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On the Homology of Non-Connected Monoids

and Their Associated Groups

Michael Barratt and Stewart Priddy1)

§ 1. Introduction

It is well known that if Zis a connectée associative H-space of the homotopy type
of a CW-complex then X has the structure of an H-group, i.e., X^QBX, For X not
connectée the resuit fails. However, one can still "adjoin" inverses to X and inquire
about the homology algebra of the resulting space and its relation to the homology al-

gebra of X.
Our purpose is to establish, under suitable hypothèses (see 3.5.1), the following

isomorphism of Hopf algebras over a field k:

H*(M; fc) // k(n0M) Z H*((UM)0; k) (1.1)

where M is a simplicial free monoid and (UM)0 is the component of the identity of
the simplicial group UM generated by M (see 2.2). The action of the monoid algebra

k(n0M) on H*(M; k) is by translation of components.
As an immédiate application we obtain a new proof that the natural map

BSf^ -> (O00500)0 induces an isomorphism of Pontryagin algebras

HtBSr9lHm(Q*iSco)0 (1.2)

where ^oo is the infinité symmetric group. Our original proof using Dyer-Lashof
opérations is given in [2]. This paper arose from our attempt to understand the gênerai

phenomenon involved in (1.2).
The paper is organized as follows : In § 2 we give preliminary notions about the

Pontryagin algebra and the relationship of M and UM. The main theorem 3.5.1 is

formulated in § 3 and our application to BSf^ and (000<S00)0 is given in § 4. The

principal tool of the paper, the simplicial cobar spectral séquence of Bousfield and

Curtis, is developed in § 5. Sections 6 and 7 contain proofs.

§2. Preliminaries

We shall work in the category of simplicial sets with basepoint which (unless
otherwise noted) satisfy the extension condition of Kan. For the basic facts about this

category the reader is referred to May's book [8].

x) Research supportée in part by the N.S.F.
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Let | • | dénote the géométrie realization functor and recall that if M is a countable

simplicial monoid then \M\ is a topological monoid. Likewise, if X is a topological
monoid and Sin(*) dénotes the total singular complex functor then Sinpf) is a

simplicial monoid.

2.1. Homology and the Pontryagin Algebra
Let k be a commutative ring with unit and let k{-) dénote the free ^-module

functor. If X is a simplicial set then its homology groups with coefficients in k are
defined by H* (M; k)=n#k(X). For brevity we shall simply write H*(X). If M is a

simplicial monoid then k(M) is also its monoid algebra. In this case H* (M) has a

(Pontryagin) algebra structure defined by

Ht (M) ® Hj (M) Ttik (M) ® 7r,.fc (M) $ni+j (k (M) ® fc (M))

where £ is the Eilenberg-Zilber map and m is the multiplication map of k(M). In
références to the Hopf algebra structure of H* (M we assume & is a field.

2.2. 7%e Universal Group UM
If M is any monoid then there is a universal group UM generated by M. Let FM

be the free group generated by the éléments of M and let N be the normal subgroup
generated by xyz~l where x, y, zeM and xy=z in M. Let UM=FM/N and let
m:M-> £/M be the composite Mc+FM-»UM. Then w is a natural transformation

and satisfies the following universal property: if M-^H is a homomorphism of
monoids and His a group then there is a unique group homomorphism cp: UM-+H
such that q> (pu

UM

•Si*

2.3. The Relation Between M and UM
Let W be the classifying functor of MacLane [8]. We observe that W is defined

for simplicial monoids as well as simplicial groups. Note, however, that ffîM does

not satisfy the extension condition unless M is a simplicial group.

2.3.1. PROPOSITION: IfM is a simplicial free monoid then

(Wu)* : if# WM ?> H* WUM

is an isomorphism.



On the Homology of Non-Connected Monoids

Proof: There are canonical first quadrant spectral séquences [10; p. 68]

E2p,q 7ip(Tor*(M)(K(/c, 0), K(k, 0))^np
E2p,q 7rp(Tor^M)(X(/c, 0), K(k, 0)) =>np+qk(WUM))

Since M is free in each dimension so is UM and so Tor<kMp). (A;, fc)«Tor£(l7Mp)(Â:, A:)

and both are zéro for q>\ [4]. Hence the spectral séquences agrée and collapse
(E2 ECO). The resuit follows.

We shall now show that if M is connected and free then M, UM, and Q B\M\
hâve the "same" homotopy type.

2.3.2. THEOREM: IfM is a connected simplicial free monoid then

u:M-+UM

is a homotopy équivalence.
The proof is given in § 6.

We now turn to the relation between \UM\ and QB\M\ where B is the Dold-
Lashof classifying space functor for associative H-spaces [6].

2.3.3. LEMMA: If H is a countable simplicial group, then \WH\ is naturally
homotopy équivalent to B\H\.

Proof: Since \H\->E\H\->B\H\ is a principal fibration it follows that Sin|#|-*
-> Sin E\H\ -? Sin B\H\ is a simplicial principal fibration. Now using the five lemma
and the classification theorem for simplicial principal bundles [8] we hâve

and since the natural homomorphism //-?Sin\H\ of simplicial groups is a homotopy

équivalence, n* SinB\H\^>n*WH. Hence SinB\H\^WH, and thus \WH\z*.

2.3.4. PROPOSITION: IfM is a countable connected simplicial free monoid then

QB\M\ ca |UM\ by an H-map.
Proof: By 2.3.2, M^UM, hence B\UM\c*B\M\. Thus QB\M\c^QB\UM\^

*lQ\WUM\ by 2.3.3. Now Q\WUM\cz\GWUM\zl\UM\ by H-maps, hence the
resuit.

§3. The Main Theorem

3.1. Basic Assumptions

Throughout this section we shall assume that M is a countable simplicial free
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monoid (free in each dimension) satisfying the extension condition. The components
n0M of M are also a monoid, which we assume to bzfree.

3.2. Action ofn0
Let <p:M-+K(noM,0) be the natural projection. Since noM is free there is a

monomorphism (cross section) i:K(n0M, 0)->M such that <poz id. In this way n0M
acts (uniquely up to homotopy) by multiplication on the right and left of M. We shall
be concerned with the right action on homology. The homology ring H*(M)
=i/* (M; k) (see 2.1) is thus a right module over the monoid algebra k (n0M). We shall

say that H* (M) splits if #* (M) H* (M) // k(n0M)®k(7i0M) as a Hopf algebra.
One easily vérifies that n0UM= UnQM and so n0UM is a free group and H*UM

is a right A;(7t0i7M)-module. Let (UM)0 be the component of the identity then

(UM)0 c^UM^K (n0UM, 0)

is a fibration and (UM)0 is sometimes called the universal cover. Since UM= (UM)0 x
xK(n0UM, 0) as a simplicial set it follows that H*UM=H*(UM)0®k(n0UM) as

a A>module.

3.3. The Induced Map
If the action oînQUM on UMis homotopy commutative then H*UM=H* (UM)0

®k(n0UM) as a Hopf algebra. If in addition H*M splits then the map

#* ((7M)0 ® k(n0UM)^H* (UM)0

induces a map of Hopf algebras

*„ : #* (M) // fc (n0M) -> tf* (l/M)0 (3.3.1)

3.4. Strongly Homotopy Commutative Action
We shall say that the action of n0UM on t/Af is strongly homotopy commutative

(shc) if the composite map

\UM\ x \K(n0UM90)\^l\UM\ x |UM\ — |UM\

is strongly homotopy multiplicative (shm) in the sensé of Sugawara [14]. Recall that
a shm map/:X-> Y of associative H-spaces is a family of maps/n:Z/I+1 x/n-> F,

w=0,1, 2,... such that/0 =/and

/ (*o> •••> *«> *i> •••> *»)

Z""1 (^o» •••> ^i-i^i, ••-, ^ ^i» •••> îi» •••» O if U 0

Such maps induce maps of the classifying spaces BX->BY ([14, Lemma 2.2]).
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3.5. Main Theorem

We shall give sufficient conditions for the map v*:H*Mllk(n0M)-+H*(UM)0 of
(3.3.1) to be an isomorphism. We remind the reader of our basic assumptions (3.1).

3.5.1. THEOREM: Let k be afield. IfH^Msplits and the action ofn0UM on UM
is strongly homoiopy commutative then

vm : H*M II k (n0M) Z H* (UM)0

is an isomorphism of Hopf algebras.
The proof is given in § 7. The strong homotopy commutativity of the action of

n0UM is to insure the convergence of the cobar spectral séquence (see Remark 5.3.1)
for UM.

3.6. The Case n0M=Z +

In this case nQ UM—Z. Dénote the components of M by Àf0, Mx, M2,... and dénote
the éléments ofnQMby/?° l,/?1,/?2, We are assuming that a cross section i : n0M~*
-> M has been chosen (see 3.2) and so we shall also use/?0 1,p1,p2,... to dénote their
images in M. Let M^ lim Mt be the direct limit of

\/r xp x* xp xp *fxp \jr xp

wherex/7 dénotes right multiplication by/?. Thereis a simplicial map/?""00 '.M^ -> (UM)0
given by p ~ °° lim (xp ~l

We shall also use/? to dénote the corresponding élément in k(n0M)czH*M.

3.6.1. LEMMA: // n0M=Z+ and k(n0M) is normal in H*M then H*M00

=zH*Mllk(n0M) and so H^M^ has the structure of a Hopf algebra, whose coalgebra

structure agrées with its natural coalgebra structure.

Proof: Since 7i0M=Z+ the (unit) augmentation idéal Ik(n0M) is a free k(n0M)-
module with basis consisting of the single élément 1—/?. Thus, since k(n0M) is

normal, H*M/lk(n0M) H*MIH*M'(l-p) which is precisely the définition of
lim H+M^H* lim M^H^M^.

3.6.2. THEOREM: Suppose M satisfies the hypothèses of 3.5.1. If n0M=Z +
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then H+Mn has the structure of a Hopf algebra and

is an isomorphism ofHopf algebras.

Proof: In view of 3.5.1 and 3.6.1, it suffices to show that p~°° agrées with v* of
3.3.1. Now \®e:H*(UM)0®k(n0UM)-+H*{UM)0 may be decomposed as

Hence (l®fi)oW* (E-oo/>:)oW* and

We say that a simplicial set H is an H-space object if its géométrie realization \H\
is an H-space. If ffîUM is an H-space object then nQUM=n1WUM is abelian and
therefore if n0M is a free monoid then n0 UM is both free and abelian, i.e., n0 UM—Z
and n0M=Z+.

3.6.3. THEOREM: Let k be afield. Suppose ffîUM is an R-space object and that

multiplication by p in H*M is monic and commutative then

is an isomorphism ofHopf algebras.

Proof: Since \WUM\ is an H-space and \WUM\caB\UM\ (2.3.3) it follows that
B\UM\ isalsoan H-space. HencebyatheoremofSugawara [14,Th. 43], \UM\ x\UM\
-+1 UM| is strongly homotopy multiplicative and thus by restriction | UM\ x n0UM-+
| UM| is shm and so the action of n0UM is shc. The hypothesis on multiplication by p
easily implies that H*M splits. The resuit now follows from 3.6.2.

3.6.4. COROLLARY. Let k Z. Assume H+M^ and H*(UM)0 are finitely
generated and that the other hypothèses of 3.6.3 hold. Then p*°° is an isomorphism

of algebras.

Proof: Let Mp-<» be the mapping cône ofp~ °° : M^ -> (UM)0 and use the universal
coefficient theorem and 3.6.3 to show that ff*Mp-ao=0.

§ 4. Application: Q*SrXj and the Infinité Symmetric Group

be the symmetricgroupof order w!, i.e., ail permutations of {1, 2,..., n}. If
we consider the éléments of6^n as « x « permutation matrices then a group homo-

morphism

is defined by juxtaposition of matrices:
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for AeS?H9 BeSfm. The composite

gives a monomorphism ^n-*S^H+1. Using this map, the infinité symmetric «^^ is
defined by

Note that Sf^ is Just the group of those infinité permutation matrices acting on {1,2,
3,...} which permute finite many integers.

We now recall Barratt's T construction [1]. For any simplicial set X, Barratt has

given a simplicial free group TXwhich is group homotopy équivalent to G^I^X. Thus

irs0!^00,?00. Explicitly rS°=Ur+S° where

r+s° *uij W?n

and where ffî£fn is short for WK(Sfw 0). For convenience we shall dénote the basepoint
of Wn bypn and set/?°= *. The map

defines an associative multiplication and if we let * be the unit then F+S° is a count-
able simplicial free monoid.

Clearly nor+S°=Z+ {p09px9p29...} and so M=T+S° falls under the province
of§3.6. Observe that

The following theorem gives our application. Topologically, it says that even though
BSf^ is not an H-space (%xBSf\ 6?^ is not abelian), H*B&'«, nevertheless has a

ring structure and that moreover it is isomorphic as a ring to H+(Q*>*Sroo)o via an

isomorphism induced by a map BSf^ -> (Q^S™). Observe that B^^ is an EiJen-

berg MacLane space K(<Sf'00, 1).

4.1. THEOREM: Let the coefficient ring k be afield or the integers. Then

is an isomorphism of Hopf algebras.

Proof: First consider the case of A: a field. Recall the homomorphism of Steenrod

[13; p. 53] for coefficients in any group:

k: HtW^m -+ Hmn^(SPm (Sn))
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given by a-*(-l)i(i~1)/2(im)mla, where n is even,ïm générâtes Hn{SPm{Sn)) and
SPm(Sn) is the ra-fold symmetric product of Sn. If i<n then k is an isomorphism
[9; Th. 6.7]. It follows that

H*W&n^H*Wyn+1 (1)

is injective and for *< (n + l)/2 bijective for coefficients in any group.
Thus multiplication byp in H*F+S0 is monic. We also claim that such multiplication

by p is commutative. The diagram

does not commute. However, if c :^w+i-»^n+i dénotes conjugation by the cyclic
permutation (1,2, ...,« + l) then CojUoT /z. Now conjugation by an élément of a

group induces a map homotopic to the identity on the classifying space [12]; hence

Wc^id: ffîyn+1 -? J^w+i and so W{iiox)^ W\i and hence the claim.
To complète the proof of the theorem observe that | WrS°\ c^B\rs°\ "BQ^S™ ^

czQ^Z^iS1) and so ffîrs0 is an H-space object, thus the hypothèses of Theorem
3.6.3 are satisfied and the resuit follows.

Let fc=Z. From (1) we hâve that H^W^^ is finitely generated. The resuit now
follows from Corollary 3.6.4 since H* (rS°)0 is also finitely generated.

§ 5. The Cobar Spectral Séquence

In this section we describe and expand upon the cobar spectral séquence of Bous-
field and Curtis [3; § 10], which will be used to prove the main Theorem 3.5.1. Let k
be a commutative ring and let H* • dénote homology with coefficients in k (see 2.1).

5.1. Filtration by Powers ofthe Augmentation Idéal
For any monoid M we suppose that the monoid algebra k{M is given the unit

augmentation e:K(M)-+k defined by e(m)=l for me M. Then k{M) is a Hopf
algebra. Filter k(M) by powers ofthe augmentation idéal /M=kers

k(M) IM° z> IM1 3 IM2 =>--3 IMP => IMP+1 r>... (5.1.1)

The associated graded algebra EP,€^0,€fe(M)=XP,€(/Mp//Mp+1)p+€ is also a

Hopf algebra.

5.1.2. LEMMA: Let T(*) dénote the tensor algebra functor and let

h;T(IMIIM2)-+E°k(M)
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be the natural homomorphism of Hopf algebras extending the identity on IM/IM2. If
M is afree monoid on the set {xa} then IM/IM2 is afree k-module with basis {xa— 1}
and h is an isomorphism.

5.1.3. Before proving the lemma we note that if M is free (on {xx}) then it can also
be given the zéro augmentation è:k(M)^k defined by â(m) 0 for m# 1 in M and

ë(l)=l. Let /M=kerë and consider the isomorphism of augmented algebras

ç>:(fc(M),e)-(fc(M),ê)

defined by setting ç{m) m-\ for m# 1 in M and <p(l)= 1. Since IM (resp. IM) is

afreefc(M)-moduleon{.xa— 1} (resp. {xa},(see [4, p. 192]), itfollowsthat(p:/M-+/M
is an isomorphism. Hence IMP ~IMP for/7^0, and if £°Jfc(Af £ lMpllMp+1 then

Eoç:E°k(M)^Ë°k(M). Finally as bigraded algebras E°k(M)xT{xa}.

5.1.4. Proofof 5.1.2: Since IMjIM2^lMjlM2^{xa} it foliows that IM/IM2 is a

free ^-module on {xa— 1}. That h is an isomorphism is now obvious since

T(IM/IM2)XE°k(M)

T {xa} T (IM/IM2) Z E°k (M)

commutes.

If M is a simplical monoid then the filtration (5.11) ofk (M) induces a filtration of
the Pontryagin algebra H#M=n*k(M)

F1H* 3... => FPH* 3 FP+1H* => ••• (5.1.5)

given by F^ Im{7rîic/M^->7cîicÂ:(M)}. Let
Since if^M is an augmented &-algebra it is also filtered by powers of its augmentation

idéal IH*=IH*M=n*IM

— (5.1.6)

5.1.7. LEMMA: IfkisafieldthenFpH*=IHpforp>0.
Proof: Clearly F^^H^IHl, Now the/?-fold multiplication map

(see(2.1))

where ^ is the p-fo\â Eilenberg-Zilber map. Since A: is a field E is an isomorphism by
Kunneth and the resuit follows.
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5.2. The Spectral Séquence for Simplicial Monoids
Suppose M is a simplicial monoid. Let {Er{M)} dénote the spectral séquence

associated with the homotopy exact couple induced by 5.1.1. Then

and ECOM=E°H*M, the graded algebra associated with 5.1.5.

5.2.1. LEMMA: Suppose M is a free simplicial monoid and n0M is free. Then

{ErM} converges to E°H*M.
Proof: We shall show that f}rlm{n*IMp+r-+nJMp}=0. Suppose noM is the

free monoid on {xa} and let IM dénote the augmentation idéal of k{M) with the

zéro augmentation (see 5.1.3.)
Let Mx dénote the component of M corresponding to xen0M. If zelMp then

z zh+zi2-\ \-zin where zijBk{MfXi^ Now let q^p be an integer such that each

x^isa product of less than q éléments of {jca}. Then if z is a cycle [z]$Im{n*lMq-*
-> n*lMp} since lMq contains only éléments of k (Mx) where x is a product of at least

q éléments of {xa}. Hence f\ lm{n*IMp+r->n*IMp}&Ç}r lm{njMp+r-+njMp}
0.

For M connected we can apply the connectivity results of Curtis [5; Remark 4.10]
and argue in the manner of Quillen [11 ; Theorem 3.7] to obtain

5.2.2. LEMMA: If M is a connected simplicial free monoid then IMP is p—l
connected and {ErM} converges strongly to E°H*M.

5.3. The Spectral Séquence for Simplicial Groups

If F is a simplicial group then it is also a simplicial monoid and so the spectral

séquence of 5.2 is defined. The question of convergence, however, is apparently more
délicate and we hâve been unable to prove a resuit for F similar to Lemma 5.2.1.

5.3.1. Remark: The hypothesis of the main Theorem 3.5.1 requiring the action
of n0 UM on UM to be strongly homotopy commutative is necessary precisely because

we don't know if {Er (F)} converges for a non-connected simplicial free group F. This

hypothesis (in the présence of 3.1) forces the existence of a simplicial group homo-

morphism UM->(UM)0 xK(n0UM9 0) which is also a weak équivalence. We can
then use the following resuit of Bousfield and Curtis [3; Th. 10.2]:

5.3.2. LEMMA : IfF is a connected simplicialfree group then IFP isp—1 connected

and {Er(F)} converges strongly to E°H*{F).
If F is free then the natural map GWF-+F is a group homotopy équivalence.
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Furthermore, since F/ [F, F~]&IFjIF2 we hâve

ElPtqF (®pff*WF)2p+q (5.3.3)

for k a field.

Finally the spectral séquences for M and UM agrée.

5.3.4. LEMMA: IfM is a simplicial free monoid then

Eru:ErM&ErUM for 0<r
Proof: It suffices to prove the resuit for r 0. By 5.1.2 E°M=T(IM!IM2) and by

[3; LemmalO.l] E°UM=T(IUM/IUM2). However /M//M2 =Tor*(M) (Â:, &)«
nToïk{UM)(k, k)=IUMj{IUM)2 [4; p. 192] and hence the resuit.

5.4. Remark
It should be noted (see [3, 10.3]) that the cobar spectral séquence (at least in the

connected case) is closely related to Adams' cobar construction and the Eilenberg-
Moore spectral séquence.

§ 6. Proof of Theorem 2.3.2

6.1. LEMMA: IfM is a connected simplicial free monoid then

is an isomorphism of Hopf algebras.

Proof: Since M is connected the spectral séquences

El(UM)=>E0H*(UM)
of §5 are strongly convergent by 5.2.2 and 5.3.2. Now E1u:E1{M)^E1{UM) by

5.3.4 and the resuit follows.

6.2. Proof of Theorem 2.3.2
Since u\M-± UM is a map of connected simplicial monoids the resuit follows

from 6.1 by a simplicial "H-space" version of the Whitehead theorem.

§ 7. Proof of the Main Theorem 3.5.1

Throughout this section we shall assume the hypothèses of 3.5.1. Thus k is a field
and #*(•) dénotes homology with coefficients in k.
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7.1. LEMMA: There is a homomorphism ofsimplicial groups

\j/:UM^ (UM)0 x K(n0UM, 0)

which is a weak homotopy équivalence,

12. LEMMA: The map u:M->UM induces an isomorphism

ofthe graded algebras associâted with filtration (5.1.6) by powers ofthe augmentation
ideaL

7.3. Proofof 3.5.1 : By the splitting oîH*M and the homotopy commutativity of
the action of n0UM we hâve

H*M « H*M II k (n0M) ® k (n0M)

H*UM « H* (UM)0 ® k (n0UM)

as augmentée algebras. Thus u*:H*M-+H*UM becomes

H*M II k(n0M) ®k(noM)a*®k(nou\H* (UM)0 ®k(n0UM)

where û*:H*MJIk{n0M)^H*(UM)0®k{n0M) is the restriction of u* to H^M/I
k(n0M)®\ and k(nou):k(noM)-+k(noUM) is obtained by applying the monoid
ring functor k{-) to the inclusion nou:noM-+noUM.

Also

E°H*M « E° (H*M If k (n0M)) ® E°(k (n0M))
E°H*UM « E°(H* (Uhf)0) ® E°(k(n0UM))

and so we claim E°ù*=Eov*:Eo(H*MI/k(noM))-*E°H*(UM)o. This is the key

step: to prove it we observe that if [m] e HtMx where Mx is the component of M
corresponding to xen0M then w*([m])=[m-.SoX~1]® l_x]EHi(UM)0(g)k(n0UM),
however [\] — [x~]&IK(n0UM) and hence the claim.

Thus

E°u* E\ ® E°k (nou) : E° (H*M \\ k (n0M)) ® E°k (n0M)

¦i E°H* (UM)0 ® E°k (n0UM)

which is an isomorphism by 7.2. Now since n0UM= Un0M=free group, we hâve

E°k(nou):E°k(noM) Z E°k(n0UM)

by 5.3.4 and thus E°v* is an isomorphism. To complète the proof observe that the
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filtrations of H^MJIk(%0M) and H*(UM)0 are complète (actually finite in each

dimension by connectedness) and so v*'.H*Mllk(n0My^*H*(UM)0 is also an iso-

morphism.
Proofofl.l : Let UM' dénote the simplicial group (UM)0 x K(n0UM, 0). Apply-

ing the géométrie realization functor to the multiplication map

m:UM'-+UM

we obtain (by hypothèses of 3.5.1) a shm map of countable CW-groups, \m\ : | UM'\ -»
-> \UM\. Hence by Sugawara [14; Lemma 2.2] there is a map of fibre spaces

\UM\-+E\UM\ ->B\UM\
ÎH îl«l îlmi

\UM'\-±E\UM'\-*B\UM'\

Since \m\ is a homotopy équivalence so is \m\. By 2.3.3, | WH\ is naturally homo-

topy équivalent to B\H\ for any countable simplicial group H. Hence there is a

homotopy équivalence cp.ffîUM' -+WUM and a group homotopy équivalence
Gcp\GWUM'-+GJVUM. Let q\GffîUM-+GffîUM' be a group homotopy inverse of
Gq> and let \J/: UM-+ UM' be the composite

UM !> GWUM 1> GWUM'adj(1 WuM?

where rj is a group homotopy inverse of the adjoint map adj (Iwum): GWUM-* UM.

Since each of rj, g, and adj (1 wvM)ls a êrouP homomorphism and a weak équivalence
so is \j/.

Proofofl.l: The maps M-^ UM^>(UM)Q x K(n0UM, 0) induce maps of the co-

bar spectral séquences

El{M) =>E°H*M (1)

Ey(UM) =>E°H,UM (2)

E1 ((UM)0 x K(n0UM, 0)) =>E°H.((UM)0 x K{n0UM, 0)) (3)

where the convergence of (2) is unknown. The convergence of (1) follows from 5.2.1.

Since Er ((UM)0 x K(n0UM, 0))&Er(UM)o®Er (K(n0UMfl ))as differential algebras

and since E°(K(n0UM, 0))«jEtoo(^(7r0C/M, 0)) the convergence of (3) follows from

5.3.2. Now E1{M)^El{UM) by 5.3.4 and E1 (UM^E1 {{UM)Q xK(n0UM, 0))
by 7.1 and 5.3.3. Hence by the convergence of (1) and (3) E0(\j/u)* is an isomorphism.
But E°il/* is an isomorphism by 7.1 and so E°u* is also an isomorphism.
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Added in proof : J. P. May points out that the assumption of countability can be

omitted hère and thus in the rest of the paper by restricting the range of 1 • 1 to the

category of compactly generated spaces.
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