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An Approximate Redprodty Formula

for Some Exponential Sums

by K. Chandrasekharan and Raghavan Narasimhan

§ 1. The Dedekind zeta-function ÇK(s, (£) of an idéal class G in a quadratic field
K=Q(yJd) can be represented by the Dirichlet séries £ amm~s in the half-plane
Re£> 1, where am is the number of non-zero intégral ideals of class d with norm m.
In a récent paper [4] we showed that

£ amexp(2nimx) o(T), as r->co, (1.1)
m<T

for any irrational x, and used this fact to prove that ÇK(? + it, G) vanishes for an

infinity of real values of t. This resuit goes through also for zeta-functions with
grôssencharacters associated with quadratic fields.

We shall hère prove the following

Theorem 1. IfX=\d\1/2, andO<x<X, we hâve

\ amexp(2nimxlX) C± \ am exp(- inimjXx) + O(X112 logX), (1.2)

m<tX m<Xx2

provided that Xx2 > 1 jX > 0. Hère cl l,or i, according as thefieldK is real or imaginary.
IfO<Xx2<l/X, then

Y am (exp 2 n i m xjX) ~^~ (exp (2 n i x X/X) - 1) + O (X1/3), (1.3)
m<x znix

where c2 is a constant which dépends on the field. (I/k dénotes the residue of(,K{s, Œ)

at s= 1, then c2 kX, or kX/Itï, according as K is real or imaginary). The error-terms
in (1.2) and (1.3) are uniform with respect to x.

From this we deduce the following

Corollary. If x is rational, and x— l/(kd), where k is an integer, then

1/2 as X-»oo, (1.4)
m<,X

where ck is a constant which dépends on k and the field.
When am d(m), the number of divisors of m, formulas of the type (1.2) and (1.3)

were first given by J. R. Wilton [6], who used them to study the order of magnitude
of sums of the type

£ d(m)cos(2nmx),
m<X

for x belonging tD various classes of numbers. Such a study was originated by Hardy
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and Littlewood, and later carried on by a number of authors. Références to the

literature can be found in Wilton's paper [6].
The proof of Theorem 1 requires, among other things, properties of convergence

of a class of infinité séries of Bessel functions with coefficients am. The study of such

séries when am — d{m), or r(m) (the number of représentations of m as a sum of two
squares), originated with Voronoi, Hardy, and Landau [5]. In two of our earlier

papers [1, 2] we gave a gênerai method for attacking the convergence problem for a
wide class of such séries. While the proof of Theorem 1 can be efïected without using
the sharpest known results on such séries, it seems possible, by using them, to obtain
a gênerai summation formula for am. This is given in Theorem 2, § 5, and includes the

Voronoi-Hardy-Landau formula when K=Q{J^A). Our proof goes through also

in the case d= 1 of équation (2.1), when ÇK is the square of Riemann's zeta-function,
so that Voronoi's summation formula for the divisor function is also included.

We are indebted to Professor C. L. Siegel for critically reading a first version of
this paper and making several helpful comments. He pointed out to us that in the case

of an imaginary quadratic field, the constant c1 /, and that an additional term

f(0)/w appears in (5.6). He has given an alternative method for sharpening the Co-

rollary to Theorem 1, which we quote, with his permission, in § 6.

§2. We shall first prove Theorem 1 for a real quadratic field K=Q(^/d), d>0.
In that case, we hâve

00

/ A Wl
Res>l,

where (£ is the idéal class conjugate to (£, and the following functional équation holds :

This is of the form

where

m=l
Let
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for x>0, q>09 the dash denoting that the last term has to be multiplied by i, if q 0

and x iin. By the standard convention that an empty sum is zéro, Al(x) 0 for
0<X<fX1,Q>0.

According to a previous resuit of ours [2, p. 116], équation (2.1) implies the
existence of an identity, the précise form of which is given by the following

Lemma 1. Equation (2.1) implies the identity

where x > 0, Fv (x) Yv (x) + -1 )v " * (2/te) Kv (x), Yv and Kv being the well-known Bessel

fonctions, q is an integer, such that q>0, Q>2fï — f, where /? 1 +e> 1, and

>r(s)(P(s)xs+rds

where fê, is acurve which encloses ail the singularities ofthe integrand. The séries in (2.3)

converges uniformly in any interval of the positive real axis in which thefunction on the

left is continuous. If q 0, it converges boundedly in any interval 0<xl<x<x2<oo.
This lemma is a conséquence of Theorem 7.1(c) of [2], since the condition given

there, namely

as «-»oo, is fulfilled, because ofthe known estimate [2, p. 128]

X am Kx + O(x1/3)9 (2.4)

where k is the residue of Ç& (5, G) at its only pôle s 1, and of the fact that $ — 1 + e > 1.

The method of proof is that of equiconvergent trigonométrie intégrais used by us in
[1]. The assumption that o is an integer is not necessary ; but our applications do not
require more.

In the case of a real quadratic field, it is known that

o()
n

rj>\ being the fundamental unit in K, while

n

Thus, if we take £=0, and write ny for x, we get

^2mFd4n(Ly)1/2], (2.5)

m=l
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where now

km ™, X Jd, P0(ny) llogrj -y c-y, say. (2.6)

we define for y>0, q>0,

If we set

then we can rewrite (2.5) as
00

A(y) cy+ j ~ I0(Àmy), Àm — (2.8)

m=l

Because of Lemma 1, with g=0, the infinité séries on the right-hand side of (2.8)

converges boundedly for 0 < a <y < a' < oo. But this resuit is not necessary for the proof
of Theorem 1.

The case g 1 of Lemma 1 gives
00

±- V af2h
2n Lj Àm

V f2h{Xmy), (2.9)

m=l
since

dx

± 1 kx _2nÀ mI
dx

and the séries in (2.9) is uniformly convergent for y>0. This resuit is much easier to
establish than the convergence of the séries in (2.8).

If/is a function which is twice continuously differentiable in [0, oo), then by
Abel's Lemma on partial summation, we hâve

x

i Zx aJ{K) A (X)f(X) - J A {t)f (t) dt,

where/' is the derivative of/. If we integrate by parts, once more, we hâve

x

I A (X)f(X) - A1 (X)f' (X) + J A1 (t)f" (0 dt.
0



300 K. CHANDRASEKHARAN AND RAGHAVAN NARASIMHAN

If we choo$Qf(t) exp(2nixt), x>0, and use (2.9) and (2.4) we get

x

£ aJ(K) cXf(X) - ±cX2.f'(X)+Uct2f"(t) dt + 0{X1'3)

f'(X) V am

27 U l\h
m=l

X oo

0 m=l

the séries occurring in the last intégral being uniformly convergent. The error-term
O(X1/3) cornes from formula (2.4). Hence

X

271

m=l 0

00 A

i V1 amrr
2tc ^ x2m\j

and the last term equals

oo X
1

m=l

The first term in the curly brackets vanishes at f 0 because of (2.9). Taking
cxp(2nixt) we get the formula

X>wrm, (2.11)

o
where

x

rm==_2nJI F/o(Am*)exp(27ux0^. (2.12)

o

We shall prove Theorem 1 by estimating the sum ^®=1amrm in (2.11) by means

of the following lemma due to J. R. Wilton [6].
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Lemma 2 (Wilton). Let

x

t, /(0=^[/o(0L (2-13)

and

N Xx2.
Let

p(Jx), if ^<Àm<N, (2.14)

where ct is defined as in (1.2), and

R JI(^Io(^mX)cxp(2nixX), if Àm>N>cf>0. (2.14')
Àm

Then we hâve the estimâtes:

Rm O(x-ll2X-ll4N-il4) + o(^X if Am<(l-6)iV, 0<8<l; (2.15)

\N-Xm\-i), if c2iV<Am<c3iV, c2>0, Xm # iV ; (2.16)

if N-c4V/JVx<Am<iV + c5v/iVrx, c4,c5>0; (2.17)

/4), if Àm>(l+e)N>N. (2.18)

O's are uniform in x,for Q<x^A,for any constant A, s beingfixed.

An intégration by parts applied to (2.12) yields the relation

rm Jm~Th (Am X) exp (2nixX)9 (2.19)

where Jm is defined as in (2.13). Therefore, by (2.14'),

rm Rm9 if Xm>N>c'>0, (2.20)

and, by (2.19) and (2.14), we hâve

Cl(2a/) R/(AX)r(), if X1<Xm<N. (2.21)
x Am

Combining (2.20) and (2.21) we get

m=l
(2.22)
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It is known that I0(t) O(t1/% as f->oo [2, p. 96], so that

(2.23)

because of (2.4).
In order to estimate the sum £w i #OT 2?m, we split it up into three parts. If 0 < s < 1,

we write

tamRm= S

If we use (2.15) in £„ we get

+ +

(2-24)

/ A1/4

< c < c (2.25)

(N.B. Hère, as elsewhere, c is a constant with possibly différent values at différent
occurrences).

If we use (2.18) in £3, we get

(2.26)< c ¦ (Xx2)-1/4+3/4x"1/2 < c • X112.

Finally we consider £2. Hère we hâve, by (2.17),

amRm\£c>-

O(X1/2) 4- O(Xi/3x-1/3) O(Xl/2)9 (2.27)

if Nx>c>0, and 0<x<L If Nx is so small that X yjNx<%, then the sum on the

right-hand side reduces to a single terni am, and the estimate is

since iV> l/A>0. On the other hand, we have, because of (2.16),
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Now

I dA(t)

x<Xm<(l+e)N N + y/Nx

E{t\ where E(t) O(t1/3). Thus

amRm\ 0(X1/2\ogX),
X £ km < 1 + £) N

and, by(2.4), A(i)

and similarly

Hence (2.27), (2.28), and (2.29) together give

On combining (2.24), (2.25), (2.26), and (2.30), we get

Z^m^ O(Z1/2logZ).

If we use this, together with (2.23), in (2.22), then we get

y a r =Cl y c

m 1 X Xm<N

XFurther

I exp (2 n i x l) dt

(2.28)

(2.29)

(2.30)

(2.31)

(2.32)

(2.33)

since, by hypothesis, A/^=Ar

Formula (2.11), combined with (2.32) and (2.33), gives (1.2) in the case of a real
quadratic field, provided that N> 1/A.

If W< 1/A, then (2.20) gives

in which case we can use (2.18), so that

a RUmKl
since Xx2 N<c. Hence, by formula (2.11),

c
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uniformly for 0<x<X, which proves (1.3) in the case of a real quadratic field, and

thereby complètes theproof of Theorem 1 in that case. We note thatthe term O(X1/3)
cornes from (2.4).

§ 3. The proof of Theorem 1 for an imaginary quadratic field K=Q{J— d), d>0,
is similar. Hère we hâve a functional équation with a simple gamma factor, namely

which takes the form
F (s) cp(s) r(i — s) q>(l — s), (3.1)

where «
V1 am 2mn

m=l

We define A\(x) as before. As in Lemma 1, équation (3.1) again implies the existence

of an identity with the Bessel function Jv(x) - not to be confused with the intégral
Jm in Lemma 2 - in place of the spécial function Fv(x):

£ aj Jl+Q{An{xXmy2}, (3.2)
m=l \ÀJ

where Àm m/À, £>2/? —f, /?=1+£>1. The séries converges absolutely for
Further, it converges boundedly in any interval of the real axis when £ 0, and uni-
formly whenever the function on the left-hand side is continuous [1, Th. III]. The

asymptotic behaviour of Jv(x) is similar to that of Yv(x): Jv(x) 0(x~1/2), as x-*oo.
The analogue of (2.4) is true; there is an additive constant which is absorbed by the

term O(xi/3). The proof of Lemma 2 goes through with thèse changes; in fact, it
becomes simpler than Wilton's original proof. In (2.14) we now hâve ct i, instead of
ct 1. Estimate (2.15) holds without the error-term O(x/À>ll). The rest of the proof of
(1.2) proceeds on the same Unes as before, and we omit détails.

If we take x= 1/kÀ, where k is an integer, in (1.2), we get

\ awexp(27um//c/l2) ™ \ amexp(-2nimk) + O(X1/2\ogX)

m<Xx2

^ V
am + O{Xll2\ogX)

m<X m<Xx2

m<Xx2

which is the Corollary to Theorem 1.
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§ 4. The estimate in (1.1) for irrational x was based on purely arithmetical
considérations [4], though the proof that Citii + it) vanishes for an infinity of values of /
made use of the functional équation satisfied by ÇK(s). The proof of the reciprocity
formula, and of the estimate in (1.4) for rational x, was based on the functional équation

for (k(s'), and the conséquent existence of an arithmetical identity like (2.8). This
fact enables us to extend the formula to zeta-functions with Grôssencharacters

C(s, A). The functional équation in that case, the analogue of identity (2.8), namely

00

- Pe(x) V ~
Là Vm

m=l

and of the estimate (2.4), were considered by us in [2, p. 128]. The properties of
Ie(x) are known [3, p. 33], and enable us to uphold the validity of Wilton's lemma.

Thus Theorem 1 is valid for zeta-functions with Grôssencharacters associated with
quadratic fields.

§ 5. We shall now make use of the relatively difficult case q 0 of Lemma 1 to
obtain an exact summation formula instead of the asymptotic formula in (2.11).

Let an, Àn, and A\{x) be defined as hitherto, and/a function which is twice con-
tinuously differentiable in [0, oo). By Abel's lemma on partial summation, we hâve, if
0<a<Ax,

X

£ am f(Âm) A (x)f(x) - f A (t)f (0 dt. (5.1)
X»x<X J

a

If we first confine ourselves to the case of a real quadratic field, then because of the

case g 0 of Lemma 1, we hâve

[A{t)f'{t)dt=[ctf'{t)dt+ £ ^^I0(Xmt)f'(t)dt. (5.2)

m= 1 a

The first term on the right-hand side is continuous in 0<a< 1 ; so is the second, for
by partial intégration, we hâve

m=l

(5-3)
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Lemma 1, with g= 1, shows that this is also continuous in 0<a< 1. Hence from (5.1)
weobtain x

A(x)f{x)-JA(t)f'(t)dt
0

X 00

Cxf(x)-^Ctf'(t)dt + ^y

] (5.4)

0

An intégration by parts gives
X X

c (f(t)dt + £ am \l(kmt)f{t)dt, (5.5)
J m=l J

where

7[4W] - 2n( Yo(4njy) -dy \ k

and c=Ky/d, where k is the residue of ÇK(s, (£) at s= 1.

In the case of an imaginary quadratic field K=Q(J — d), d>0, the term Q0(x)
in (3.2) gives

eo(*) CK(o,e) + - -^ + x,
w w w

where w is the number of roots of unity in K9 so that (5.5) becomes

X X

I amf(Am)+f(^ c' (f(t)dt+ t am \l{kmi)f{t)dt, (5.6)

0 0

where c' (k *Jd/2w)9 where k is the residue of ÇK(s, (E) at j= 1.

If we make the convention that Ao=0, and ao=0, or l/w, according as the field K
is real or imaginary, we obtain the following

Theorem 2. Iffhas a continuous second derivative in [0, oo), thenfor any X>0,
we hâve x x

I* c[f{t)dt+ | a. f J (Am 0/(0 df, (5.7)
J m=l J

ie star * indicates the convention regarding a0, and c kX, or KÀ/ln, according

as K is real or imaginary, k being the residue of(,K{s, (£) at s= 1, and À \d\1/2.
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We can take/(f exp(2 n ixt),x>09 and obtain an exact formula in place of (2.11).
The case d= + l goes back to Voronoi; the case d=~4 is Satz 559 in [5]. The
condition that/be twice continuously differentiable in [0, oo) is not fulfilled if we take

f(t) exp(2nitl/2 x). Toaccommodatethis case, whichisof interestin severalapplications,

we shall formulate more gênerai assumptions on/near the origin.
We remark, first of ail, that if0<a<b, and/has a continuous derivative in (0, oo),

then
b b

I aj{lm) c f f(t) dt+fjam\l (Am i)/(0 dt. (5.8)
a<Am<b J m=l J

a a

In order to be able to replace a by 0, we now assume that/ is twice continuously
differentiable in (0, oo), and satisfies, near the origin, the condition

1

J\'|/"(0|dt<oo, (5.9)

0

for some p < 1. We then hâve
î i

t"\f'(t) \-c3< fj \f"(u)du < JV|/>) | du

<: u"\f"(«)| du < oo,

where c3 is a constant, so that tf'(t)->0, as /-+(), and Jo* l/'(0l'^ <oo. We again have

(5.1) and (5.2). The first term on the right-hand side of (5.2) tends to Jj ctf'(t) dt,

as oc-»O, since
X

j\ctf'(t)\dt <co,

because of assumption (5.9), while the second term, by partial intégration, leads to
(5.3), namely

X

£ ^ Î- £ ^y2 {li(^t)r(t)dt. (5.10)

Because of identity (2.9), we have

(5.11)lm=l
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as t-+0. Hence, if we let a->0, the first term in (5.10) gives just
00

m=l

because of assumption (5.9). To consider the second term in (5.10), we take the séries

i
V am Ç

and define

|/iO,01
em= sup

0<f<l t

where/?<!, given as in (5.9). If Àmt<\, then, since Il(t) O(t3/2), as f-*0, we hâve

while, if kmt>\, then, since Il(t) O(t3/4), as /->oo, we hâve

rp\h (A. 01

since 0 < t < 1. Hence

(5.13)

where # max(f,/?)< 1. Thus, by assumption (5.9), we hâve

oo 1 oo

»2 < °° '

m=1 0 m=1

Hence the séries

m=l a

is uniformly convergent in 0<a< 1, and we hâve

m=1 a m= 1 0

Thus in (5.10), and so also in (5.2), we can pass to the limit as oc->0. The rest of the

argument is the same as in the case where / has a continuous second derivative in
[0, oo). Thus we obtain
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Theorem 3. Iff has a continuons second derivative in (0, oo), and satisfies the
condition

î

jt»\f"(t) dt< 00,

for some p< 1, then formula (5.7) is valid.

§ 6. Professor Siegel's treatment of the Corollary to Theorem 1, referred to in
§ 1, runs as follows.

"I start from the Gaussian sum

v- / 2 x [kdJd,
G 2_< exP\2ni{ap -f b pq + cq)ldk) =<

p, q (mod dk) [JL K (t yj (t 9

where b2 — 4ac= +d>0 in the first case, and b2 — 4 a c — d< 0, a > 0, in the second

case. In the second case the expression

S Y, exp2 7r/(fl p2 + b pq + cq2)jdk

has to be evaluated. The area of the ellipse ap2 +bpq + cq2<X is 2 nX/^Jd, and
therefore the number of lattice points with any given residue classes of p and q
modulo dk is (dk)~2 2 nXjjd+O(Xil2). Hence

s x + o(x112).
kd

In the first case the ellipse is replaced by a sector of a hyperbola. It is clear how to
improve the error-term O(Xl/2). The same idea goes through if the ratio l/dk is

replaced by any rational number. The resuit is a little more gênerai than in your text,
since Jneed not be the discriminant of a quadratic number field; even a square number
is allowed."
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