

$$
\left(\alpha_{0} \cdot V_{F_{0}}^{n}<\cdots<\alpha_{k} \cdot V_{F_{k}}^{n}\right)
$$

When m divides n there is a map

$$
S L_{m}^{\operatorname{top}}(\mathfrak{I}+1, \mathfrak{D}) \leftarrow S L_{n}^{\mathrm{top}}(\mathfrak{I}+1, \mathfrak{D})
$$

and we let

$$
\pi_{i}^{\text {top }} S L(\mathfrak{l}+1, \mathfrak{D})=\underset{m \mid n}{\lim _{\leftarrow}} \pi_{i} S L_{n}^{\operatorname{top}}(\mathfrak{l}+1, \mathfrak{D})
$$

and

$$
K_{i}^{\mathrm{top}}(\mathfrak{D})=\underset{\mathrm{I}}{\lim } \pi_{i-1}^{\mathrm{top}} \operatorname{SL}(\mathfrak{I}+1, \mathfrak{D})
$$

The analogues of Lemma 2 and Lemma 3 hold although (B) of Lemma 3 is valid for the V_{F}^{n} only for $w \in W_{0}$. This is sufficient however to prove Lemma 4 for the V_{F}^{n} because in the proof the conjugation is by an element of W_{0}. The proof of Theorem B is similar to the argument in Theorem A but uses the following result of Dennis-Stein $[2, \S 4]$: For $r \geqslant 3$

$$
K_{2}(r, \mathfrak{D})=K_{2}(\mathfrak{D})=\mu(E)_{p} \oplus D
$$

where D is the same subgroup as in section 3 . All the steps in the proof can be done by replacing E by \mathfrak{D}. One point to mention is that in Case 2 of Lemma 8 it is not necessary to conjugate the equation (α) to get an equivalent equation in $S t(\mathfrak{l}+1, \mathfrak{D}) / D$ because the terms in (α) already lie in $\operatorname{St}(\mathfrak{l}+1, \mathfrak{D})$.

The natural inclusions $V_{F}^{n} \subset U_{F}^{n}$ induce a map

$$
S L_{n}^{\operatorname{top}}(\mathrm{I}+1, \mathfrak{D}) \rightarrow S L_{n}^{\mathrm{top}}(\mathrm{I}+1, E)
$$

of inverse systems and we get a homomorphism

$$
K_{i}^{\text {top }}(\mathfrak{D}) \rightarrow K_{i}^{\text {top }}(E) .
$$

Following the method of $\S 2$ one constructs a natural homomorphism

$$
K_{i}^{a b}(\mathfrak{D}) \rightarrow K_{i}^{\text {top }}(\mathfrak{D})
$$

compatible with the above homomorphism. It seems plausible to conjecture that there is a short exact sequence

$$
0 \rightarrow K_{i}^{\mathrm{top}}(\mathcal{D}) \rightarrow K_{i}^{\mathrm{top}}(E) \rightarrow K_{i-1}(\mathcal{D} / \mathfrak{p}) \rightarrow 0
$$

similar to the one in algebraic K-Theory. See [3, Th. 1.3] and [8, §5]. For $i=2$ Theorems A and B show this is true; namely, we get

In a future paper we will show that

$$
K_{i}^{\text {top }}(\mathfrak{D})=\underset{\leftarrow}{\lim } K_{i}\left(\mathfrak{D} / \mathfrak{p}^{n}\right)
$$

Since the kernel of the homomorphism $G L\left(\mathfrak{D} / \mathfrak{p}^{n+1}\right) \rightarrow G L\left(\mathfrak{D} / \mathfrak{p}^{n}\right)$ is a p-group, the maps $K_{i}\left(\mathfrak{D} / \mathfrak{p}^{n+1}\right) \rightarrow K_{i}\left(\mathfrak{D} / \mathfrak{p}^{n}\right)$ are isomorphisms on the \mathfrak{l}-primary part whenever $(\mathfrak{l}, p)=1$. Hence by Quillen's computation of the K-theory for a finite field [12] we have

$$
\begin{array}{rlrl}
K_{2 i}^{\mathrm{top}}(\mathfrak{D})_{(\mathrm{I})} & =0, & i \geqslant 1 \\
K_{2 i-1}^{\mathrm{top}}(\mathfrak{D})_{(\mathrm{I})} & =\left[\mathbf{Z} /\left(q_{-1}^{i}\right) \cdot \mathbf{Z}\right]_{(\mathrm{I})}, & & i \geqslant 2
\end{array}
$$

where $(\mathfrak{l}, p)=1$ and $q=|\mathfrak{D} / \mathfrak{p}|$.

§5. Relation to Buildings

In this section we discuss the relationship of the spaces $S L^{a b}(\mathfrak{l}+1, E)$ and $S L_{n}^{\text {top }}(\mathfrak{I}+1, E)$ to the buildings corresponding to the linear and affine $B N$-pair structures on $S L(\mathfrak{l}+1, E)$. The significance of this is not clear, but one possible motivation concerns unitary representations of the p-adic group $S L(\mathfrak{l}+1, E)$. Borel and Serre have shown that the Hilbert space of square summable harmonic forms in dimension \mathfrak{I} on the \mathfrak{p}-adic building associated to $S L(\mathfrak{l}+1, E)$ is the special representation and that the cohomology with compact support in dimension \mathfrak{I} is contained in it as the set of admissible vectors. Perhaps the L^{2} harmonic forms on some of the $S L(\mathfrak{l}+1, E)$ spaces below decompose to give useful realizations for other irreducible representations of $S L(\mathbb{I}+1, E)$.

Recall that the linear building $I^{a b}$ (resp. the \mathfrak{p}-adic or affine building $I^{\text {aff }}$) is the realization of the simplicial set whose k-simplices are the $(k+1)$-tuples

$$
\left(\alpha_{0} \cdot P_{S_{0}} \supset \cdots \supset \alpha_{K} \cdot P_{S_{K}}\right)
$$

where $\alpha_{i} \in S L(\mathrm{I}+1, E), S_{i}$ is a linear (resp. affine) facette contained in the closure of the fundamental chamber C_{0} (resp. C), and $P_{S_{i}}$ is the parabolic (resp. parahoric) subgroup associated to S_{i}. In the linear case we require S_{i} to be a facette of $\left(R^{1+1}\right.$ diagonal) $\cap \bar{C}_{0}$. Actually, $I^{a b}$ and $I^{\text {aff }}$ as defined here are the first barycentric sub-
divisions of the buildings as usually defined. In both cases the action of $S L(\mathfrak{l}+1, E)$ is given by

$$
\alpha \cdot\left(\alpha_{0} \cdot P_{S_{0}} \supset \cdots \supset \alpha_{k} \cdot P_{S_{k}}\right)=\left(\alpha \alpha_{0} \cdot P_{S_{0}} \supset \cdots \supset \alpha \alpha_{k} \cdot P_{S_{k}}\right) .
$$

See [4, chap. II].
The following two lemmas will be useful. Let $S=\{u, v, w \ldots\}$ be a set partially ordered by a relation " \leqslant " such that if $u \leqslant v$ and $v \leqslant u$ then $u=v$. Suppose G is a group acting on the right of S and preserving the ordering in such a way that
(β) if $u, v \leqslant w$ and $v=u \cdot g$, then $u=v$.
Let S / G denote the space of orbits partially ordered by the condition that $u \cdot G \leqslant v \cdot G$ iff there is a $g \in G$ with $u \cdot g \leqslant v$. Note that $u \cdot G \leqslant v \cdot G$ and $v \cdot G \leqslant u \cdot G$ implies $u \cdot G=v \cdot G$.

Let $|S|$ and $|S / G|$ denote the geometric realizations of the nerves of these partially ordered sets.

LEMMA 9. (A) $|S| / G=|S / G|$
(B) if G acts freely on S, then G acts freely and properly on $|S|$ as a discrete group. In particular the quotient space $|S| / G$ is not just triangulable but has a natural triangulation.

Proof. (A). There is a natural simplicial map $\varrho:|S| \rightarrow|S / G|$ given by the correspondence

$$
\left(v_{0} \leqslant \cdots \leqslant v_{k}\right) \rightarrow\left(v_{0} \cdot G \leqslant \cdots \leqslant v_{k} \cdot G\right)
$$

which takes non-degenerate simplices to non-degenerate simplices. We must show that if $\sigma=\left(v_{0} \leqslant \cdots \leqslant v_{k}\right)$ and $\tau=\left(w_{0} \leqslant \cdots \leqslant w_{k}\right)$ are two non-degenerate simplices with $\varrho(\tau)=\varrho(\sigma)$, then there is a $g \in G$ with $\tau \cdot g=\sigma$. By hypotheses we know that for each w_{i} there is a $g_{i} \in G$ with $w_{i} \cdot g_{i}=v_{i}$. Consider the simplex $\tau \cdot g_{k}=\left(w_{0} \cdot g_{k} \leqslant \cdots \leqslant w_{k} \cdot g_{k}\right)$. Then $w \cdot g_{k}=v_{k}$ and for each $0 \leqslant i<k$ we have $v_{i}=w_{i} \cdot g_{k} \cdot\left(g_{k}^{-1} g_{i}\right)$. Hence, by $(\beta), v_{i}=w_{i} \cdot g_{k}$ and so $\tau \cdot g_{k}=\sigma$.
(B) Let $\sigma=\left(v_{0} \leqslant \cdots \leqslant v_{k}\right)$ be a non-degenerate simplex. Let st (σ) be the open star of σ consisting of all simplices τ having σ as a face. We shall show that if $s t(\sigma) \cap s t(\sigma) \cdot g$ is not empty then $g=1$. Let τ be a simplex such that $\sigma \leqslant \tau$ and $\sigma \leqslant \tau \cdot g$, and let v be a vertex of σ. Then $v \cdot g$ is a vertex of $\tau \cdot g$ and v is a vertex of $\tau \cdot g$. Thus either $v \cdot g \leqslant v$ in which case $v \cdot g=v$ by (β) and $g=1$ since G acts freely; or $v \leqslant v \cdot g$ so that $v \cdot g^{-1} \leqslant v$ and $g^{-1}=1$.
q.e.d.

Now let $S^{\prime}=\{u, v, w, \ldots\}$ be partially ordered by a relation " \geqslant " and let G act on the right of S^{\prime} preserving the ordering and satisfying
(β^{\prime}) if $w \geqslant u, v$ and $u \cdot g=v$, then $w \cdot g=w$.
Partially order the orbit space S^{\prime} / G by setting $u \cdot G \geqslant v \cdot G$ iff there is a $g \in G$ with $u \cdot g \geqslant v$.

LEMMA 10. (A) $\left|S^{\prime}\right| / G=\left|S^{\prime}\right| G \mid$
(B) if G acts freely on the set of vertices, then G acts freely and properly on $\left|S^{\prime}\right|$.

Proof. (A). The natural map $\varrho:\left|S^{\prime}\right| \rightarrow\left|S^{\prime}\right| / G$ takes non-degenerate simplices to non-degenerate simplices and we must show that if $\sigma=\left(v_{0} \geqslant \cdots \geqslant v_{k}\right)$ and $\tau=$ $=\left(w_{0} \geqslant \cdots \geqslant w_{k}\right)$ have the same image under ϱ then there is a $g \in G$ with $\sigma=\tau \cdot g$. By hypothesis we know there are elements $g_{i} \in G$ with $w_{i} \cdot g_{i}=v_{i}$ for $i=0, \ldots, k$. Since $w_{0} \cdot g_{0}=v_{0}$ and $w_{1} \cdot g_{1}=w_{1} \cdot g_{0} \cdot\left(g_{0}^{-1} g_{1}\right)=v_{1}$, we conclude from (β^{\prime}) that $w_{0} \cdot g_{1}=v_{0}$. By induction one has $w_{i} \cdot g_{k}=v_{i}$ for $i=0, \ldots, k$. Hence $\sigma=\tau \cdot g_{k}$. The proof of (B) is similar to (B) of Lemma 9.
q.e.d.

The Linear Case. Compare [10, §2]. For any associative ring E there is an equivariant map $\theta: S L^{a b}(\mathfrak{l}+1, E) \rightarrow I^{a b}$ defined by the correspondence which takes the simplex ($\alpha_{0} \cdot U_{F_{0}}<\cdots<\alpha_{k} \cdot U_{F_{k}}$) to the simplex ($\alpha_{0} \omega_{0} \cdot P_{S_{0}} \supset \cdots \supset \alpha_{k} \omega_{k} \cdot P_{S_{k}}$) where S_{i} is the unique linear facette in R^{1+1}-diag and in the closure of C_{0} such that $\omega_{i} \cdot S_{i}=F_{i}$ for some $\omega_{i} \in W_{0}$. The cosets $\alpha_{i} \omega_{i} \cdot P_{S_{i}}$ are independent of the choice of the ω_{i}.

We shall construct a space K on which $S L(\mathfrak{l}+1, E)$ acts on the left such that the map θ factors as the composition of $S L(I+1, E)$-equivariant simplicial maps

$$
S L^{a b}(I+1, E) \rightarrow K \xrightarrow{\Phi} I^{a b}
$$

where the first map is a covering map with group N of the linear $B N$-pair structure on $S L(\mathrm{I}+1, E)$.

The group N acts on the right of $S L^{a b}(\mathfrak{I}+1, E)$ as follows: Let $\alpha \cdot U_{F}$ be a vertex of $S L^{a b}(\mathfrak{l}+1, E)$ and let $\eta \in N$. Define

$$
\left(\alpha \cdot U_{F}\right) \cdot \eta=\alpha \eta \cdot U_{\eta-1 \cdot F} .
$$

This is well defined; for if $\alpha \cdot U_{F}=\beta \cdot U_{F}$, then $\beta=\alpha \cdot u$ with $u \in U_{F}$ and

$$
\beta \eta \cdot U_{\eta^{-1 \cdot F}}=\alpha u \eta \cdot U_{\eta^{-1 \cdot F}}=\alpha \eta\left(\eta^{-1} u \eta\right) \cdot U_{\eta^{-1 \cdot F}}=\alpha \eta \cdot U_{\eta^{-1 \cdot F}}
$$

because $\eta^{-1} u \eta \in U_{\eta^{-1 \cdot F}}$ by (A) of Lemma 3. This action preserves the relation " $<$ " on the cosets $\alpha \cdot U_{F}$ and induces an action on $S L^{a b}(\mathbb{I}+1, E)$.

LEMMA 11. The action of N on $S L^{a b}(\mathfrak{I}+1, E)$ satisfies condition (β) and is free and proper.

Proof. Suppose $\alpha \cdot U_{F}<\gamma \cdot U_{H}, \beta \cdot U_{G}<\gamma \cdot U_{H}$, and $\alpha \cdot U_{F}=\beta \eta \cdot U_{\eta^{-1} \cdot G}$. The definition of the partial ordering of the $\alpha \cdot U_{F}$ in $\S 1$ implies that $F=\eta^{-1} \cdot G$. Now $\gamma^{-1} \alpha \cdot U_{F} \subset U_{H}$ and $\gamma^{-1} \beta \cdot U_{G} \subset U_{H}$, and so $\beta^{-1} \alpha \in U_{H}$. Also $\alpha \cdot U_{F}=\beta \eta \cdot U_{\eta^{-1 \cdot G}}=\beta \eta \cdot U_{F}$ so that $\eta^{-1} \beta^{-1} \alpha \in U_{F}$. Hence $\eta \in U_{H}$ and since $N \cap U_{H}=1$ we have $\eta=1$. Thus $\alpha \cdot U_{F}=\beta \cdot U_{G}$. It is also easy to see that N acts freely on the vertices $\alpha \cdot U_{F}$. Thus (β) is satisfied and N acts freely and properly by (B) of Lemma 9.

Let $K=S L^{a b}(\mathfrak{l}+1, E) / N$. Since θ is constant on the orbits of N we obtain the desired factorization.

Recall from $[10, \S 2]$ that θ, and therefore Φ, is onto in homology in dimension $\mathfrak{I}-1$. For E a finite field both $H_{\mathfrak{I}-1}\left(S L^{a b}(\mathfrak{l}+1, E) ; \mathbf{Z}\right)$ and $H_{\mathrm{I}-1}(K ; \mathbf{Z})$ are free abelian groups of finite rank mapping equivariantly onto the Steinberg representation $H_{\mathrm{I}-1}\left(I^{a b} ; \mathbf{Z}\right)$. What can be said about them as $S L(\mathrm{l}+1, E)$ modules?

Here is an alternate description of K. For any linear facette F let N_{F} be the subgroup of elements η of N such that $\eta \cdot F=F$. Then N_{F} normalizes U_{F} by (A) of Lemma 3 and so $Q_{F}=N_{F} \cdot U_{F}$ is a subgroup of $S L(\mathrm{I}+1, E)$. Note that $F<G$ implies $N_{F} \supset N_{G}$ so that Q_{F} is not a subgroup of Q_{G} unless $F=G$. Define a partial ordering on the cosets $\alpha \cdot Q_{F}$ by the condition that $\alpha \cdot Q_{F}<\beta \cdot Q_{G}$ iff $F<G$ and there is an element $\eta \in N_{F}$ such that $\alpha \eta \cdot U_{F} \subset \beta \cdot U_{G}$.

LEMMA 12. K is isomorphic as a simplicial complex with a left $S L(\mathfrak{I}+1, E)$ action to the space whose k-simplices are $(k+1)$-tuples

$$
\left(\alpha_{0} \cdot Q_{S_{0}}<\cdots<\alpha_{k} \cdot Q_{S_{k}}\right)
$$

where each S_{i} is a linear facette of \mathbf{R}^{1+1}-diag contained in the closure of C_{0}.
The proof is straight forward because there is a bijection between orbits $\left(\alpha \cdot U_{F}\right) \cdot N$ and the cosets $\alpha \cdot Q_{s}$.

Finally, we calculate $\Phi^{-1}(\tau)$ for any simplex τ of $I^{a b}$. Actually, since $\tau=\alpha \cdot \sigma$ where $\alpha \in S L(\mathfrak{l}+1, E)$ and $\sigma=\left(P_{S_{0}} \supset \cdots \supset P_{S_{k}}\right)$, it suffices to describe $\Phi^{-1}(\sigma)$. Here is the formula:

$$
\Phi^{-1}(\sigma)=\beta \cdot\left(Q_{S_{0}} \prec \cdots \prec Q_{S_{k}}\right)
$$

where $\beta \in P_{S_{k}} \bmod N_{S_{k}} \cdot U_{S_{0}}$. Thus we also have

$$
\theta^{-1}(\sigma)=\beta \eta \cdot\left(U_{\eta^{-1} \cdot s_{0}}<\cdots<U_{\eta^{-1}, S_{k}}\right)
$$

for $\beta \in P_{S_{k}} \bmod N_{S_{k}} \cdot U_{S_{0}}$ and $\eta \in N$.
The Affine Case. Let E be a local field, complete with finite residue field. For each $n \geqslant 1$ we shall construct a sequence of $S L(\mathfrak{l}+1, E)$-equivariant simplicial maps

$$
S L_{n}^{\text {top }}(\mathfrak{I}+1, E) \rightarrow K_{n} \overrightarrow{\Psi_{n}} I_{n}^{\text {aff }}
$$

such that whenever m divides n there is a commutative diagram of $S L(I+1, E)$ equivariant simplicial maps

satisfying the properties
(i) for $n=1, I_{n}^{\text {aff }}$ is the affine building $I^{\text {aff }}$,
(ii) each Ψ_{n} and each vertical map in the diagram is a proper map,
(iii) the map $S L_{n}^{\text {top }}(\mathbb{I}+1, E) \rightarrow K_{n}$ is a covering space with fiber the group M^{n} defined as follows: let $T^{n} \subset T$ be the subgroup of translations in W of the form $\operatorname{diag}\left(\pi^{n_{0}}, \ldots, \pi^{n 1}\right)$ where $n_{i} \equiv 0 \bmod n$. Let W^{n} be the subgroup of W generated by T^{n} and W_{0}. Let $N^{n} \subset N$ be the subgroup of elements mapping to W^{n} under the arrow $N \rightarrow W$. Finally let $M^{n}=N^{n} \bmod H^{n}$.

First we define an action of N^{n} on the right of $S L_{n}^{\text {top }}(\mathfrak{I}+1, E)$ and prove
LEMMA 13. The induced action of M^{n} is free, proper, and satisfies condition (β). Let $\eta \in N^{n}$. Define

$$
\left(\alpha \cdot U_{F}^{n}\right) \cdot \eta=\alpha \eta \cdot U_{\eta^{-1, F}}^{n}
$$

This is well defined: for let $\alpha \cdot U_{F}^{n}=\beta \cdot U_{F}^{n}$ where $\beta=\alpha \cdot u$. Then

$$
\beta \eta \cdot U_{\eta^{-1 \cdot F}}^{n}=\alpha u \eta \cdot U_{\eta^{-1 \cdot F}}^{n}=\alpha \eta\left(\eta^{-1} u \eta\right) \cdot U_{\eta^{-1} \cdot F}^{n}=\alpha \eta \cdot U_{\eta^{-1 \cdot F}}^{n}
$$

because $\eta^{-1} u \eta \in U_{\eta^{-1 \cdot F}}^{n}$ according to (B) of Lemma 3. If $\eta \in H^{n}$, then $\eta \cdot F=F$ so $\left(\alpha \cdot U_{F}^{n}\right) \cdot \eta=\alpha \cdot U_{F}^{n}$. Hence M^{n} acts on the right of $S L_{\text {top }}^{n}(\mathfrak{l}+1, E)$. This action is free on vertices. For suppose $\alpha \eta \cdot U_{\eta^{-1} \cdot F}^{n}=\alpha \cdot U_{F}^{n}$ in the sense of the partial ordering. Then $\eta^{-1} \cdot F=F$ and $\eta \cdot U_{\eta^{-1 \cdot F}}^{n}=U_{F}^{n}$ as cosets. Thus $\eta \in N \cap U_{F}^{n}=H^{n}$. This shows the isotropy groups of N^{n} are just H^{n}. Hence M^{n} acts freely. The argument showing (β) is satisfied is similar to the proof of Lemma 11. We apply Lemma 9 to see that M^{n} acts freely and properly on $S L_{n}^{\text {top }}(\mathfrak{l}+1, E)$.

In view of Lemma 13 we can define K_{n} as $S L_{n}^{\text {top }}(\mathfrak{I}+1, E) / M^{n}$ and get a covering space map $S L_{n}^{\text {top }}(\mathfrak{l}+1, E) \rightarrow K_{n}$ which is $S L(\mathfrak{l}+1, E)$-equivariant.

Next we define the spaces $I_{n}^{\text {aff }}$. First let $J^{\text {aff }}$ be the realization of the simplicial set whose k-simplices are the $(k+1)$-tuples $\left(\alpha_{0} \cdot P_{F_{0}} \supset \cdots \supset \alpha_{k} \cdot P_{F_{k}}\right)$ where each $P_{F_{i}}$ is the parahoric subgroup corresponding to the affine facette F_{i}. Here F_{i} runs over all affine facettes and not just those in the closure of the fundamental chamber C. Recall that each P_{F} is of the form $w \cdot P_{S} \cdot w^{-1}$ where $w \in W$ and S is a facette in \bar{C} with $w \cdot S=F$. Furthermore, for $\eta \in N$ one has $\eta \cdot P_{F} \cdot \eta^{-1}=P_{\eta \cdot F}$. The group $S L(\mathfrak{I}+1, E)$ acts on the left of $J^{\text {aff }}$ by

$$
\alpha \cdot\left(\alpha_{0} \cdot P_{F_{0}} \supset \cdots \supset \alpha_{k} \cdot P_{F_{k}}\right)=\left(\alpha \alpha_{0} \cdot P_{F_{0}} \supset \cdots \supset \alpha \alpha_{k} \cdot P_{F_{k}}\right)
$$

LEMMA 14. There is an action of N on the right of $J^{\text {aff }}$ which satisfies condition $\left.\beta^{\prime}\right)$ and induces an action of W satisfying (β^{\prime}).

Proof. For $\eta \in N$ define

$$
\left(\alpha \cdot P_{F}\right) \cdot \eta=\alpha \eta \cdot P_{\eta^{-1} \cdot F}
$$

This is well defined: for let $\alpha \cdot P_{F}=\beta \cdot P_{F}$ where $\beta=\alpha \cdot p$. Then

$$
\beta \eta \cdot P_{\eta^{-1} \cdot F}=\alpha p \eta \cdot P_{\eta^{-1} \cdot F}=\alpha \eta\left(\eta^{-1} p \eta\right) \cdot P_{\eta^{-1} \cdot F}=\alpha \eta \cdot P_{\eta^{-1} \cdot F}
$$

because $\eta^{-1} p \eta \in P_{\eta^{-1} \cdot F}$. To see that (β^{\prime}) holds suppose $\gamma \cdot P_{H} \supset \alpha \cdot P_{F}, \gamma \cdot P_{H} \supset \beta \cdot P_{G}$, and $\alpha \cdot P_{F}=\beta \eta \cdot P_{\eta^{-1 \cdot G}}$ for some $\eta \in N$. Then $P_{F}=P_{\eta^{-1 \cdot G}}$ and $\eta \cdot F=G$. Since $F \supset H \subset G$ we must have $\eta \cdot H=H$. Hence $\eta \in P_{H}$ so that $\gamma \cdot \eta \cdot P_{\eta^{-1 \cdot H}}=\gamma \cdot P_{H}$, which is $\left(\beta^{\prime}\right)$. Since $N \cap B$ is contained in each P_{F} the action of N induces an action of $W=N / N \cap B$ satisfying (β^{\prime}).

We define $I_{n}^{\text {aff }}=J^{\text {aff }} / W^{n}$. For each $n \geqslant 1$ there is a simplicial $S L(I+1, E)$-equivariant map

$$
\psi_{n}: S L_{n}^{\text {top }}(\mathfrak{I}+1, E) \rightarrow J^{\text {aff }}
$$

defined on vertices by $\psi_{n}\left(\alpha \cdot U_{F}\right)=\alpha \cdot P_{F}$. It is compatible with the actions of M^{n} and W^{n} and therefore induces an $S L(\mathfrak{l}+1, E)$-equivariant map

$$
\Psi_{n}: K_{n}=S L_{n}^{\mathrm{top}}(\mathfrak{I}+1, E) / M^{n} \rightarrow J^{\mathrm{aff}} / W^{n}=I_{n}^{\mathrm{aff}}
$$

When m divides n we clearly get the commutative diagram (κ).
To establish (ii) we use the fact that if $f: X \rightarrow Y$ is a simplicial map between locally finite, finite dimensional simplicial complexes such that the number of elements in $f^{-1}(\sigma)$ is bounded by a fixed constant as σ runs over the simplices of Y, then f is proper. Actually it suffices to show $f^{-1}(\sigma)$ bounded by a fixed constant for σ any vertex. Thus we must compute the inverse images of simplices under Ψ_{n} and under the vertical maps in the diagram (κ). To do this it will be convenient to give equivalent descriptions of the spaces K_{n} and $I_{n}^{\text {aff }}$.

For $n \geqslant 1$ we shall let $C_{n}=\left\{x_{1}+n>x_{0}>x_{1}>\cdots>x_{1}\right\}$. Then \bar{C}_{n} is a fundamental domain for W^{n} acting on R^{I+1} and is a union of affine facettes. For any affine facette F, let N_{F}^{n} be the stabilizer of F in $N^{n} . N_{F}^{n}$ normalizes U_{F}^{n} by (B) of Lemma 3 and we let $Q_{F}^{n}=N_{F}^{n} \cdot U_{F}^{n}$. For any two cosets $\alpha \cdot Q_{F}^{n}$ and $\beta \cdot Q_{G}^{n}$ we let $\alpha \cdot Q_{F}^{n}<\beta \cdot Q_{F}^{n}$ iff $F<G$ and there is an $\eta \in N_{F}^{n}$ such that $\alpha \cdot \eta \cdot U_{F}^{n} \subset \beta \cdot U_{G}^{n}$.

LEMMA 15. (A) K_{n} is the realization of the simplicial set whose k-simplices are $(k+1)$-tuples

$$
\left(\alpha_{0} \cdot Q_{S_{0}}^{n}<\cdots<\alpha_{k} \cdot Q_{S_{k}}^{n}\right)
$$

where $S_{i} \subset \bar{C}_{n}$.
(B) $I_{n}^{\text {aff }}$ is the realization of the simplicial set whose k-simplices are $(k+1)$-tuples

$$
\left(\alpha_{0} \cdot P_{S_{0}} \supset \cdots \supset \alpha_{k} \cdot P_{S_{k}}\right)
$$

where $S_{i} \subset \bar{C}_{n}$.

The proof of (A) follows from the bijection between orbits $\left(\alpha \cdot U_{F}^{n}\right) \cdot N^{n}$ and cosets $\alpha \cdot Q_{s}^{n}$; similarly for the proof of (B). In particular $I_{1}^{\text {aff }}=I^{\text {aff }}$, which gives (i).

In view of Lemma 15 the map Ψ_{n} is induced by the correspondence $\alpha \cdot Q_{S}^{n} \rightarrow \alpha \cdot P_{S}$. The composite map
$S L_{n}^{\text {top }}(\mathrm{I}+1, E) \rightarrow K_{n} \rightarrow I_{n}^{\text {aff }}$
is induced by the correspondence $\alpha \cdot U_{F}^{n} \rightarrow \alpha \omega \cdot P_{S}$ where $\omega \in W^{n}$ and $S \subset \bar{C}_{n}$ are such that $\omega \cdot S=F$.

Denote the vertical maps in the diagram (k) by

$$
\begin{aligned}
& p: S L_{n}^{\text {top }}(\mathfrak{I}+1, E) \rightarrow S L_{m}^{\text {opp }}(\mathrm{I}+1, E) \\
& q: K_{n} \rightarrow K_{m} \\
& r: I_{n}^{\text {aff }} \rightarrow I_{m}^{\text {aff }}
\end{aligned}
$$

With the exception of the map q, we shall describe the inverse images of simplices lying in a region whose translates by $S L(\mathrm{I}+1, E)$ fill up the space:
(a) $\psi_{n}^{-1}\left(P_{F_{0}} \supset \cdots \supset P_{F_{k}}\right)=\alpha \cdot\left(U_{F_{0}}^{n}<\cdots<U_{F_{k}}^{n}\right)$
where $F_{i} \subset R^{1+1} \quad$ where $\alpha \in P_{F_{k}} \bmod U_{F_{0}}^{n}$
(b) $\Psi_{n}^{-1}\left(P_{S_{0}} \supset \cdots \supset P_{S_{k}}\right)=\alpha \cdot\left(Q_{S_{0}}^{n} \prec \cdots \prec Q_{S_{k}}^{n}\right)$
where $S_{i} \subset \bar{C}_{n} \quad$ where $\alpha \in P_{S_{k}} \bmod N_{S_{k}}^{n} \cdot U_{S_{0}}^{n}$
(c) $p^{-1}\left(U_{F_{0}}^{m}<\cdots<U_{F_{k}}^{m}\right)=\alpha \cdot\left(U_{F_{0}}^{n}<\cdots<U_{F_{k}}^{n}\right)$
where $F_{i} \subset R^{1+1} \quad$ where $\alpha \in U_{F_{0}}^{m} \bmod U_{F_{0}}^{n}$
(d) $r^{-1}\left(P_{S_{0}} \supset \cdots \supset P_{S_{k}}\right)=\left(\eta^{-1} \cdot P_{\eta \cdot s_{0}} \supset \cdots \supset \eta^{-1} \cdot P_{\eta} \cdot s_{k}\right)$
where $S_{i} \subset \bar{C}_{m} \quad$ where $\eta \cdot S_{i} \subset \bar{C}_{n}$ for $\eta \in W^{m}$
We must check that in each case the cardinality of the inverse images of simplices is uniformly bounded. In (b) and (d) this is clear because on the left hand side there are only finitely many simplices and on the right hand side there are only finitely many α^{\prime} 's and η 's. Uniform boundedness in case (a) holds because $P_{F_{k}} \bmod U_{F_{0}}^{n} \simeq P_{S_{k}} \bmod U_{S_{0}}^{n}$ for some S_{k}, S_{0} in \bar{C}_{n}; it holds for case (c) because $U_{F_{0}}^{m} \bmod U_{F_{0}}^{n} \simeq U_{S_{0}}^{m} \bmod U_{S_{0}}^{n}$ for some $S_{0} \subset \bar{C}_{n}$.

The inverse image of a simplex under q is tedious to describe; however, we still know that q is proper because r and Ψ_{n} are proper.

REFERENCES

[1] Bourbaki, N., Groupes et algèbres de Lie, Chap. 4, 5, 6. Hermann, Paris, 1968.
[2] Dennis, R. K. and Stein, M. R., K \mathbf{K}_{2} of Discrete Valuation Rings, preprint from Cornell and Northwestern Universities.
[3] Gersten, S., Some Exact Sequences in the Higher K-Theory of Rings, Algebraic K-Theory I, Springer-Verlag Lecture Notes 341, pp. 211-243.
[4] MacDonald, I. G., Spherical Functions on a Group of p-Adic Type, Chap. II, published by the Ramanujan Institute, University of Madras, Madras 5, India 1971.
[5] Matsumoto, H., Sur les sous-groupes arithmétiques des groupes semi-simples déployés, Ann. Sci. Ecole Normale Sup. (4) 2 (1969) 1-62.
[6] Milnor, J., Introduction to Algebraic K-Theory, Annals Studies 72, Princeton University Press.
[7] Moore, C., Group Extensions of p-Adic and Adelic Linear Groups, I.H.E.S. Pub. Math. \#35, 1968.
[8] Quillen, D., Higher Algebraic K-Theory I, Algebraic K-Theory I, Springer Verlag Lecture Notes 341, pp. 85-147.
[9] Stein, M. R., Surjective Stability in Dimension 0 for K_{2} and Related Functors, Trans. Amer. Math. Soc. Vol. 178, April 1973, pp. 165-191.
[10] Wagoner, J. B., Buildings, Stratifications, and Higher K-Theory, Algebraic K-Theory I, SpringerVerlag Lecture Notes 341, pp. 148-165.
[11] -_, Equivalence of Higher Algebraic K-Theories, to appear.
[12] Quillen, D., On the cohomology and K-theory of the general linear group over a finite field, Ann. of Math. 96 (1972), 552-586.
[13] Volodin, I. A., Algebraic K-theory as extraordinary homology theory on the category of associative rings with unity, Math. of the USSR - Izvestija, Vol. 5, no. 4, Aug. 1971 (English translation).

University of California
Berkeley, California 94720
U.S.A.

Received March 24, 1975.

[^0]: ${ }^{1}$) Research supported by the University of Lausanne and by NSF grant GP-34217X.

