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Comment. Math. Helvetici 50 (1975) 363-382 Birkhauser Verlag, Basel

Maps Without Certain Singularises

by Andrew du Plessis

§0. Introduction

In this paper we study the problem of finding, for any smooth map/: N-+P between

manifolds, the maps g:N-*P in the homotopy class of/which are as non-singular as

possible. We shall discuss this only with regard to the Whitney-Thom singularities ;

although thèse singularities do not provide a complète description of the structure of
/(even locally), they do go a long way towards it, while their géométrie interprétation
makes them natural objects to study.

The géométrie situation is as follows :

Define £'(/) {xeN | kernel rank Tfx i}. If, for a particular map/, £'(/) is sub-
manifold of N, then/| £'(/): I\f)-^P is a smooth map between manifolds, and we
define ZiJ(f)=ZJ(f\ l\f)). If this also is a manifold, we may define ZlJk(f)9 and

so on.
From this point of view it is not clear for which (if any!) maps/the sets IiJ(f),

Iijk(f), etc. are defined. However, a more subtle approach yields the following:

THEOREM 1 (Boardman [1]). For each r-sequence (séquence ofr integers) /
(i'i,..., ir) there is a submanifold I1 of the infinité jet-space J(N,P) of codimension
v1 which is the inverse image by the natural projection J(N,P)-+Jr(N,P) of a
submanifold of Jr(N, P).

As Iruns over ail r-sequences, thèse submanifolds form a partition ofJ(N, P) which

is effectively finite, for S1 is empty unless

(a) h>i2>->ir>0
(b) dimiV^/i^dimiV-dimP
(c) if ix dimN — dimP, then it i2 • • • ir-

lff:N-+P is a smooth map, we define II(f) (Jf)~1 E1. Thèse sets hâve the

following properties:

(f){\(b) If//is transverse to I1 (so that Z*(f) is a submanifold of N), then IItj(J)^
the (r + l)-sequence (*,..., inj)).

THEOREM 2 (Boardman [1]; a variant of the Thom transversality theorem).
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The smooth maps N-+P whose jet-sections are transverse to ail the submanifolds I1 of
J(N, P) (the generic maps) form a dense in <g°°(N9 P).

Thus, for each r-sequence /and "most" maps/, rJ(/) is a submanifold of TV which

may be constructed by the géométrie method described above; and thèse submanifolds

l\f), as / runs over ail r-sequences, give a finite partition of N.
Our aim is to construct a map g homotopic to/for which this partition has as few

sets as possible, so that we regard the greatest r-sequence (w.r.t. lexicographie order)
/ s.t. II(f)^0 as the singularity of/and seek to reduce this by homotopy.

(Of course this définition applies equally to non-generic maps ; and any non-generic

map of singularity / may be fine-C°°-approximated by generic maps of singularity
^/, hence is homotopic to such a map.)

Let Qr={J{ZK | r-sequences K^I}cJ(N,P). We shall say that a map/liV-^P
is (2J-regular if Jf(N)cQI; thus/is &7-regular<s>its singularity is </.

ŒJ-regularity is a condition on r-jets (since for any r-sequence K, IK is the inverse

image of a submanifold ofJr(N9 P) by the natural projection nr:J(N, P)-+Jr(N9 P))
and it is in fact, in the terminology of [6], a stable, natural regularity condition. (This
means that n'Q1 is an open sub-bundle of Jr(N, P)^N invariant under the natural
action by local diffeomorphisms of N on Jr(N, P); we will prove this later, in (1.4).)
Hence the theorem of Gromov [4] (Theorem A of [6]) applies to &J-regularity, and

we hâve

THEOREM A. Let ^ni(N,P) be the space of Q'-regular maps N-*P, with the

Cr-topology, and let F(QI(N)) be the space ofsmooth sections ofthe bundle nrQI{N) ->

N (with the compact-open topology).
Then, ifN is an open manifold,

is a weak homotopy équivalence.

In particular, we hâve the following

COROLLARY A. Suppose N is an open manifold. Then a (smooth) mapf:N^P
is homotopic to a generic map with singularity ^Iothere is a section ofQ1 coveringf

Hence calculation of the minimal singularity in the homotopy class of/is reduced,
when N is open, to a question of algebraic topology - the existence or otherwise of
sections ofthe bundles Ql covering/.

However, the non-singular maps constructed need not be proper maps, and so

while non-singular according to the letter of our définition may hâve rather patho-
logical behaviour. Many non-singular maps may be constructed on an open manifold
by "pushing singularities to infinity" - there is a Morse function without critical points
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on any open manifold, for example - and we should properly regard the constructions

of Corollary A as an extension (albeit non-trivial) of this rather deceitful procédure

for "hiding" singularities rather than actually getting rid of them.
Our theory should therefore be couched in terms of proper maps, or, more natural-

ly, closed manifolds.
From [6], we hâve

THEOREM B. If Q1 is extensible, then

is a weak homotopy équivalence, whether N is open or closed.

This resuit, together with the Approximation Theorem in the Appendix to [6]
implies the following

COROLLARY B. Let Q1 be an extensible regularity condition. Then, whether N is

open or closed, a proper smooth mapf: N^Pis homotopic to a proper map ofsingularity
^Iothere is a section ofQ1 covering /.

The notion of extensibility is fully explained in [6] ; for Ql to be extensible it is

sufficient to show that there exists a natural stable regularity condition Q'cz

Jr (N x R, P) s.t. the natural projection i*Jr(N x R, P)-*Jr(N, P) (where i:N Nx
OcNxR) carries i*Q' onto Q1.

The work of the paper will be concerned with discovering conditions under which
Q1 is extensible. It will turn out that Corollary B then gives considérable information

on reducing singularity by homotopy, for the condition that Q1 be extensible is not
too restrictive: we will show that Q1 (I (il9...9 ir)) is extensible if

Hère rfI I"J=J as, where

fl if is — is+1>
as~|o otherwise

To obtain this resuit we shall require many results (and some slight extensions of
results) from Boardman's paper [1]; thèse we introduce in §1. In §2 we prove the

extensibility condition given above. §3 contains algebraic results required in this

proof.

Notes

L The resuit of Corollary B may hold even when Theorem B fails; for example,
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Eliashberg [2] has shown that Corollary B holds for Q1'0 even though Theorem B
fails (so of course Q1'0 is not extensible).

In a later paper we will describe how Corollary B may be proved for certain other
non-extensible Q1 by application of transversality techniques.

Note however that the resuit of Corollary B is not always true; Q°czJ(Si9 R1)

provides a counter-example.

2. From the point of view of the manifold N, at least, an equally natural measure of
the singularity of a smooth map/might be

This does not give the same ordering of "singularity" as we hâve previously adopted
(for example, when dimAr=dimP, v3f0 9 and v2'2 10).

However, the partition {I1} ofJ(N, P) by r-sequences /is not a stratification (for
example, when dim# dimP, z2>0>0>°>0 contains points of S1'1*1*1'1 although
v2'°'0>0'° 4 and v1>1'1>1'1 5). Thus there is no easy géométrie interprétation of
non-singularity according to this scheme. We shall nevertheless consider this kind of
non-singularity in the Appendix.

3. The resuit of Theorem B for Q° was obtained by Hirsch [5] for dimiVr<dimP;
and the resuit was obtained for Q11 by Feit [3] for ii>dimN — dimP.

§i

In this chapter we introduce some results due to Boardman [1]; and we make

some extensions to thèse results.

(1.1) The Total Tangent Bundle

Let N, P be smooth manifolds.
We recall that the topology of the infinite-jet space J(N,P) has as base the sets

(nrylU, where r < oo and U is open in Jr(N, P) (nr:J(N, P)-* Jr(N, P) is the natural

projection). J(N, P) also has a "limit differential structure", defined as follows: if U

is an open set in J(N, P), we say a function $ : U-+ R is smooth if it is locally of the

form \j/• nr, where ij/ is a smooth function on some open subset of Jr(N, P).
It follows that J(N9 P) has a tangent bundle.
Now letf:N-*P be a germ of smooth map at xeN. Then the germ of infinite-jet

section Jf:N-+J(N, P) is also smooth, and so there is a tangent map T(Jf)x:TNx-*
TJ(N,P) (which is clearly an injection). It is easy to check (in local co-ordinates)
that if two germs/, g hâve the same infinité jet at xeN, then T(Jf)x= T{Jg)x. Thus
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the images of such tangent maps define a sub-bundle of TJ(Ny P), the total tangent
bundle D.

Let 7rN :J(N,P)->N be the natural projection ; it follows at once that TnN | D : D -+
TN is an isomorphism of fibres covering nN.

We shall need the following resuit in §2:

LEMMA (1.1.1). Let F:J(N, P)-» J(N\P') be a smooth map ofjet spaces cover-
ing a smooth mapf: N-+N''. Suppose also that F is induced by a continuons transformation

of smooth germs.
Then there is a commutative diagram

(xeJ(N,P))

D, 215 D'Fix)

> TNnN,F (x

(where D' is the total tangent bundle ofJ(N',P')).
Proof Since F is induced by a continuous transformation of germs, say F', we

hâve F{Jg) J(F'{g)). So TF-T(Jg)= T(J(F'(g))), and thus TF(D)œD\
Now 7CiV'-F=/-7Tjv, so TnN'TF= Tf-TnN.
Restricted to Dx, this gives the required resuit.

(1.2) Intrinsic Derivatives
The concept of intrinsic derivative is due to Porteous [7] ; our treatment, however,

is a reworking and extension of the more gênerai results of Boardman [1].
Let E-^+Nbe a smooth vector bundle. Then the projection p induces a short exact

séquence

If e is in the image of the zéro section z, then the tangent map Tzn : TNn -? TEe induces

a canonical splitting TEe= TNn®En.
Now suppose that x:N-*E is any section vanishing at n. Then we define a map

t» projection
ix:TNn-+En as the composite TNn-^TEe= TNn®En—-—>En.

LEMMA (1.2.1). Let %:N-*Ebe a section.

(i) Ifa:E-+Fisa smooth vector bundle homomorphism over N and x(n) 09 then

(ii) Iff:M-*Nis a smooth map andx(/(w)) 0, then if*x ix-TF.
Proof If #:£-?<!;' is a smooth vector bundle homomorphism covering a map

(j):B^B\ then it is easy to see that, for any point e in the zéro section of Ç, (T$)e=
T(l>p(e)®&P(e) w.r.t. the canonical splitting (TÇ)e= TBp(e)@Çp(e).
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We now apply this fact to the situations of (i) and (ii). For (i), it gives us (Ta)x(n)
(TlN)n®an, and thus qT(aX)n q(Tax(n)'TXn) an'qTXn, i.e. iax aix. For (ii), if
lf:f*E-+E is the canonical identification covering/, the fact gives us (Tlf)x(f(m))

l//*x),so qTrTf=qT(lf). T(f*X) qT(f*X) Le. ix1f=if.x.

Now let a\E-*F be a smooth vector bundle homomorphism over N. Then the

intrinsic derivative oia at n, d(a)n : TNn -> Hom(Keran, Coker an)9 is defined as follows :

d(a)n(v) (X(n))=[iax(v)] (veTNn)9 where X:N-*Eis any smooth section s.t aX(n)=0.
(1.2.1.) (i) shows this to be well-defined, since if X(n) 0, [ïflZ(^)] [û/x(v)] 0.

Thèse intrinsic derivatives hâve the following naturality properties :

LEMMA (1.2.2.). (i) IfE-^F-^G are smooth vector bundle homomorphisms over
N, then d(ba)n(v) | Ket an bn- d(a)n(v) {where bn:Coker an-+Cokerban is the obvions

map induced by bn), and d(b)n(v)'an jn'd(ba)n(v) (where jn:Cokerban-+ Cokerbn
is the obvious map induced by the inclusion jn:lmban a lmbn)for each neNandveTNn.

(ii) Iff'.M-^Nis a smooth map, then d(a)f(m)Tfm d(f*a)mfor each meM.
Proofs. Thèse follow directly from (1.2.1) (i) and (ii).
In particular, we note that if Keran Kerban, then d(ba)n ïîom(l, bn) • d(a)n;

and if an | Kerban:Kerban-+Kerbn is an isomorphism, then d(b)n Hom(a~1i jn) •

d(ba)n.

(1.3) Inductive Définition of the Boardman Variety I1
The définition we give hère is due to Boardman ([1], §7); proofs that the induction

we describe actually works may be found there. We record it hère because the notation

developed will be used extensively in §2.
Let / (/!,..., ir) be an r-sequence. We will proceed by defining successively the

varieties Zil> Ihi2.... For convenience, we shall write Is for zll'"ls (s^r) and Ts for
7TS, the tangent bundle of Is.

First, let E n*TP/J (where nP:J(N9 P)-*P is the natural projection).
Now define

2) K0=D (the total tangent bundle)
3) E0 E, and co=lE:E-+Eo
4) r«! r0, and d1=TnP:T.l-^E

and suppose inductively that we hâve defined

1) a submanifold Is-X ofJ(N,P)
2) sub-bundles Ks.xc:'"c:K0 D over E8_t s.t. Ks.xcz Ts_2

3) a bundle surjection c^^Hom^.^-o^^) ^Xe8^x defined over
(no confusion attaches to this symmetric tensor product; see [1], (4.3)).

4) a bundle map ds:Ts-2-*Es-i defined over Is-V
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Then define

1) Is= {xels_1 | ds | Ks_l has kernel rank is at x}; this is a submanifold ofls^1.
2) KsczKs_1 is the kernel bundle of ds \ Ks_1 over Is; Ksc Ts_l over Is.
3) Let es:£'s_1^gs be the cokernel bundle (and projection) for ds | Ks-.x over

Is. Define «s:Hom(^so-o^l5 E)-+Hom(Ks, Qs) over Is to be the composite

E))———"-^Hom(^s, £,_!)——-iHom(^s, Qs). This has constant rank, so we

may define its coimage bundle map cs:Hom(^o...o^, E)—>£s Im«s over Zs.

4) The intrinsic derivative bundle map d(ds | Ks_l):Ts_l ->Hom(Ks9 Qs) over 2"s

factors through Es, and thus we obtain ds+l:Ts_1^Es, and the induction step is

complète.

(1.4) Q1 as a Natural Stable Régulanty Condition

Let/: K-+ F' be a diffeomorphism of open sets in JV. Then we hâve a diffeomor-
phism/:/(F, P)->/(F', P) byf(Jg) J(gf). I1 is invariant under the action of such

diffeomorphisms (this is true for Io, and if it is true for I^j it is true for Is by (1.2.2)
(ii)). Hence Q1 is an invariant sub-bundle of J(N, P).

The closure of Es in Is_1 is {xels_l \ ds \ Ks_x has kr^/J. Hence \J{IK \ K>I}
is closed in J(N, P) and so Q1, the complément of this set, is open.

So Q1 is an open invariant sub-bundle of J(N,P)^+N; as we hâve previously
observed, it is the inverse image of a sub-bundle of Jr(N9 P) which is therefore also

open and invariant; i.e. Q1 defines a stable, natural regularity condition on smooth

maps N->P.

§2

In this chapter we shall find conditions under which Q1œJ(N, P) defines an
extensible regularity condition on maps N->P. From the définition of extensibility (in
[6], §0), it is enough to show that i(Q') QI for some open, invariant subbundle Q' cz

J(NxR,P) which is the inverse image of a subbundle in Jr(NxR,P). (i:J(Nx
R,P)->J(N, P) is defined by I(Jf) J(fir)9 where nNJf {x, r) and ir:N-+NxR
is the identification N N x r).

We shall in fact show that, under the conditions stated in §0, l(QI) QI. To do so,

we shall study the relation of the Boardman varieties in J(N, P) with those in other

jet-spaces; during this investigation we shall take the notation of (1.3) as standard in

J(N,P), and distinguish similar structures in other jet-spaces by '.

(2.1 We begin by showing that ï(Ql) <=- Q1 for any /. This is an immédiate conséquence
of the following
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LEMMA

xeZIc:J(NxR9P)=>ï(x)eQIc:J(N9P).

Proof. There is a commutative diagram

D>

TÏ overJ(NxR9P).

(Recall from (1.3) that dx TnP.)
Suppose xeZ1 c:J(NxR9 P). Then xelh and kxd[ \ D' i1.

¥LQnceI(x)eZhoKerdl \ Z)'nKer77| Z>={0}, and otherwise (since Tï\ D' is

the obvious surjection induced by TN@R^TN9 by (1.1.1)) ï(x)eZh~iczQI.
Thus if ï(x)eZh9 Tï provides the natural identification of K[ ¥^rd[ \ Df with

f*Jf1«f*(Kcrrf1 | D) near x in Ih.
Now take intrinsic derivatives of the diagram above; by their naturality properties

(see (1.2.2)), we hâve

d[ | D') d(dt \ D)Tl

Restricted to K[9 Tîis the identity, so we hâve a commutative diagram

near x in

where yt Hom((Tf | ^)~1, /) and the identification on the left is that induced by Tï.

(Recall Et is a sub-bundle ofHon^Ker^ | Acoker^ | D)9 and that d2isd(dt \ D)9

which factors through Ev)
Now suppose inductively that î(x)eQh '" im~\ and that if ï{x)elh - '•-\ then there

is a commutative diagram

d'M | K's- 1 j-,/* Ls-1
ÎJs-i near x in

l

where the identification on the left is provided by Tï.
Thus krrfs | K^^krd^ I À^. If kr^/s | J^.^krrf; | K^l9 then
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Zn -ls. Otherwise, taking intrinsic derivatives in the diagram above, and using the

naturality properties (1.2.2) we hâve

Hom(l, jTII) d(ds | Ks^) Ti d{d: \ K^x) restricted to Ts-t.

Restricted to K's, Ti is the identity K^î*Ks (where Ks

Kerrfj' | ^s'-i)» so that we hâve a commutative diagram

II'
,.(d]K)

îVs Hom(l,3^7).
!*KS l(d'{K'\i*Es

This complètes the induction step and hence the proof.

(2.2) Next, we recollect a "suspension" for Boardman varieties.

LEMMA

1 for ail I.

(Define J\J{N, P)-*J(N xR, P xR) by ^(//) /(/x 1R)).

Proof. We hâve a commutative diagram

over J(N,P)

where the isomorphism on the left is induced by TJ. (This is easily checked in local

co-ordinates.)
Thus Kerrf/ | D^Ker^ | D, so that S(2il)c:Sh. Taking intrinsic derivatives,

we hâve

d{d[ | D') TJ^dHd, | D)xl1t) d(d1 | D).

Restricting to K1 Kerd1 | D9 we hâve the commutative diagram

where the isomorphism on the left is induced by TJ.
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Now suppose inductively that J(Ih •••'•-1)c2?1 -*'-1, and that we hâve the com-
mutative diagram

where the isomorphism on the left is induced by TJ.
Clearly Ks=K.erds \ K.-^itetJ*{& \ Kl_ù=J*K't, so

Taking intrinsic derivatives, we hâve

d(ds | Ks.t)

Restricted to KS=^*K^9 we hâve the commutative diagram

ds + i | Ks

where the isomorphism on the left is induced by TJ.
This complètes the induction step and hence the proof.

(2.3) Let/:(RM, 0)-»(Rp, 0) be a smooth map.
We identify Rp R^ x Rpq. Define a map F:RnxRpq-+Rp by F(x, y)=f(x) + y.

If A::RP-^R€, /:RP-^RP"€ are the natural projections, we may write

Let h be the diffeomorphism of R^xR^"9 defined by h(x,y)=(x,y-lf(x)). Then

Fh^kfxl. Since h(0, 0) (0,0), it follows from the lemma above that /(0>0)FerJo
(For any smooth map k:P->Q, we define k:J{N,P)-+

Now suppose that xeQIc:J(N9 P); in local co-ordinates it may be represented as

a smooth map as above. Hence if there is a submersion k of a neighbourhood of 7rPx

s.t. IcxeQ1 also, we may construct a jet x'eQIciJ{N x R, P) s.t. ïx'=x. Thus, to show

iT(i*OI) D/ it is enough to show that for each xeQ*czJ(N, P) there is a local
submersion &: U-+Rq (where ^<dimP) of a neighbourhood U of 7rPx in P s.t. kxeQ1.

We investigate this in the following lemmas.

(2.4) LEMMA. Let xeIic:J{N> P), and let k: U-+ Q be a submersion of a
neighbourhood U ofitpX in P onto a neighbourhood Q ofO in Rq; let G=n% KtrTkczE.
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Then

(a) ifus Yiom{Kso oRu G)nds+1(KS)= {0} at xVs< r, then k{x)el1cJ(U, Q)
(b) if s is the smallest integer st wsHom(A> o^, G)n^s+1(i^s)/{0} at x,

then k{x)el11 lsJs+l wherejs+l is+l+dim(us Hom(ATso oKuG)nds+1(Ks))
Proof (a) We hâve a commutâtîve diagram

D dl|D
> E

J tt«.lni Jzo ovzrJ(N,P)\NxU

where z0 is the obvious map induced by Tk TU-+TQ Clearly Kerzo
Now suppose inductively that
(i) %)£!,_,
(n) Kt k*Kt' Vr<5-1 near x

(m) There is a commutative diagram

1 zs_i near x in !._<

st Kerzs_1 «s_1 Hom^.jo oKu G)
Since Kerzs_1nrfs(^s_1)={0}, KerP« | ^_1)
Now take intnnsic denvatives m the diagram above

1
\ Ks-X) restncted to Ts_l

Since Tic mduces the identification D k*Df (by (1 1 1)), and KscD, we hâve a

commutative diagram

ds+1\Ks
K

zs near x in Is

where zs Hom(l, zs-x) \ Es

Then

Qs) \ zs_i a 0}

Kerzs_x)
ImusnHom(ATs, ^sms_ 1 Hom(^Ts.^ oKt, G))
MsHom(is:so o^, G).
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Thus we hâve complétée the induction step, and hence the proof.
(b) If s is the smallest integer s.t. u8Hom(Kso-"oKl9 G)nds+1(Ks)^{0}, then

by (a) k(x)eZs, and we may construct zs:Es-+k*Es as above s.t. zds+i \KS

£*«+i|Ks') and Kerzf i/, Hom(tfJo...o*1, G). Then Â+1=kr<+1 |À.'=r

kr(z^+JiTj kr(^+J^s) + dim(Kerzsn^+1(^s)). So k{x)elh "w*+1, where

j\+l=is+l+dim(usHom(Kso..-oKuG)nds+l(Ks)).

Any subspace G a Ex is of the form ttJÏ Ker Tk for some submersion k; so the prob-
lem of finding submersions k for jce£J s.t. k{x)el1 is équivalent to the algebraic prob-
lem of finding subspaces GczEx with the properties (2.4) (a). In attacking this problem,
we shall use the following additional property of the intrinsic derivatives ds+1 :

LEMMA (2.5). (i) There is a bundle map b's-.1:Ts.1-+Hom(Kso-..oKu E) over

Is s.t. the following diagram commutes over Is:

(The notation is, again, that of (1.3).)
(ii) b's-i is symmetric.
(By this we mean that bfs-t may be regarded as an élément of

Hom(rs_1oA:5o...oJ^1, £I)c:Hom(rs_1®(^:so...oJs:1), £•) via the natural iso-

morphism Hom(rs_1®(jK>...oA:1), £)^Hom(rs_1, Hom(Àso...ojr1, E))).

Proof. See Boardman [1], (7.11) and (7.7)
We hâve the following resuit:

LEMMA (2.6). Let xeZ1, I=(il9...9 ir). Define </J Xs=î as, where as=l ifis-
/s+1 > 1 and 0 otherwise. Then

(a) Ifp—n + iTJrdî^-g, then there is a subspace GczEx ofdimension g s.t,

{0} at xVs<r.

(b) 7/*Jp-n + /r_1 + rfI'1-ir"1 gJ._1>0 andp-n + ir + d*<:Of then there is a
subspace GczEx of dimension 1 s.t.

at
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and

{!1""ï>gr-1 gr'l>\
}r-l~~lr gr-l — l

Proof. (a) Let Gl be a complément to lmdx\D in Exi so that dimGl~g1=p —

it. Clearly uoGnd1(D)={0}. We shall construct inductively GtaGx s.t.

ws Hom(Iso-o^, Gt)nds+1(Ks)={0} Vs<t, where dim Gt>gt p-n+ it + dh"mit.

Suppose, then, that we hâve constructed Gt as above. By the définition of
us, us | Hom(Kso"oKl9 Gt) is injective <=>ms_! | Hom^.jo-o^, Gt) is and

us-t Hom(^s_io...o^1) Gt)r\ds(Ks-i)={0}. Hence since u0 | Gf=lGt, we see by
induction that ut | Hom^o-o^, Gt) is injective.

Now let L dt-+\(utHom(Kto...oKu Gt))nKt. Then &;_1(L)cHom(/£,o...oJR:1,
Gt), so that we hâve a map è:L-^Hom(Â'ro...oA'1, Gf) with the following property;
for any subspace G'czGt,

(i) Suppose L%Kt\ then b has rank<rk(rff+1 | Kt)—l it~it+l — 1. Now apply
(3.1) (a); and we find that there is a subspace Gt+lczGt of dimension ^p

(ii) Suppose L=Kt; then ^:^^Hom(^®(Â'r_1o...oA'1), G,) is a symmetric
map of rank rk(d,+1 | Kt) it — it+1. Thus, by (3.2) (a), there is a subspace Gt+lczGt
of dimension^/? — n + it + d11 •lt~(/f —/f+1) + af+1 /? —w + Zf+i + rf11 "lt+1 gf+1 s.t.

Thus, in either case, we hâve constructed Gt+1 s.t.

dt+l(Kt)nutHom(Kto...oKi9Gt+l)=:{0}.

Thus the induction step is complète. The proof is finished by defining G=Gr.
b) By (a), there is a subspace Gr_! of dimension >gr-i s.t.

As in the proof of (a), ur-1\ Hom^.^-.o^, Gr_J is therefore injective. Define
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,^. Then 4;.2(I)
Crr_i), so we hâve a mapZ?:JL-^Hom(^r_1o...oAT1, Gr_i) s.t., for any subspace G'a

(i) Suppose L%Kr^x\ then b has rank <rk(</r | #r_i)-l =/r_1-/r-l. Thus, by
(3.1)(b), there is a 1-dimensional subspace GcG^i s.t.

(ii) Suppose L Kr^1; then b:Kr_1-+lîom(Kr_1®(Kr_2O'-'oKl), Gr_i) is a

symmetric map of rank rk(*/r | j^r_1) /r_1 — /r. Thus, by (3.2)(b), there is a 1-

dimensional subspace GczGr_{ s.t.

Thus, in either case,

dim(««,_! Hom^,., i:,, G) n d,^.,))
which is the required resuit.

We may now prove our main theorem.

THEOREM (2.7). Letlbe the r-sequence (il9..., ir), /1^---^/r. Ifi^n-
then QlczJ(N, P) is extensible. As previously, # ^=1 as> where<xs=*l ifis —

and 0 otherwise.)
Proof. We note that is-is+l^as dil~is+i-dil-is, and hence that

is-{n-p-dh~is>is+l-(n-p-dh'is^) (Vs<r).

By (2.1), (2.2) and (2.3) it is enough to show that for xgIkœJ(N, P) with
there is a submersion k s.t. k(x)eZK', where K'^I.

If xel1, this submersion exists by (2.4) (a) and (2.6) (a).

If xeZK, with K<I, let s be the first integer s.t. kt it Vf <s and ks<is.
lîks>n-p-dh'As-lks, there is, by (2.4) (a) and (2.6) (a), a submersion k s.t.

Ifks^n-p-dh"is-iks, then by (2.4) (b) and (2.6) (b) there is a submersion k
s.t. H(x)eIil'"ia'iJ'9 where
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Thus

s h-l

Ifi3>ja9k(x)eÛ'.
Suppose is^js
(1) if gs-i>l, then ïs-A>gs_1-ï5-1 + is=ga-aa>0 (sinceg5>l, as<l). So if
./s> «5=75 andgs=l, as=l Butgs=l implies gs #s+1 gr=l, and thus

Hence T1 Is c QJ, so £(x
s_i= - gr=l andia.i= =ir Thus «s=js and

This complètes the proof

§3

In this chapter we prove the algebraic results used in §2

We begin with

LEMMA (3 1 Let U, V, Gbe vector spaces, andletb:U->Hom(V, G) beahnear
map ofrank r.

(a) If r <dim(j, then there is a subspace AcG of dimension a=d\mG— r s t.

(b) Ifr^ dim G, then there is a 1 -dimenswnal subspace A a G s t
dim(Im&nHom(F, ^4))^ r -dim(?+1.
Proof. (a) Suppose the contrary, so that for each a-dimensional subspace AczG,

lueU, veVs.t. Imb(u)c:A and b(u) (v) aeA- {0}.
Let Ax be any a-dimensional subspace Choose uleU,vleVst Im b(ul)c:Ai and

b(ux) (vl) aleA1 — {0}. Let^42 ^e an a-dimensional subspace of Gs.t. at$A2. Choose

u2ell, v2eV s.t lmb(u2)<^A2 and b(u2) (v2) a2eA2- {0}. Let A3 be an a-dimen-
sional subspace of G s.t. <al5 a2}r\A3 {0}. Choose w3eU, v3e V s.t. ImZ>(w3)c:^3
and b(u3) (v3) a3eA3-{0}.

Continue in this way, definmg A, s t. At n(ax, û, _ j > {0}, so that eventually we
hâve defined uu ,ur+ieU s.t. b{ux)9...9 b(ur+l) are hnearly independent.

This contradicts rkb=r, so our supposition was false, and the resuit is

proved.
(b) For some subspace U'<=:U of dimension dimG— 1, rkb | U' dimG-~ 1.
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Hence, by (a), 3a 1-dimensionai subspace AcG s.t. è(C/')nHom(F, A)={0}. Thus

dim(îmbnHom(F, A))^ r - (dimG-1)= r -dimGH-1.

Thèse results may be improved somewhat if b is a symmetric map, when we hâve
the following:

LEMMA (3.2). Let b:K-+¥Lom (K®L, G) be a linear map of rank r which is

symmetric in K.
(a) Ifr <dim(/, there is a subspace A a G of dimension

JdimG-r + 1 r>\
jdimG-r r<l

s.t.

ImbnHom(K®L, ^)={0}.
(b) Ifr^dimG, there is a l-dimensional subspace AcG s.t.

TT /r,^T >w fr — dimG dimG>l
n Hom(K®L, ^))<{

Proof. (a) By (3.1) (a), 3 a subspace A' <=.G of dimension dimG— r s.*.

This gives the resuit if r < 1. Now suppose r > 1. We shall show that there is a$A' s.t.

<*, ^t'»= {0}.

This is équivalent to showing that there is a e G/A ' - {0} s.t. Im b ' n Hom (AT®L, <a»
{0}, where Z>' Hom(l, q) b:K->Hom(K®L, G/A') and q\G-*G\A' is the projection.

Note rkè'=rkè= r.
Suppose no such aeGjA' — {0} exists, so that for each geG' G/A', 3keK s.t.

'(fc) <#>. Let {gi,...,gr} be a basis for G\ and let {ku...9 kr}cK be s.t.

Then {b'(k1 é'(^r)} is a linearly independent set.

For each pair (k, k')eKxK, we may regard b'{k) {k') as a linear map L^Gr.
Clearly Imè'(^i) (fc/^Si) for each j. But b'(ki) (kj)=bf(kj) (ki), since b is

symmetric, and so

=0 if

Thus *'(£*) (A:j)=O unless /=j.
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Suppose b/(ki)(ki) 0; then 3k'eK s.t. Im*'^) (k')c(gi}-{0}. Then k'$
fcr> (for if &' X/ 2^-, 6'(*f) (fc') A|6'(fc£) (*,) 0, a contradiction), and

(fc'), ô'^),..., è'(&r) are linearly independent (for 6(fe|),..., 6(/:r) are, and
09 b(kj)(ki) 0 for ail j=l,...,r). This contradicts rank b'=r. Hence

for each- / 1,..., r.
By our initial assumption, 3keK s.t. Imè'(^) <£i+g2>- Suppose k^^jXjkj;

But Imè'^i) (&;)<=<#•>, so A, 0 for each /. Thus & 0. Thus, by contradiction,
k$<Jcu...,kry. Similarly, b'(k) is linearly independent of b{ki),..., b(kr). This
contradicts rk^'=r.

Thus our assumption was false; so the resuit is proved.
(b) The resuit follows by (3.1)(b) if dimG= 1. Now suppose dimG> 1. If there is

a 1-dimensional subspace AczG s.t. ImbnHom(K®L, ^)={0}, we hâve the resuit.
So suppose otherwise; then for eachgeG, 3^e^Cs.t. Imb(k) (gy. Let {gj be a basis

for G, and let {fcj be s.t. lmb(ki) {gi}. Clearly {b(kt)} are linearly independent. b

is symmetric, so b{kt) (kj) 0 if / #/ (Regarding Z?(/:) (A:7) as a linear map L-> G for
each pair (&, k')eKx K.)

Suppose two of b(kt) (kt) are non-zero, w.l.o.g. / 1, 2. Then (by the same argument

as we used in (a)),

b«kl9...,kg»nHom(K®L9<gl + g2»={0} (g dirnG)

Hence Imbnîlom(K®L, <#i + g2>) has dimension at most r—dimG.
Alternatively, suppose one of b(k() (kt) 09 w.l.o.g. / 1. Let keK be s.t.

b(k1) (ik)#0, so that imbQci) (k) lmb(k) (kl) (gi}. Then kt<ku...9 kr} (by the

argument used in (a)), and b(k) is linearly independent of b(kl),..., b(kg). Then

kl9 k3,...,kg»nHom(K®L,

(For suppose {=//6(fe) + Z^2 a^C^i) and Im^ <g2>. Then Z(kt) iib(k) (kt), and

Im*(*)(*i)e<^>-{0}. Thus /i 0. Then {(fc') L#2 «|6(*/) (*') so Im{(*')
<gi^3,.-^g> since Imè(^) (*')c<ft> for a11 *'e^- But Im{(*')c<S2>, so

^(Jk')=° for a11 k'eK- Hence ^=0-)
Thus Im^nHom(^T(g)L, <g2» has dimension at most r-dimG.

APPENDIX. We consider very briefly some of the regularity conditions Qî

JÇNtP)-!1. Thèse are open invariant sub-bundles of J(N,P); we wish to investi-

gate their extensibility. To do so, we require a description of ï1.

First, we hâve ï*= U{Ij \j>i}> so Q^Q1'1.
The situation is rather more complicated for Slj.
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Let xeZi+k for some k>0. LetK Kerd1 | Dx, I lmd1 | Dx. We hâve the second

intrinsic derivative map at x d2 | K:K-+Hom(K, EJI).

LEMMA. xeîlJo there is a codim. -k subspace LczK, and a subspace Jc:Ex of
which lis a codim.-k subspace s.t. Hom(/, /) d2 \ L:L -* Hom(Z,, EJJ) has kernel rank

^j (where Hom(i, j):Hom(K, EJI)-+Hom(L, EJJ) is the natural map induced by
the inclusions i:LczK9 j:lczj).

Proof. Let a:E-+F be a vector-bundle homomorphism over a smooth manifold
X. W.r.t. local co-ordinates in a neighbourhood U of x in X, this may be

represented as a smooth map â:U-+ïiom(Ex9 Fx). This map has derivative
dâx:RdimX-*Hom (Ex, Fx) and it is easily seen that this, composed with the natural

map Hom^, JF)C)->Hom(KerJca, Cokerxûf) is the intrinsic derivative d(a)x of a
at x.

Suppose a has kernel rank i + k at x, and that x is the limit of a séquence {xn} s.t.

a has kernel rank / at xn for ail n. Then L=lim Ker^a cKer^a, and / lim ImJCna3

Im^a, (thèse limits exist; think of Kera as a section of the Grassman bundle

^kra(^) | ix | krflje=/}, Ini^ as a section of Gtka(F) \ {x \ kvax=i}), and limrf(a)Xn
is d(a)x composed with the natural map Hom(KerJca, Cokerxa)-^Hom(L, FJJ).
(This follows because the derivative of a is continuous). Moreover, if d(a)Xn has kernel

ranky'Vfl, this map has kernel rank ^j.
Now apply thèse results to dx | D, J(N9 F)to prove =>; <= is easy.

The complication of this resuit does not encourage an investigation of Zijk....
_

We may show, by similar methods to those of §2, that the extensibility of Qij
reduces to the existence of solutions to an algebraic problem analagous to (3.2)(a),
which we formulate as follows :

let (j>:K-+llom(K, Q) be a (symmetric) linear map with the following property
E(k,r)- for any codimension-A: subspace LczK, and for any &-dimensional subspace

RczQy the map <f>lL R Hom(i9 pR) (f> | L:JL-^Hom(L, QjR) has rank ^r (hère

pR:Q~* Q/R is the natural projection),
The problem we must solve is; does there exist a 1-dimensional subspace A c Q s.t.

<^ Hom(l,pA) <t>:K-^Uom(K9 Q/A) has the property E(k, r)?
We hâve the following resuit:

LEMMA. /ydimjKxdimg, such a l-dimensional subspace AczQ existsfor any <f>

with the property E(k9 r).
Proof. Suppose the contrary, so that for each qeQ, there is a codimension-fc

subspace LczK and a dimension-Â: subspace Rc: Q9 and a vector leL s.t. <£(/) L=q modR.
Thus Im^(/)=Z=<g, R9 4>{l) M>, where M®L=K. (We hâve equality of Z with
Im<£(/) since if (q9 R} (q'9 jR'>, then ${l)L=q' modR' for otherwise
0 modi?', in contradiction to property E(k> r) of <£.)
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Since dim£<dimg, dimZ<dimg.

Choose q^Q- {0}, and obtain as above lu Lu Rx and hence
Choose q2eQ — Zu and hence obtain Z2.
Choose q3eQ — (ZiKjZ2), and hence obtain Z3.

Continue in this way, choosing qseQ-(Z1u ...uZ^j), obtaining eventually a
basis {#J of Q for which the corresponding maps <£(/f) are linearly independent. Hence
{/,} are linearly independent.

Thus dimÀ>dimÔ, in contradiction to the hypothesis of the lemma. Thus the
lemma is proved.

It follows that QÎJ is extensible if n<p.
In some cases, this resuit may be improved (for example, Z3czZ2'l, so Q2t l Q2 °,

which is extensible if n p) but in gênerai this resuit is best possible, because the
algebraic resuit above is. (For a counter-example when 6imK=dimQ9 take K Q
of dimension 3, with basis {k19 k2, k3} and define <j) by

k^O if i*j

It is not immediately obvious that this a counter-example, but the arguments of the next
lemma may be used to show that.

A more géométrie reason why Qij is not always extensible ifn^p is the following:
Z3 4: S2'2 for n p but Z3 c I2*2 for n=p +1, so that Q2'2 cannot be extensible for

n=p. The first assertion E3$:Z2t2 is clear from the respective codimensions of S3 and
Z2'2 when n=p (see §0, Note 2) ; or the example above gives the second intrinsic deriv-
ative of a jet in Z3—S2*2. To see that Z3 cS2*2 for n=p +1, we study the second
intrinsic derivative of xeZ3, which may be expressed as a map cj):K-+ilom(K, Q)
symmetric in K, where dimi£=3, dimô 2. Our resuit will foliow by showing that no
such map has property E(l, 1), which we do in the following lemma:

LEMMA. Let dimA: 3, dimg 2. Then no homomorphism #:#-+Hom(£, Q)
symmetric in K has property E(\, 1).

Proof. Let {ql9 q2} be any basis for g. Then <£ defines two quadratic forms <f>u <f>2

given by its qt- and <72~c°-°rcimates, and hence a pencil #=<$!, $2> of quadratic
forms.

Property £(1,1) would claim that the restriction of # to any 2-plane Lc K is non-
trivial (i.e. (t>x | LoL and <j>2 \ LoL are linearly independent in Hom(LoL, R)).

Let Au A2 be matrices for </>u <j>2 w.r.t. some basis in K. Either A2 is singular, or
det^j+XA2) is a cubic in A, and so has a root n, corresponding to a singular matrix
Al+fiA2. So the pencil # contains a degenerate quadratic form. W.r.t. some basis



382 ANDREW DU PLESSIS

ex, ey9 ez in K this has one of the forms 0, x2, x2—y2, x2+y2. In the first three cases

counter-examples to property E(l, 1) are provided respectively by any plane, {x 0},
and {x y}. In the fourth case, any quadratic form of the pencil may be first put in the
form ax2 + 2xy + y2 + vz2 by choice of ez, and then diagonalised w.r.t. x2 + y2; so that
the pencil has the form

<x2 + /, Xx2 + iiy2 + vz2}.

If v 0, the pencil is trivial restricted to {x=0}. If 2 ju, the pencil is trivial restricted
to {z=0}.

Otherwise, the pencil contains the degenerate quadratic forms {jx — X)y2jt vz2,

(2 — ii)x2 + vz2. One of thèse is indefinite; i.e. has the form x'2 —y12 w.r.t. somebasis,
so is zéro on the plane {x'=y'}. Hence the pencil is trivial on that plane.

We hâve, therefore, shown that no $ has property E(l, 1).
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