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Some Non-Linear Equivariant Sphère Bundles

DlETER ERLE

1. Introduction

Let q>:G-+Om be a real m-dimensional représentation of a compact Lie group G.

Assume that n:T-+B is a smooth G bundle such that the action takes place on the

fibres, and each fibre is equivariantly diffeomorphic to S"1"1 where the action of
G on S"1""1 is given by the représentation <p.

Is n smoothly équivalent to the sphère bundle of a G vector bundle with fibre
représentation (pi

If yes, n is called linear, otherwise it is called non-linear. If n is linear it bounds a
smooth equivariant disk bundle with fibre action induced by q>. Topologically, of
course, n is always the boundary of a disk bundle with fibre action induced by q>: The

mapping cylinder of n serves as the total space of the required equivariant disk bundle.

For G the trivial group, examples of non-linear sphère bundles over sphères were
found by S. P. Novikov [15] and P. Antonelli, D. Burghelea, P. J. Kahn [1]. Let G be

one of the groups On, Un, Spn9 and let Qn be the standard représentation of G, of real
dimension «, 2n, or 4«, respectively. It is not difficult to show that any sphère bundle
with fibre représentation qn is linear. We consider sphère bundles with fibre représentation

Qn®Qn. We prove that for G the orthogonal group On, w^3, any G sphère
bundle with fibre représentation Qn®Qn is linear (Corollary 4.4). On the other hand,
for G the unitary or symplectic group of « dimensions, w^3, we will construct many
non-linear G sphère bundles with fibre représentation Qn®Qn and base space a sphère

(Theorem 4.5). It is not clear whether or not thèse sphère bundles are smoothly linear

ifone forgets the action of G.

The methods used in this work are quite différent from those of [15; 1]. The total
space of an equivariant sphère bundle with action induced by Qn®Qn(n^3) on the

fibres, is a G manifold with two orbit types and orbit space a manifold with boundary.
The construction of our non-linear bundles relies on the classification of thèse G ma-
nifolds by W. C. Hsiang and W. Y. Hsiang [10] and K. Jânich [11].

Our results hâve some conséquences, naturally, concerning the homotopy type of
the topological group of ail equivariant self-diffeomorphisms of the unit sphère in the

représentation space of Qn®Qn9 n^ 3. In the orthogonal case, this group has the homotopy

type of O2 (Theorem 4.3), whereas in the unitary case it does not hâve the homotopy

type of a finite CW complex (Theorem 4.8).
We finally deal with the problem of classifying equivariantly the total spaces of the

non-linear bundles over sphères constructed hère. It turns out that in most cases thèse
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total spaces are products of a homotopy sphère and the fibre (Theorem 5.2 and
Proposition 5.4).

2. An manifoïds ocer Ik x Dd+1

As we simultaneously deal with orthogonal, unitary, and symplectic actions, the

following notation will be convenient (cf. [7]). An is the orthogonal group On9 the
unitary group Un, or the symplectic group Spn. gn is the corresponding standard
représentation of real dimension n, 2«, or 4n, respectively. Let n:T-+B be a smooth
An sphère bundle over B, with fibre action Qn®gn. The fibre is S2dn~l where rf= 1, 2,
or 4 depending on the group acting. n factors through the orbit map T-+ T', and we
hâve a commutative diagram :

TjAn

gidn-i ancj ^are ^ manifoïds with orbit types (An^^) and (An_2), the slice représentations

corresponding to the orbit types are Qn-i® trivial and trivial, respectively.
The orbit space of S2dn~l is Dd+l9 hence T -» B is a Dd+i bundle. To find and distin-
guish bundles n:T-+B9 it is therefore important to classify An manifoïds with orbit
space a Dd+1 bundle over B such that over each fibre of this bundle we hâve s2**""1

with action Qn®on. We use [10] and [11] to do this for a spécial case.

THEOREM 2.1. Let k be a positive integer; k>\ if An Onor Spn. Let lk be a
smooth manifold homeomorphic to Sk. For every w^3, there is a 1 — 1 correspondence
between equivariant diffeomorphism classes of smooth An manifoïds over ZkxDd+l
satisfying the conditions

(i) for each pelk9 the union of the orbits over p x Dd+i is equivariantly diffeomor-
phic to S2dn~x with action inducedby Qn®Q»,

(ii) the principal orbit bundle is trivial, and éléments of cok(nkSOd+l-ynkGd+1).

Gd+l is the Espace of degree one mappings of Sd onto itself, and nkSOd+1 -?
~+nkGd+1 is induced by inclusion. Lateron we will see that a An manifold

corresponding to a non-zero élément of cok(nkSOd+1-+nkGd+t) is the total space of a
non-linear An sphère bundle over Ik.

Proof of Theorem 2.1. Let T be a An manifold over Ik x Dd+i with the properties
stated in the theorem. ris a so-called spécial An manifold [11], also [10], and is classi-

fied by an équivalence class of pairs (P, <r). Our notation follows [11 ; 12; 7]. P is the

compactified principal bundle of the principal orbit bundle of T, i.e. SkxDd+1 x
xA2~>Zkx Dd+1 by (ii). a is a réduction of the structure group A2 of dP to the sub-
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group At x Ax (cf. [7, 3.2]), i.e. a cross-section a: ZkxSd-+ZkxSdx {A2jA1 x Ax) of
the bundle dPjAx x Av As A2/At x At is diffeomorphic to Sd, g is given by a map/:
rkx5d->5'd(=yl2M1 xvlJ.Becauseofcondition (i),/ | /JxS^hasdegree ±1 [7, 3.2].
Thus / is a fibre homotopy trivialization of the trivial rf-sphere bundle over Zk, By
taking a suitable identification of A2/Al xAt with Sd, f becomes an oriented fibre
homotopy trivialization. On the other hand, by Jânich's construction, any such fibre
homotopy trivialization gives rise to a An manifold as in Theorem 2.1. Now /:
Ik x Sd -» Sd is nothing but a map Zk -> Gd+1 which we also dénote by/. It is the class

represented by / in cok(nkSOd+1-+nkGd+1) which corresponds to the equivariant
diffeomorphism class of T. To prove the 1 — 1 correspondence we hâve to analyze
Jânich's équivalence relation of pairs (P, g) in our particular case. Two pairs (P, a)
and (P\ g') are équivalent (i.e. the corresponding An manifolds equivariantly
diffeomorphic over Ik xDd+1) if and only if there is a bundle isomorphism of P and P'
carrying a to g' [11, 3.1 ]. IfP and P ' are identified with the trivial bundle ZkxDd+1x
xA2-+Zkx Dd+i, (P, g) and (P, g') are équivalent if and only if there is a bundle

automorphism of the above trivial bundle carrying g to g'. Such a bundle auto-
morphism is given by

H:Zk xDd+1 x A2-+Zkx Dd+l x A2

where rj;ZkxDd+1-*A2. (P is a right principal bundle.) Therefore équivalence of
(P, g) and (P, g') means the existence of a commutative diagram

Zk x Sd x A

where H is defined by r\ : Zk x Dd*x -? A2 as above and h is induced by H via the
identification of A2\AX x At with Sd. We shall need two facts: If g and g' are homotopic
réductions, then (P, g) and (P, g') are équivalent [9, p. 23]. A2\AX xA± can be
identified with S4 in such a way that the action of A2 on A2jA1 x A x corresponds to the

orthogonal action of A2 on Sd via a homomorphism T:A2-+Od+1 with kernel the

center ofA2. This is well-known (e.g. [2]).
Now suppose (P, a) is équivalent to (P, <x'), the équivalence given by rj:Zkx

x Dd+1-±A2. Let g {g') be given by a map/(/r):Zk-+ Gd+1. Change r\ by a homo-
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topy such that it is constant on ail disks p x Dd+1, peZk. This changes a' by a homo-
topy, using the diagram (*), and changes neither the équivalence class of (P, a') nor
the homotopy class of/ '. So we may assume that we hâve a diagram (*) with r\ a map
from Zk to A2. (r' h<r9 h being defined by rj:Zk->A2. lffj:Zk->Od+1 is the composition

of rj with the above homomorphism ï'.A2-+Od+ii this means /' >r/, or
[/']-[/]=[*/]• Thus [/L [f']£nkGd+1 differ by an élément in the image of
nkSOi+1.

Conversely, given /, f':Zk->Gd+l, defining réductions <r, a\ assume there is
rj:Zk^>SOd+1 such that [/']-[/] [fj] innkGd+1. fjcanbelifted torj:Zk-> A2. (Hère,
if An On or Spn, k>\ is used; see Remark 1 below.) This shows that the réduction
defined by fj- f can be obtained from a by an automorphism of P (namely the one
defined by n). As fj- /and/ ' are homotopic, (P, a) and (P, g') are équivalent, and
the proof is complète.

Remark 1. For k=l, the proof shows what has to be modified if An On or Spn.

In the symplectic case, one gets a 1 — 1 correspondence to the éléments of nxGs. In the

orthogonal case, one gets a 1 — 1 correspondence with the éléments of cok(7r1SO2~>

^^1^2) where 7r15O2->7r1G2 is obtained by composing the double covering S<92->

-> SO2 with the inclusion SO2 c G2.

Remark 2. The zéro élément of cok(nkSOd+l->nkGd+l) clearly corresponds to
the 'trivial' An manifold Zk x S"""1 over Ik x Dd+i.

Remark 3. The inclusion S02czG2 is a homotopy équivalence, so cok(nkSO2-+
-?7ritG2) 0. 7tkSO3-+nkG3 is a monomorphism [14], so cok(nkSO3-+7tkG3)^

TCfc(^3, £#3) which is isomorphic to nk+2S2 for /:^ 3.

3. TheOrbitSpaceasaBundle

It was proved in [7, 2.3] that the linear automorphisms of S2dn~~l compatible with
the représentation Qn®Qn, form a group isomorphic to A2(n^3). The action of this

group on the orbit space S2dn~i/An^Dd+i is what one would expect:

PROPOSITION 3.1. The action of the group A2 of equivariant linear automor-

phisms ^/S24""1 (»>3) inducedon the orbit space S2dn~1/An^Dd+i is équivalent to the

orthogonal action of A2 on Dd+1 given by a homomorphism T:A2-+Od+1 with ker t
center (A2).

Proof Let Fbe the real, complex, or quaternionic field, depending on whether the

orthogonal, the unitary, or the symplectic group acts. Recali from [7, 2.4] how An and

A2 act on S2dn"1. Write éléments of S2*""1 as « by 2 matrices over F. Then An acts by
left multiplication, and A2 acts by right multiplication. To prove Proposition 3.1 we

may confine ourselves to the orbits of An over Bd+i=intDd+ï (i.e. principal orbits).
An n by 2 matrix is on a principal orbit if and only if the two columns are linearly
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independent. lf<x=<Ji, then the An orbit of the point

a 0

0 a
0 0

0 6

is a fixed point of the action of A2. We are going to détermine the orbit type of non-
fixed points of the A2 action on Bd+1. We first need nice représentatives of the points
in the orbit space Bd+i/A2.

Clearly, any point of S2**""1 over Bd+1 is on a An orbit ofa point of the form

r t
0 s

0 0

0 6

(**)

reR, r>0, s^O. Applying a suitable élément ofA2 (i.e. without changing the A2 orbit)
makes t real non-negative. Then we make s real positive by applying an appropriate
élément of An. So far we hâve shown that any point in the orbit space Bd+1/A2 has a

représentative of the form (**) with r, s, teR, r>0, s>0, t^Q. The following lemma

guarantees that we may even assume t=0.

LEMMA 3.2. Given real numbers r# 0, s ^ 0, tt there are orthogonal 2by2 matrices

M,Nsuchthat

M

is a diagonal matrix.
(Lemma 3.2 is proved below.)

Assume - is in the isotropy group of a point ofBd+* represented by
[c d\

r
0

0

0

0

s

0

0

Then

r
0
0

0

0

s

0

0

[c d\

ra
se

0

6

rb
sd

0

6
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is on the same An orbit as

r
0

0

0

0

s

0

0

Therefore r2 r2\a\2+s2\c\2 and s2=:r2\b\2+s2\d\2i so r2(l-|a|2) r2|c|2
j-2|c|2 and s2(l-\d\2)=s2\b\2 r2\b\2, i.e. r=s or c=0 and Z>=0. For r=5we hâve
the fixed point q9 otherwise the isotropy group is AlxAi. Thus the positive dimen-
sional orbits of A2 on Bd+1 are sphères A2IAi xAt of dimension d, the orbit space
Bd+1/A2 is the half open interval (0, a], parametrized by r. Hence Bd+l is équivalent,
as a A2 space, to the représentation space of t composed with the standard orthogonal
représentation of O2, SO3, or SO5i respectively.

Proof of Lemma 3.2. Left (right) multiplication by an orthogonal matrix does not
change the inner product of the columns (rows) of a real 2 by 2 matrix. As the orthogonal

group opérâtes transitively on sphères, it is sufficient to find an orthogonal matrix

[/ L w' J\ — w2, such that the columns of
-il wj v

[0s\ [-u> u

hâve inner product zéro. This leads to an équation

U -u +
(r2 - t1 - s2)2 4- 4rV

which does hâve a solution u in the unit interval.

COROLLARY 3.3. If an equivariant linear S2dn~l bundle n:T-+B is defined by
transition functions tj\Xj-+A2t then the orbit space T' is the total space of a Dd+1

bundle over B with transition functions x o tj.

4. The Homotopy Type of the Equivariant Diffeomorphism Group of the Fibre

The following two (well-known) lemmas are used in the proof of the next theorem.

LEMMA 4.1. The group ofdiffeomorphisms ofD1 is homotopy équivalent to O2.

Proof The group of diffeomorphisms of S1 is homotopy équivalent to O2. This is
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elementary. So the group of ail diffeomorphisms of D2 is homotopy équivalent to the

group of ail diffeomorphisms of D2 being orthogonal on the boundary. The latter is

homotopy équivalent to the product of O2 and the group of ail diffeomorphisms of
D2 leaving S1 fixed. But the second factor is contractible [6, p. 132].

Lemma 4.2. Let G be the group of equivariant diffeomorphisms of a manifold M
with respect to somefixed smooth action of a Lie group on M. Then G has the homotopy

type ofa countable CW complex.

Proof. If the action is trivial, the Lemma is obtained by combining [5, p. 277, 283]
and [16, Theorem 14]. In [5], the diffeomorphisms close to the identity are identified
with certain cross-sections of the tangent bundle ofM. This gives the local structure of
a locally convex topological vector space. Therefore it is sufficient to observe that the
equivariant diffeomorphisms correspond to equivariant cross-sections, which form a

linear subspace.

DEFINITION. The diffeomorphisms of 52dn"1 onto itself which are equivariant
with respect to the diagonal action Qn®Qn of Am endowed with the C00 topology, form
a topological group. We dénote this group by Diff {Am S2dn~x), or briefly Bn(A).

The group of ail linear equivariant diffeomorphisms of S2*"'1 is a subgroup of
Dn (A) which is isomorphic to A2 [7, 2.3].

THEOREM 4.3. For n^3, the inclusion j:O2czDn(O) is a homotopy équivalence.

Proof Every equivariant self-diffeomorphism of S2"'1 is homotopic to a linear
one [7, 6.1], Soj induces an isomorphism for n0. To prove thaty induces isomorphisms
for nk, k>09 we use that the équivalence classes of bundles over Sk+1 with structure

group G are classified by nkG modulo the action of n0G [19, 18.5]. Let n:T-+Sk+1 be

an equivariant S2""1 bundle (with structure group Dn(O)). The orbit space T' is a
D2 bundle over Sk+1, with structure group O2 (Lemma 4.1).

Assume k>\. Then T' -*Sk+1 is a trivial bundle, so T is an On manifold over
Sk+1 x D2. The principal orbit bundle of T is a bundle over Sk+1 x B2 with structure

group O2y so is also trivial. Thus by Theorem 2.1, the On manifold T corresponds to an
élément of cok (nk+1SO2-*nk+1G2). As this cokernel is zéro, ris the 'trivial' On

manifold over Sk+1 x D2, i.e. Sk+1 x S2*"1. Therefore every equivariant S2""1 bundle

over Sk+1 is trivial, which means nkD(O) 0=nkO2 (k> 1).

The case &=1 is slightly more complicated. The principal orbit bundle of Tis a

bundle over int (T')(^S2.lfn:T-+ S2 is given by an élément tenxDn(0), the principal
orbit bundle of ris given by some élément t0en%02 such that (j*t0)~~lte7i1Dn(O)
defines an equivariant S2""1 bundle over S2 with trivial principal orbit bundle. So we

may assume that T already has trivial principal orbit bundle. If T' is a non-trivial
D2 bundle over S2, dTf is a lens space L{q){q^ 1). The principal bundle of the princi-
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pal orbit bundle of T is int T x O2 -? int T\ the réduction of the structure group to
O1 x OY according to Jânich's classification is a cross-section of the bundle ôT' x
x O2/O1 x O1 -+dT\ which is of degree ± 1 on any fibre of ôT' -? S2. So it is given by
amap

dT' ~^O2IOi x Ot
II II

L{q)-* S1

which is of degree ±1 on any fibre of L(q)-+Sl. As every map L(q)-+Sl is null
homotopic, this is impossible. Therefore the bundle Tf ->S2 is trivial. Now we can
apply Theorem 2.1. As cok(n2SO2-+n2G2) 0, n is équivalent to the trivial bundle
S2 x S2""1 over S2. This proves thaty induces a surjective map nl02\nÇi02 ~* n^D»(0^l
n0Dn(O). As the total spaces of two différent linear equivariant S2"'1 bundles over
S2 hâve différent principal orbit bundles, nlO2JK0O2 -» nlDn{O)ln0Dn(O) is injective.
Theny* : nlO2 -+ nj)n (O) is an isomorphism because n0O2 n0Dn (O) Z2.

So far we hâve shown thaty is a weak homotopy équivalence. But O2 and Dn{0)
hâve the homotopy type of CW complexes (Lemma 4.2). Hence j is a homotopy
équivalence [18, p. 405].

COROLLARY 4.4. Any On equivariant S2n~l bundle with fibre action Qn®Qn,

,isa linear bundle.

THEOREM 4.5. Let An be the group Un or Spn, n^3.Letk^3.IfTisa An manU

fold over SkxDd+1 corresponding to a non-zero élément of cok{itkSOd+i-*nkGd+l)
in the classification of Theorem 2.1, then n:T-*Sk is a non-linear An equivariant
S2dn~l bundle withfibre action Qn®Qn-

n:T-+ Sk is of course the composition of the orbit map with the projection on the

first factor. Note that in the orthogonal case, the above cokernel is always zéro.

Proof If n:T-+Sk is a linear bundle, it is equivariantly trivial. This follows from

Corollary 3.3 and the isomorphism T*:nk-.lA2->nk.1SOd+l. But then, by Remark 2

of section 2, T corresponds to zéro in cok(nkSOd+i-+nkGd+i). So we only hâve to
make sure that n:T-+Sk is a bundle, i.e. locally trivial. If 2?=S*-point, n~1B is a An

manifold over BxDd+1. The réduction of a structure group occuring in the classification

by the Hsiangs and Jânich, is a map B-+ Gd+i, so is homotopic to a constant

map. As homotopic réductions yield equivariantly équivalent An manifolds [9, p. 23],

n"1B is equivariantly diffeomorphic over B to B x S2dn "x.

COROLLARY 4.6. // cok(nkSOd+x ->nkGd+1)^0 for some k^3, then

cok (nk _ XA2 -» nk_ tDn{A)) # Ofor every n ^ 3.
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Proof. By Theorem 4.5, there is a bundle over Sk with structure group Dn{A)
which is non-linear, i.e. the structure group of which cannot be reduced to A2. So the
corresponding élément of nk-xDn (A) is not in the image of nk-XA2.

COROLLARY 4.7. Neither of the inclusions U2aDn(U\ Sp2 cDn (Sp) is a homo-

topy équivalence.

Proof. This follows from c6k(it^SOz^n3G3)^:X2 and cok(n6SOs^n6G5)^Z2.

THEOREM 4.8. For any «^3, Dn(U) Diff(Un, S4""1), the group of ail self-
diffeomorphisms ofS4n~x which are equivariant with respect to the action Qn®Qn of Un,

does not hâve the homotopy type ofafinite CW complex.

Proof As n3(G3, SO3)^cok(n3SO3->n3G3)^Z29 n2Dn(U) is non-zero. But
accordingto [3, Theorem 6.11], a topological group of the homotopy type of a finite
CW complex, has zéro 2-dimensional homotopy group.

Remark. We do not know whether or not Dn (Sp) has the homotopy type of a

finite CW complex. The above method does not work in the symplectic case since

5. Classifying the Total Spaces

In view of the exact homotopy séquence

>nkSOd+l-*nkGd+l->nk(Gd+1, SOd+1)->nk- 1SOd+ !->••-,

cok(nkSOd^.1 -+nkGd+1) is isomorphic to kerda7tk(Gd+l, SOd+1). This kernel can be

calculated to be non-zero in many cases, giving many examples of non-linear bundles

by Theorem 4.5. It turns out, however, that the total spaces of thèse bundles in most
cases are equivariantly diffeomorphic to a product of a homotopy sphère and S24"'1.
Before going into this question, we prove a rather technical lemma.

LEMMA5.1. Let Zk be a homotopy k-spheref k^5, F:SkxDd+1-*ZkxDd+1
a diffeomorphism. Then F is strongly diffeotopic to a diffeomorphism G such that
G \AxDd+1:AxDd+1-+ A'xDd+1 hastheform G(x,y) (g(x),y), where A, À' are
k-disks in Sk, Zk, respectively, andg: A-+ A' isa diffeomorphism.

Proof. IfpeSk9p'eZ\ then the map F':p x (Dd+1, Sd)->Zk x (Dd+\ Sd), defined

by restricting F, is homotopic to a map F":p x (Dd+1, Sd)->Zkx (Dd+Î, Sd) such that

imF"=pf x (Dd+1, Sd) and n2°F" id. This homotopy may be assumed to be com-
posed by two homotopies, the first one moving a neighborhood of the boundary close

to the boundary and leaving the complément of a neighborhood of the boundary
fixed, the second one moving only the complément of a neighborhood of the boundary
in the complément of a neighborhood of the boundary.
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As F" \pxSd:pxSd-*ZkxSd is (Ar-l)-connected, we can replace the first
homotopy by a strong diffeotopy of Zk x Dd+i which is the identity outside a neigh-
borhood of the boundary. This is done using [8, p. 47] and the product structure of
small neighborhoods of the boundary. To replace the second homotopy by a strong
diffeotopy leaving a neighborhood of the boundary fixed, one has to extend Haefliger's
existence theorem for diffeotopies [8, p. 47] to relative homotopies not affecting a

neighborhood of the boundaries. Using the composition of the two diffeotopies, we
hâve realized the homotopy between F' and F" by a strong diffeotopy of Zkx jDd+1.

Now if A, A ' are fc-disks, peAczSk,p'eA'c:Zk9 g: A-> A' a. diffeomorphism such that
g(j>)=P'> then F" \ A x Dd+i and g x id: A x Dd+l -*A'xDd+i are tubular maps for
p'xDd+1 in ZkxDd+ï. (To be précise, we can give A and A' linear structures such

that p is the origin in A and g is a linear isomorphism.) As Dd+l is contractible, there

is another strong diffeotopy of Zk x Dd+1 carrying F | A x Dd+l to g x id. Combining
ail the diffeotopies yields G.

Levine [13] constructed a homomorphism œ3:Ok+d+i'k-+nk(Gd+u SOd+l).
(Qmk is the group of A>dimensional knots which are homotopy sphères in Sm, &>5.)
œ3 (x) is the obstruction for a knot x to bound a framed manifold in Sk+d+i. co3(x)e

ekerd ifand only if x has trivial normal bundle.

THEOREM 5.2. Let Ik be a homotopy k-sphere, k^5. Let TbeaUn or Spn manifold

over SkxDd+1, corresponding to an élément xekerd cnk(Gd+u SOd+l). Then T
is equivariantly diffeomorphic to ZkxS2dn~l ifand only if there is a knot x diffeomorphic

to Ik with co3 (x) — x.
We first prove the following auxiliary

PROPOSITION 5.3. Let x be a knot diffeomorphic to Zk, of codimension d+l,
with trivial normal bundle, and T the Un or Spn manifold over ZkxDd+l corresponding

toœ3(x)ekQTdcznk(Gd+l9 SOd+l). Then T is equivariantly diffeomorphic toSkxS2dn~1.

Proof Recall how co3(x) is defined if x has trivial normal bundle [13, 3.1]. Let
h:Zk x Dd+1 -» Zbe a tubular map for x. Sk+d+1-intXis diffeomorphic to Dk+1 x Sd

by a diffeomorphism g:Dk+i x Sd-+Sk+d+1 -intX such that g \ Sk x Sd:Sk x Sd -*dX
extends to a diffeomorphism ho:SkxDd+1 -*X [17, Theorem 4.1]. If n2 is the

projection on the second factor, then n2g~ih:Zk x Sd-+Sd defines an élément of nkGd+l

whose image in nk(Gd+l, SOd+1) is œ3 (x).
By the diffeomorphism h~lh0:SkxDd+1-+ZkxDd+i, T can be lifted to a An

manifold T' over Sk x Dd+19 which can be detected by an élément yenk(Gà+l9 SOd+l)

according to the classification in Theorem 2.1. As 7" was obtained by lifting from T,

y is represented by the composition (n2g'1h)o(h~ih0)=n2. So T' is equivariantly

diffeomorphic to Sk x 5f2dn~1. But Tis equivariantly diffeomorphic to T'.

Proof of Theorem 5.2. First assume the existence of k diffeomorphic to Zk such
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that co3(x)= -x. By Proposition 5.3, the An manifold Tf over (-Ik)xDd+1 corre-
sponding to x€nk(Gd+l, SOd+1), is equivariantly diffeomorphic to Sk x S24"'1. Hence
there is a commutative diagram

SkxDd+î ^(-Zk)xDd+l
where the equivariant diffeomorphism E induces a diffeomorphism F of the orbit
spaces. Let Sk Dk+ (Jw D*L, Dk± k-disks, matching the boundaries by the identity of
Sk~x9 —Ik=D\(Js Dk matching the boundaries by an autodiifeomorphism s of S1*""1.

Applying Lemma 5.1, F may be assumed to map D\ xDd+1 onto Dk+ xDd+ï by the

identity. This means that the fibre homotopy trivialization — Zk)xSd-+Sd repre-
senting x (and defining the An manifold T') is just the second projection when restrict-
ed to D\ xSd. Now we eut our An manifolds SkxS2dn~1 and T' in two pièces, ac-

cording to the décomposition of Sk and — Ik in two hémisphères. The two pièces are

glued together after inserting a twist defined by the map s'1 on S*"1. This defines a

diagram

where E' is again an equivariant difFeomorphism. As the fibre homotopy trivializa-
tions that define the new Ân manifolds over Ik x Dd+1 and Sk x Dd+1still areequal to
the second projection when restricted to Dk+ xSd,v/Q did not change the correspond-
ing éléments in nk(Gd+u SOd+i). So we really hâve the product IkxS2dn~1 on the

left hand side (corresponding to 0enk(Gd+u SOd+1)), and a An manifold correspond-
ing to x on the right hand side (i. e. 7"). Therefore T is equivariantly diffeomorphic
to T", whichis equivariantly diffeomorphic to Ik x s24"'1 byE'.

Conversely, let T be equivariantly diffeomorphic to Ikx S2*"'1. As before, in the

diagram

1
F l

SkxDd+1^IkxDd+l

we may assume that F| Z>+ xDd+1 is the identity (with respect to a décomposition
Ik~Dk+ \Jt Dk..). Inserting an appropriate twist as above, we obtain a diagram

r ^skxs2dn~1
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where 7" is still a An manifold corresponding to xenk(Gd+u SOd+1). Because of the
above diagram, x is representable by n2oFf \ (-£*)x Sd. On the other hand, accord-

ing to our remark at the beginning of this proof, for the knot -x given by F'((-Ek) x
xO)ciSkxDd+1c:Sk+d+1, co3("-x) is also represented by tt2°F' | (-Ik)xSd. Thus

co3 (x)= —x. This complètes the proof of Theorem 5.2.

By Theorem 5.2, the problem of deciding whether the total spaces of the bundles
constructed in Theorem 4.5 are equivariantly diffeomorphic to Ik x S2dn"l9 is largely
reduced to homotopy theory. As cok(7TfcSO5 -+nkG5) Q for k 3,4, there are no such

non-linear symplectic bundles in thèse dimensions. We do not know whether our non-
linear unitary bundles hâve familiar total spaces for fc 3,4. Now assume k^5. We
hâve Levine's exact séquence [13]

According to Theorem 5.2, the total spaces of ail bundles constructed in Theorem
4.5 are equivariantly diffeomorphic to some Ik x S2**""1 if and only if kQr(ô:nk(Gd+u
SOd+i)-*nk-iSOd+1)^cok(nkSOd+1-*nkGd+l) is contained in imew3. As nk(Gd+i,
SOd+l) is finite for ail k^5, d—2, 4, œ3 is certainly surjective unless Â:==2 mod4. In
the latter case, Pk Z2, and co3 is an epimorphism if and only if a codimension 2 knot
in Sk+i with Arf invariant 1 remains non-trivial after (d— l)-fold suspension. (Exactly
then Pk-+0k+d>k~l is injective.) As the Kervaire sphère is not diffeomorphic to the

standard sphère in dimensions différent from 2r — 3 [4, Corollary 2], œ3 is surjective
for ail k^2r — 2. For A: 6, 14, using [20], œ3 can be computed to be surjective in the

unitary case (d=2). For k 6, c/=4 (symplectic action), Qk+d'k-"1 is zéro for dimen-

sional reasons [13]. As kerd= n6(G59 SO5) Z2, œ3 is not surjective in this case, and

we hâve spotted a non-linear symplectic s8""1 bundle over S6 whose total space is not
equivariantly diffeomorphic to S6 x S8""1. We summarize:

PROPOSITION 5.4. If k^5, A;#2r-2, then the total spaces of the nonlinear

equivariant S2^'1 bundles over Sk, constructed in Theorem 4.5, are equivariantly

diffeomorphic to aproduct ofa homotopy k-sphere with trivial action andSlàn~x, This is

also true for k 6, 14 in the unitary case. For k 6, there is a non-linear symplectic
SSn~l bundle over S6 whose total space is not equivariantly diffeomorphic to aproduct

ofa homotopy sphère with trivial action and S 8 n ~l.
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