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Quadratic Spaces of Countable Dimension

over Algebraic Number Fields

by Léon E. Mattics, Bozeman, Montana

Introduction

Because of work done by I. Kaplansky (see, for instance, [6]) and more récent
work done by H. R. Fischer and H. Gross (see, for instance, [1], [2], [3], and [4])
it now seems natural to study vector spaces of countable dimension over algebraic
number fields.

One of the major accomplishments in the theory of quadratic forms is the charac-
terization of quadratic spaces of finite dimension over arithmetic fields by a set of
invariants which include the discriminant of the space, the dimension of the space,
the Hasse symbols at ail discrète spots, and the positive indices at ail real spots
(see [7], pp. 154-189).

In this paper we shall show that a denumerably infinite-dimensional vector space
supplied with a symmetric non-degenerate bilinear form over an algebraic number
field K is characterized by a set of 2n invariants. Hère n is the number of distinct
orderings of K(or équivalent n is the number of distinct real archimedean spots on K).
Hence, if K is non-formally real, there is (up to orthogonal isomorphism) only one
denumerably infinite-dimensional vector space with a non-degenerate bilinear form
over K (cf. theorem 3 in [6]).

Sylvester's theorem holds for countably infinite-dimensional quadratic spaces

over ordered fields (see [8], p. 522). Thus, if «>0, we shall obtain our 2« invariants
by the use of Sylvester's theorem.

Many of the ideas in this paper were inspired by Gross' work in [4].

1. Notation and basic concepts

Let K be a field. By a quadratic space (E, #) over K we mean a vector space E
over K with a symmetric bilinear form <P:ExE^>K. By a quadratic subspace (F, 4>)

of (E, #) we shall mean that F is a linear subspace of E together with the form 4>

restricted to Fx F. If there is no risk of confusion we shall write F instead of (F, #).
A quadratic space (E, <P) is semisimple (regular) if and only if # is non-degenerate.

If (E, #) is a quadratic space over K and A and B are linear subspaces of E
such that AnB=(0) then we shall dénote the direct sum of A and B by A@B. If

x
we also hâve that $(A9 i?)={0} then we shall write A®B. If F is a linear subspace
of E then we dénote by F1 the linear subspace of E comprising ail those vectors
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x of E such that <P(x, j) 0 for every y in F. If (E, #) is semisimple, and F is a

i
finite-dimensionallinearsubspaceoflssuchthat^, 4>) is semisimple then E=F®FL.

Suppose (E, $) is a quadratic space over jK and {et}teA is a basis of (E, #) where

/l is some indexing set. {et}teA is an orthogonal basis if and only if <P(et9 et) 0 for
tjz t'. {et}teA is an orthonormal basis if and only if {et}teA is an orthogonal basis and

<P(et, et)= 1 for every teA.

If char À^ 2 then any quadratic space of countable dimension over K has an

orthogonal basis. This is not true in gênerai for quadratic spaces of higher dimension

(see, for instance, Gross' "Vandermonde" example [1], pp. 321-323).
We shall say that two quadratic spaces (E, <f>) and (G, W) over K are orthogonally

isomorphic if and only if there is a vector space isomorphism a from E onto G such

that <P(x, y)=Y (ax, oc y) for every pair (x, y) in ExE. If (E, <P) and (G, W) are

orthogonally isomorphic we dénote it by (E9 $)~(G, W). If the dimension of E is

countably infinité then we shall dénote it by dimis K0 or dim^, #) K0.

IL Définition of the invariants and more terminology

From now on we assume that K is an algebraic number field.

Suppose K has precisely n orderings (n>0). We shall dénote thèse orderings by

-<!,•••, <„. Let (E, 0) be a semisimple K0-dimensional quadratic space over K. Since

(E, $) has an orthogonal basis, for each ordering -<, we may décompose E such that
i

E=Et@E~ where 0<t<P(x, x) for each xeEt with x^O and <P(x, x)<fi for each

xeE~ with x^O. Furthermore, since Sylvester's theorem holds in the countable case

(see [8], p. 522), the dimensions of Et and E~ are unique (JEl and E~ are not unique).
Define àimEl nl and dimE~ =n~ for each i (l^i^n). It is obvious that

{nl9...9 nn9 nï9..., n~} is a set of invariants for quadratic spaces orthogonally
isomorphic to (E, #). We shall show that this is a complète set of (cardinal) invariants.

Let us consider for a moment the orderings on K. Each of thèse orderings is an
archimedean ordering and each defines an archimedean valuation (I should say spot)
on Ks&y \ \t from -<r Furthermore, thèse valuations are ail inequivalent and are ail
of the real archimedean valuations on K (see [7], pp. 30-35 and [5], pp. 287-289).

Now if Xîa*^2 is a quadratic form with coefficients in K such that Ya^i^i *s

indefinite under each ordering of ^Tthen from the Hasse-Minkowski theory and what
is stated above the form has a non-trivial zéro in K, For an exposition of the Hasse-
Minkowski theory see [7], pp. 154-189.

Again consider the orderings -<l5---, <„ and the corresponding valuations
| |l5..., | |n defined by them. First of ail, we may take | |t such that \N\t N for each

natural numberNand ail i(l </<«). Since | \1...91 |Bis a set of inequivalent valuations,
given a1?..., <xn in K and a positive integer M there is a number a in K such that
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1 for ail i between 1 and n. This is simply the weak approximation
theorem and will be used frequently in the following exposition.

We now introduce signature functions which will reduce the number of words
we must use later. For each i (l</<«) we introduce the map \l/i:K*-+{ — 1, 1} such
that for oceK*, ^(a)=l if 0<iai or ^.(a)=-l if <x<fi.

Hère 1 and — 1 are in K. (This is not important.)
We now define the map \ft : K-+{-1, \}n such that for aeK*,

We are now in a position to prove a very useful lemma.

Lemma 1. Let (E, 4>) be a semisimple quadratic space over K. Suppose there exist
vectors xl9..., xnin E (not necessarily distinct) such that <P(xh xt)^0 and

\l/i(^(Xi, xi)) sifor each i. Then there is a vector xeEsuch that \j/(<P(x, x)) (su..., .?„).

Proof. By Sylvester's theorem in the finite case E must contain a semisimple sub-

space F with dimF=q^n and an orthogonal basis {^i,. ••>£$} such that for each

i (K/<«) there exists e^ with ^(^(e,-, ej)) si.
Let N be a positive integer (we shall assume that N is in K or in the reals whenever

convenient). For each i (l</<«) define

aH 0 if ^(^(^,e,)) -sj or ccH N if fa (^ (el9 et) s,.

Now from the weak approximation theorem we can find otj in K such that
la* — ccn\i<N~i for each i.

Do this for each / between 1 and q. Then by taking N large enough we hâve, by
the continuity of multiplication and addition over valuated fields, that x=Ya aiei
is the vector desired.

We must note, however, that several rather délicate points in the above proof
must be cleared up. First of ail, we hâve taken a fixed field of real numbers R with
an ordering -<. The completion of K under each valuation | |f yields a field K{ which
is order isomorphic to R. The ordering of Kt when restricted to K is -< f. Without
confusion we may say that the ordering on Kt is <(. Secondly, if fi is the order
isomorphism between Kt and R and ] [f is the ordinary absolute value in Kt then we
hâve that

(1) a<fj3 ifandonlyif fx(a)<fi(P) (a,jSel<Q,
(2) MMfHA*(«)IH«li (*eK),
(3) Mr^AT1 ifandonlyis \oc\iKN~1 (aeK).

Thus, we now note that \(xl — ali\i<N~i for each i implies that —N
for each /.

and the "limit part" of the proof the Lemma 1 becomes clear.
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III. The characterization theorem

We are now in a position to state the main assertion of the paper.

Characterization Theorem. Let {E, 4>) be a semisimple #0-dimensional quadratic

space over an algebraic number field K with n orderings. Then (a) ifK is non-formally
real, (E, #) has an orthonormal basis; (b) if n>0, (E, <P) is completely characterized,

up to orthogonal isomorphism, by the invariants {nl9...9nn9 n^,.. ,n~} defined in

Section IL
The proof of (a) follows from a known resuit of Gross' (see Corollary 4 [2],

p. 290) which states that if a semisimple K0-dimensional quadratic space (G, #) over
a non-formally real field has an X0-dimensional subspace F such that #(/% F) {0}
then (G, 4>) has an orthonormal basis. Since (E, <P) has an orthogonal basis and every
five-dimensional quadratic space over a non-formally real algebraic number field
contains a non-zero isotropic vector (i.e. a vector x^O such that <P(x, x) 0) it follows
that (E, #) contains such a subspace.

A major part of the proof of part (b) will be contained in the following three
lemmas. The proof of part (b) of the characterization theorem will be completed in
Section 4. From now on, assume K is an algebraic number field with n orderings
(n>0).

Lemma 2. Let (2s, #) and (F, V) be two semisimple quadratic spaces over K

Suppose (1) àimEl éimFl eachi
(2) dimE~ dimF~ each i
(3) dim Et < Ko or dim E~ < Ko each /,

then(E,<P)~(F, V).
Proof We first consider the case where dim^, 0 or dim1*^=0 for each i

(l</<«). Let {xl}l>l be a fixed basis of E and let {>\}i>l be a fixed basis of F.

We note that in this particular case \J/(<&(x, x)) \jj(W (y, y) for every x^O, xeE and

for every y ^0, yeF.
To prove that E and F are orthogonally isomorphic we shall use the standard

inductive procédure.
Suppose we hâve been able to find finite dimensional semisimple spaces pEcE

and pFczF such that pE~pF with xtepE for i^p, and ytepF for i^p. Let xl be the

first vector of the fixed basis not in pE. Since pE is semisimple we may assume that
XiEpE1. Let ym be the first vector of the fixed basis not in PF. Since pF is semisimple

we may assume that ymepFL.

If we can find a semisimple finite dimensional space PË in PEL and a finite
dimensional semisimple space pF in PFL such that x^pË, ym€pF and pË~pFw shall
be done. Take fourlinearly independent mutually orthogonal vectors {ym,fuf2>fz}
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in pFL. Then the quadratic form

i) z\ + V(ym, ym) z\ + £?

has a non-trivial zéro since the form is indefînite with respect to each ordering on K
by the particular assumption of this case. Thus, the space generated by {ym,fufiifz}
has an orthogonal basis {w0, ul9 u2, u3} with &(xh xt) W(u0, u0). Call this space pF.

Using the same sort of argument above we may find vectors ùl9 û2, û3 in pEL such that
{xh ûl9 w2, w3} is a set of linearly independent mutually orthogonal vectors such that
<P(ùl9 ùt)=zW (ul9 w,); /= 1, 2, 3. Dénote by PË the space generated by {xl9 ùl9 û2, û3}.
Then pËczpF, each are semisimple with xtspË and ymEpF and we are done with this

case.

We now finish the proof of Lemma 2 by the use of induction. Suppose for some

integer />0 we hâve proved: if nt<l or n~ </ for each / (l</<«) then EczF. Thus

suppose for each / that nx^ / or n~ < /. Furthermore, assume that for some / dim.Ë', /
or dim^~=/. For otherwise we are done by induction hypothesis. We pick
($!,..., sn)e{— 1, 1}M in the following manner: for each i

st= 1 if
1 if dim£r=0,

-1 if 1 <dim£," <K0,
-1 if

By Lemma 1 there are xeE and yeF such that

Write E=K(x)®Ë and F=K(y)@F. Hère K(x) and K(y) are the vector spaces

over K generated by x and y respectively. Now take (tl9...9 tn)e{ — 1, l}n such that
for each /

tt= 1 if

- 1 if dim£~ =K0.

Again by Lemma 1 (used three times together with Sylvester's theorem) we choose

three linearly independent mutually orthogonal vectors {yu y2, y3} in F such that

\j/(W(yl9 }O) (t^9..., £w) and

F K(y)®K(yl)®K(y2)®K(y3)®H.
Now it is easy to see that the quadratic form

- 4>(x, x) Z\ + ¥(y, y) Z% + *F(yu yt) Z\ + T(y2, y2) Z\ + W(y3, y3) Z\
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is indefinite under each ordering -<j. Hence, the form has a non-trivial zéro in K
and, thus, the space

K(y)®K(yi)®K(y2)®K(y3)
i

contains a vector x such that $(x, x)=W (x, x). Therefore E=K(x)®K(x)19
i

F=K(x)@K(x)1 and K(x)czK(x). The invariants of K(x)L and K{x)L are

{ml9...9mn9 mî,..., m~} where mf Aîf if «f K0; w^/i,-—1 if wf<K0; wi~=«i~ if
h~=X0; and mj =n~[ — 1 if «f~<K0. By induction hypothesis we hâve that
K(x)1c^K(x)± and hence £^F. This complètes the proof of Lemma 2.

We continue our extensive task of bookkeeping by stating the following lemma.

Lemma 3. Let (E, $) be a semisimple #0-dimensional quadratic space over K.

Further suppose that the set of integers {il9...9 ik}c{l,...,«} such that dimi?^
dim2££=K0(K./<fc) is not empty and that if me{\,...n}-{iu...,ik} either

dimism 0 or àimE~ =0. Then there is a semisimple #0-dimensional quadratic spacei
(G, Q) with G=G+®G~ and such that

(1) ifxeG+(xï0)then

and ifme(l,..., ri) — (il9...9 ik) then

tfrm(fl(x,x))=:l if OT 0)

-1 if dim£~=N0;
(2) ifxeG' (xïO) then

^(û(x,x)) -l Vije{il9...9ik}9

and ifme{l9..., m} — {il9"*9 ik} then

x))= 1 ifdim£m Ko,

(3) (G,Q)*(E9*).
Note. It follows that dim G + dim G

Proof. We first show the existence of such a quadratic space (G, Q). Let G

K {ei}izi®K{ filial oe an arbitrary K0-dimensional vector space over K. We hâve

only to define the bilinear form Q.

Define (sl9...9 sn)e{-\, \}n such that

so l if ije{il9...9ik}9
sm=l if

-1
for me{\9...9n}-{il9..., ik}.
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Now by the weak approximation theorem, given a positive integer N there is

oceK such that

|a — Sj\j < N~l for each j, 1 < j < n.

Thus, if we take N large enough we hâve

Now define (fl5..., frt)e{-l, 1}" such that

th -l if ij€{il9...,ik}9
tm=l ifdim£m K0,

- 1 ifdim£m =K0,

forme{l,...,n} - {il9...,ik}.
Again by the weak approximation theorem we can find f$eK such that

Thus we define G+ =K{ei}i>1,G~ K{f,}t>1, and Ï2 by

where 5/<;- is the Kronecker delta. Hence we hâve proved (1) and (2) of the lemma.
It remains to prove (3).

Let {xt }izi be a fixed orthogonal basis for (E,<P). The space ^{^1,^25/1^/2}
represents <P(xu xj; for the form

-*(Xi, xt) Z\ + aZ\ + aZ^ + pZ24 + j9Z?

is indefinite under every ordering of K. Thus,

^ {«1, ^2. /1, fi) K{un u2, w3, w4}

where {wji<1<4 is an orthogonal basis with Q(ul9 ul) <P(xl9 x^.
On the other hand, by Sylvester's theorem and three successive uses of Lemma 1

we can find three linearly independent mutually orthogonal vectors in K(xl)1
1

(E=K(x1)®K(xi)1) say m2, m3, w4 such that <P(ûh ù^) Q{ub ut) for 2</^4.
Set K{wl5..., u4] 1G and K{xu û2, w3, ù4} 1£. Now i^Ëczfî and we can con-

1 1
tinue this procédure in 1Ë1 and ^ to "finally" show that E=®fiË; G=©f^
with f^.^è ail i> 1. Thus, (£:, (P)^(G, O) and this complètes the proof of Lemma 3.

Lemma 4. Let (E, 0) hâve the same properties as in Lemma 3. Then if(E, W) is
another quadratic space with
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dim Et dim F(,

dim £f dim Ff
for ail i(l^i^n)we hâve that (E9 #)^(F, V).

Proof. The proof is obvious from the existence of (G, Q) in Lemma 3.

IV. Completion of the proof of the characterization theorem

We are now in a position to complète the proof of (b) in the characterization
theorem. We hâve in this case that the number n of orderings of K is positive. Let
(E, 0) and (F, *F) be two semisimple quadratic spaces over K such that

dim Et dim F; ni each /, 1 < i < n ;

dim£f dim Ff nf each i, 1 ^ i ^ n

Let ^ {l,...,n}
B= {ieA\ dim££ dim£r Ko}

C {ieA\ either dimF^ < Ko or dimF^" < Ko}

Then A Bkj C and Bn C is null. We now divide the proof of part (b) into several cases.

Case 1. If B is null then Lemma 2 is the proof of part (b).
Case 2. If C is null then Lemma 4 is the proof of part (b).
Let

C={ieC\ dimFf 0 or dimF^O}
C {ieC\ l<dimFf<Ko or l<dim£r<N0}.

Case 3. If C is not null and B is not null we shall show that we may reduce the

proof to the proof of Case 2.

Case 3a. If C is null then again we may apply Lemma 4.

Case 3b. We are now left with the case where B is not null and C is not null.
Define (tl9...9 tn)e{-l, \}n such that for each i

tt= 1 if dim Et dim Ff~ Ko,

-1 if
1 if f

1 if dim£f =0,
-1 if

Define (sl9...9 sn)e{ — l, \}n such that for each i

st= 1 if dim Ei Ko,

-1 if 0<dim£f<Ko
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By Lemma 1 there are xeE and yeF such that

By successive uses of Lemma 1 (and Sylvester's theorem) there are three mutually
orthogonal linearly independent vectors in K(y)L say y^y^y^ such that

K(y)®K(yl)®K(y2)®K(y3)®F
and

By the choice of (fls..., tn) and (sl9..., sn) the form

- *(x, x) zi + ¥(y, y) z\ + W(yu y,) z\ + W(y29 y2) z\

is indefinite under every ordering on K. Thus, the form has a non-trivial zéro in K.

Hence, ^(^©^(.Fi)©^^)©^^) has a vector Jt^O such that <P(x, x)=W (x, x).

Hence E=K(x)®K(x)1, F=K(y)®K(y)1 and K(x)~K(x). Continue to reapply
this procédure (the second time on K(x)L and K(x)L. After a finite number of steps
we obtain EczE and Fa F which are finite dimensional semisimple quadratic spaces

i i
such that E~Fand ifE=E®E1 and F=F®F1 then (again using Sylvester's theorem)
for each i,

dim/?,1" =¦
and either

(1) dim^1:
or

(2) dim EtL 0 or dim j?,1 " 0.

We can thus apply Lemma 4 to show that E1~F1. Hence (E, <P)~(F, W) in the
Case 3a and the characterization theorem is proved.

Remark. In retrospect, since the discriminant and the Hasse symbols in the sensé

of finite-dimensional quadratic spaces fail to make sensé in the denumerably infinité
case, one would expect that a denumerably infinite-dimensional quadratic space over
an algebraic field would hâve to be described by the positive and négative indices at
ail real archimedean spots. For quadratic spaces of higher dimension, the field seems

to lose much of its importance as far as describing the quadratic spaces. In this case,
inductive proofs such as the ones used in the proofs of Lemma 2 and Lemma 3 are,
of course, not applicable. Again, as pointed out in the introduction, there are examples
of semisimple quadratic spaces of dimension greater than countable which do not
possess an orthogonal basis and, furthermore, cannot be imbedded in a quadratic
space which has an orthogonal basis.
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