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Remarks on the Koebe Kreisnormierungsproblem?)

by ROBERT J. SIBNER, PARIS

Two multiply connected domains D and D’ are said to be conformally equivalent if
there exists a schlicht map of D onto D’. KoEBE has conjectured [5] that every multiply
connected domain is conformally equivalent to a circle domain (a domain bounded by
circles and points), and showed that this was true for domains of finite connectivity
[6]. Results for infinitely connected domains have been obtained by KOEBE [7],
DENNEBERG [3], GROTZSCH [4], SARIO [8] and for a large class of domains, including
those considered by DENNEBERG and GROTZSCH, by STREBEL [10, 11].

We will show that the Koebe conjecture may be reduced to the following deforma-
tion question: Can every plane domain be deformed quasiconformally onto a circle
domain?

Using this result we obtain, in § 3, two theorems which may be used to construct
many new examples of domains for which the Koebe conjecture is true. In § 4 we
show how a slight modification of the method used in § 1 may be used to demonstrate
the conformal equivalence of the domains considered by DENNEBERG and GROTZSCH
and some of those considered by STREBEL.

§ 1. Main Theorem

1.1. We recall [1] that if u(z) is measurable and ess. sup |u(z)| <k <1 in a domain
4, then a homeomorphic solution of the Beltrami equation f,=pu(z) f, (generalized
derivatives are understood) is said to be quasiconformal or u-conformal in D. If f*
and g* are two solutions, then f*.(g") " is conformal. If p is given in the entire plane,
then the Beltrami equation admits a solution w* which is unique up to a Mobius
transformation. For completeness we include the proof of the following lemma which
is contained in [9]:

LEMMA 1. Let C be the circle defined by |z—a|=g. Suppose that u(z), defined in the
entire plane, is compatible with reflection in the circle C, p(R(2))=(R,/R;) u(z) where
R(z)=a+92/(—z_——-;). Then any u-conformal map of the plane maps C into a circle.

Proof. Denote by u(z) a u-conformal map of the plane satisfying u(a)=0 and

u(c0)=o00. Then v(z)=1/u(R(z)) satisfies the same Beltrami equation and the same
conditions at a and oo. It follows that u=Av for some constant A. Then for points {
on C, [u({)|* =4 so that 4 is real and positive and # maps C into a circle. The same is
then true for any p-conformal map of the plane.

1) Prepared under the auspices of National Science Foundation Grant GP-4079, and a Fullbright
Research Grant at the University of Paris.
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1.2. Suppose now that D is quasiconformally equivalent to a circle domain K, so

that there exists a quasiconformal map f* of K, onto D. Then the function u(z)=
2IfE is defined in K. We extend the definition of u to all points of the plane which can
be obtained from points of K, by finite reflections in the circular boundary compo-
nents {C;} of K, (of which there are at most a countable number).

More precisely, we define u in the reflection of K, in C; by requiring that it be
compatible with reflection, R,(z), in C,. The function u, now defined in the domain
K, =K, U R,(K,), can be defined in the reflection of K, in C, by requiring that it be
compatible with reflection in C,. Next we extend the definition of u by consecutive
reflections in C;, C,, and C;. Continuing the process (at the n'" stage we reflect con-
secutively in Cy, ..., C,,) we obtain a set Ky on which the function p(z) is compatible
with reflection in each circle C;.

Since the complement of K; is closed, it is measurable.

Let u=0 on this set. Then u satisfies the conditions of the lemma for each boun-
dary component C;. Letting w* denote a u-conformal map of the entire plane, we
observe that the map g=f*-(w"*)"!is a conformal map of the circle domain K=w"(Ky)
onto D.

We summarize these remarks in

THEOREM 1. Let D be a planar domain. Then D is conformally equivalent to a circle
domain if and only if D is quasiconformally equivalent to a circle domain.

§ 2. Remarks

2.1. Boundary correspondence. Let g(z) be the conformal map obtained in § 1 of
the circle domain K onto D. The point correspondence, induced by g, of correspond-
ing boundary components is clearly one-to-one in the case that the boundary com-
ponent of D is an isolated Jordan curve. In general we make the following

Remark. Suppose that the quasiconformal map f* of § 1 induces a one-to-one
point correspondence between the boundary component k, of 0K, (the boundary Kj)
and the boundary component d of dD. Since w* is a homeomorphic self map of the plane,
the conformal map g=f*o(w*)"! of K=w*(K,) onto D induces a one-to-one point
correspondence between the boundary component k=w*(k,) and d.

2.2. Uniqueness. We say that a map f is admissible if it maps some circle domain
quasiconformally onto D.

Two conformal admissible maps are usually thought of as ““distinct” if they do
not differ by a Mobius transformation. In general, one is interested in the relation
between the number of distinct conformal equivalence classes and (geometric) char-
acteristics of the domain D. (For example, it is well known that if D is of finite con-
nectivity, then the number of distinct conformal admissible maps is one.)
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It might appear, at first, that by including quasiconformal maps in our class of
admissible maps, we have lost sight of this problem. The following observations are
made in an attempt to clarify this point.

Two admissible maps f; and f, are said to be equivalent if they differ by a quasi-
conformal homeomorphism w of the entire plane (i.e., f; =f, ow or, more familiarly,
£ Y=w(fY).If f= f*is admissible, then, by the procedure of § 1, we are led to a con-
formal admissible map g=f*.(w")~'. We say that f/* induces g. Clearly f* and g are
equivalent. Hence

Remark. Each equivalence class contains a conformal admissible map.

We may say more if we assume that D has countably many boundary components.
We recall [10] that under this assumption a schlicht map of one circle domain onto
another is actually a Mobius transformation if the induced point correspondence of
corresponding boundary components is one-to-one. We observe, however, that if two
conformal admissible maps g, and g, are equivalent, then g; %og,, which is a conformal
map of one circle domain onto another, is the restriction to the first domain of a
(quasiconformal) homeomorphic self map of the plane, and hence induces a one-to-
one point correspondence of the boundary components. Then g, 'og, is a Mbius
transformation and we may make the following

Remark. If D has countably many boundary components and g; and g, are con-
formal admissible maps, then g, is equivalent to g, if and only if g, =g,.4 where 4
is a Mobius transformation.

We may restate the last two remarks (under the assumption that D has countably
many boundary components) in the following way: Each equivalence class contains a
conformal admissible map which is unique up to a Mobius transformation.

Thus the number of distinct conformal admissible maps is equal to the number of
equivalence classes of admissible maps.

§ 3. Examples

3.1. We denote by R(a, f) the ring domain bounded by the continua « and f# and
by A(ry, r,) the ring domain R(c,, ¢,) where c; is the circle |z|=r;; 0<r,<r;<oo.

LeMMA 2. Let s;(z) (j=1, 2) be a conformal map defined in a neighborhood
of ¢; and mapping c; onto itself. Then there exists a quasiconformal map f(z) of A(ry, r»)
onto itself such that, for {ec;, f({)=s;({).

Proof. Let 9(0)=(ry — 0)/(ry — r2). Thenf (2) = 0() s2(r2¢") + (1 ~ 9(@)) 51 (ree)is
such a map since the hypothesis on s;(z) implies the existence of constants M; such
that 0<M [ ' <(d/df) s;(r,e") <M.

For any bounded Jordan curve y we denote by inty (exty) the bounded (unboun-
ded) region determined by y.
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LeEMMA 3. Let y, and y, be non-degenerate continua contained in inty where vy is an
analytic Jordan curve. Then there exists a quasiconformal map f(z) of R(y, y,) onto
R(y, y2) such that for {ey, f({)={.

Proof. Let g(z) and h(z) be conformal maps of R(y, y,)and R(y, y,) onto A(1, r;)
and A(1, r,), respectively. Since y is an analytic Jordan curve, g and & may be extended
to be conformal in a neighborhood of 7, so that A.g~! is conformal in a neighborhood
of the unit circle and maps it onto itself. Then f;,(0e®)=g(hog~'(e'?))is a quasiconfor-
mal self map of A(1, ry) with f,({)=hog™({) for |{|=1. Following f, by a linear
“stretching” in g results in a quasiconformal map f of A(1, r,) onto A(1, r,) which also
agrees with hog ™" on |{|=1. Then h™'ofog is a quasiconformal map of R(y, y,) onto
R(y, v,) and is the identity on 7.

PROPOSITION 1. Let 4 be a simply connected domain whose closure A is contained
in the domain D. If D is conformally equivalent to a circle domain, then the same is true
of D—A4.

Proof. Let f beaconformal map of D onto a circle domain K. Then f@c K and we

may assume that f_(Z) is bounded. Let y be a bounded analytic Jordan curve separat-
ing df(4) from 0K. If ¢ is a circle contained in inty, then, by Lemma 3, there exists a
quasiconformal map g of R(y, ¢) onto R(y, f(4)) such that g({)=¢ for {ey. Then
the function

4 for (eK —inty

h(¢ ={
©) g(() for (eR(y,c)

is a quasiconformal map of the circle domain K —intc onto K— f @ But then D—4

is quasiconformally and hence, by Theorem 1, conformally equivalent to a circle

domain.

THEOREM 2. Suppose that the domains D,, ..., D, have disjoint complements D’; and
each is conformally equivalent to a circle domain. Then the intersection N D; is also
conformally equivalent to a circle domain.

Proof. It suffices to obtain the result for two domains D; and D, which contain
the point at infinity. We may draw two (disjoint) analytic Jordan curves a; and «,
such that D<inta; (Fig. 1). The ring domain R(a4, «,) is conformally equivalent to
an annulus K,=A(r,,r,)=R(cy, c;). By Proposition 1 there exist conformal maps f; of
Q;=D;ninta; onto circle domains K; and K,, respectively, where K;cextc,
K, cintc,, and f;(a;)=c;. Using Lemma 2, it is easily seen that there exists a quasi-
conformal map f, of Q,=R(a,, ®,) onto K, which agrees with f; on a;. The map g
defined by setting it equal to f; on Q;(j=0, 1, 2) is a quasiconformal map of D; n D,
onto the circle domain U K; and hence (Theorem 1) D; nD, is conformally equivalent
to a circle domain.
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Figure 1

3.2. Suppose that a domain D is symmetric with respect to reflection in the real
axis. KOEBE has shown [7] that if the real axis intersects each boundary component of
D (or, equivalently, divides D into two simply connected components), then D is con-
formally equivalent to a circle domain. (It is actually necessary to prove this only in
the case that D is the entire plane with slits along the real axis.)

Using Theorem 1 we obtain, easily, the following extension of this result.

THEOREM 3. (Quasisymmetry). Let q(z) be a quasiconformal reflection of the entire
plane in the Jordan curve L. Suppose that L divides a domain D into two simply con-
nected components D, and D, such that q(D,)=D,. Then D is conformally equivalent to
a circle domain.

Proof. Let f be a conformal map of D, onto the upper half plane. Then foq(z) is a
quasiconformal map of D, onto the lower half plane. Moreover, for (e Ln D, we

have f-q({)=/({). Hence there exists a quasiconformal map of D onto the plane with
slits along the real axis. Following this map by the conformal map of the slit plane
onto a circle domain (see the above remarks) results in a quasiconformal map of D
onto a circle domain and the conclusion follows.

§ 4. Domains With Weak Limit Boundary Components

Let 4 be a bounded open set containing the closed point set k. It is well known
that if the extremal length of the family {y} of rectifiable curves contained in 4 and
surrounding x is zero, then « is necessarily a point. Moreover, since extremal length
is a conformal invariant, the point set corresponding to x under any conformal map
of A is, in this case, again a point. On the other hand, if a (finite) point is a limit boun-
dary component of an infinitely connected domain D then the extremal length of the
family of surrounding curves (in a bounded neighborhood of the point) need not
necessarily be zero. If it is, for some such neighborhood, the point is said to be a weak
boundary component. This definition is modified in the obvious way for the point at
infinity.
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4.1. DENNEBERG [3] has shown that domains whose boundary components satisfy
certain geometric condition are conformally equivalent to circle domains. These con-
ditions, in effect, ensure that the point at infinity is the only limit boundary compo-
nent and that it is weak, in the sense above. GROTZSCH [4] has considered domains
with a finite number of weak limit boundary components and STREBEL [10] the case of
countably many (as well having allowed points on non point Jordan boundary com-
ponents to be limit points of other boundary components, under assumptions anal-
ogous to that of weakness [10, 11]).

4.2. We now show how the first result of Strebel stated above can easily be obtained
by the methods of § 1. Some of the other, more general results can be obtained in the
same way but, for clarity, we restrict ourselves to the simpler situation of only point
limit boundary components.

THEOREM 4. (STREBEL). Let D be a domain with point limit boundary components &£
and suppose that each such boundary component is weak. Then D is conformally equi-
valent to a circle domain.

Proof. The collection of isolated boundary components is countable. By Lemma 3
we may replace each such (non point) boundary component by a circle, thus obtain-
ing a circle domain K, and a homeomorphism f of K, onto D which is quasiconformal
in the complement (with respect to K,) of any neighborhood of #. For {e.Z let
4;(¢) be a neighborhood of { of diameter less than ¢; and N;({)=K,n4;({). Set
N;=UN,({) over all (eZ. Let u(z)=f;f, for zeK, and define yu;(z)=pu(z) for
zeKo—N; and zero for zeN;. Then |u;(z)|<k;<1 in K, and as in § 1, we obtain a
quasiconformal homeomorphism w;=w"/ of the plane onto itself which is symmetric
with respect to each (circular) boundary component of K,— N;. Letting &;—0 and
following an argument of BERs ([2], Theorem 5) one may show that a subsequence
(which we again denote by w;) converges pointwise to a u-conformal homeomorphism
w of K.

We consider the boundary correspondence induced by w and claim that K=w(Kj)
is a circle domain. We first observe that if we denote by K, the domain obtained from
K, by adjoining its reflections in the circular boundary components, together with the
circles themselves, then (since for j sufficiently large w; is symmetric with respect to
each circular boundary component) the convergence w;—w may be extended to K,
and hence, in particular to K,— 2. Suppose that y is a circular boundary component
of K,. For j sufficiently large, w;(y) is a circle and since w;(z)—w(z) for zey, y corres-
ponds, under w, to a circle. On the other hand since the point limit boundary com-
ponents are weak, they correspond to points under the conformal map wof and hence
under the map w.

Hence K is a circle domain and fow™! is a conformal map of K onto D.
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