On Characteristic Classes for Spherical Fibre Spaces.

Autor(en): Milnor, J.
Objekttyp: Article
Zeitschrift: Commentarii Mathematici Helvetici

Band (Jahr): 43 (1968)

PDF erstellt am:
25.04.2024

Persistenter Link: https://doi.org/10.5169/seals-32907

Nutzungsbedingungen

Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern.
Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den korrekten Herkunftsbezeichnungen weitergegeben werden.
Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

Haftungsausschluss

Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot zugänglich sind.

On Characteristic Classes for Spherical Fibre Spaces

by J. Milnor, Princeton, New Jersey

Let $G(n)$ denote the associative H-space consisting of all homotopy equivalences from the sphere S^{n-1} to itself. ${ }^{1}$) According to Stasheff [21] this H-space $G(n)$ has a "classifying space" $B_{G(n)}$ which serves as universal base space for fibre spaces having a homotopy ($n-1$)-sphere as fibre. (See also Dold [7, § 16].)

The object of this paper is to make a preliminary study of the singular cohomology groups of $B_{G(n)}$; and particularly of the stable groups

$$
H^{k}\left(B_{G(n)} ; Z_{p}\right), \quad k<n,
$$

with $\bmod p$ coefficients, which will be denoted briefly by $H^{k}\left(B_{G} ; Z_{p}\right)$. Following Тном and WU one can use the Steenrod operations P^{i} to define characteristic classes

$$
q_{i} \in H^{2 i(p-1)}\left(B_{G(n)} ; Z_{p}\right)
$$

for any odd prime p. Our main result is the following.
Theorem 4. In dimensions less than $2 p(p-1)-1$ the cohomology ring $H^{*}\left(B_{G} ; Z_{p}\right)$ is isomorphic to the tensor product of a polynomial algebra freely generated by the Wu classes

$$
q_{1}, q_{2}, q_{3}, \ldots
$$

and a Grassmann algebra freely generated by the Bockstein coboundaries

$$
\beta q_{1}, \beta q_{2}, \beta q_{3}, \ldots
$$

of the Wu classes.
Briefly speaking we will say that $H^{*}\left(B_{G} ; Z_{p}\right)$ is free commutative $\left.{ }^{2}\right)$ in this range of dimensions, with the q_{i} and βq_{i} as independent generators.

This is proved (in $\S 3$ and $\S 4$) by a cumbersome argument which depends on inductively building up a complete description of the Postnikov system of B_{G} in dimensions less than $2 p(p-1)-1$.

Gitler and Stasheff [10] and Stasheff [22] have succeeded in computing somewhat further. They show that Theorem 4 breaks down precisely in the dimension $2 p(p-1)-1$. More precisely:

$$
H^{2 p(p-1)-1}\left(B_{G} ; Z_{p}\right) \cong Z_{p},
$$

${ }^{1}$) This notation is non-standard. Compare § 2.
${ }^{2}$) The word commutative means of course that

$$
b a=(-1)^{\operatorname{dim} a \operatorname{dim} b} a b
$$

where the generator is a new kind of characteristic class, which cannot be expressed in terms of the q_{i} and βq_{i}.

Even in dimensions greater than $2 p(p-1)$ it is easy to see that the q_{i} are algebraically independent. However, I do not know whether all of the $\beta q_{i}, 1 \leqq i<\infty$, are independent. This question is discussed in Appendix 3.

Just for completeness let me mention what is known about the cohomology of B_{G} with other coefficients. Browder, Liulevicius and Peterson [4] have shown that the algebra $H^{*}\left(B_{G} ; Z_{2}\right)$ is isomorphic to a tensor product

$$
H^{*}\left(B_{O} ; Z_{2}\right) \otimes A^{*}
$$

where A^{*} is a certain 2 -connected Hopf algebra over the mod 2 Steenrod algebra. Unfortunately very little is known about A^{*}.

With rational coefficients, B_{G} has the cohomology of a point. This follows immediately from the fact that the homotopy groups of B_{G} are all finite. (We will see in § 3 that $\pi_{1} B_{G} \cong \pi_{0} G$ has two elements, and that $\pi_{i} B_{G} \cong \pi_{i-1} G$ is isomorphic to the stable homotopy group $\pi_{n+i-1} S^{n}$ for all $1<i<n$.) However:

Theorem 5. The cohomology algebra

$$
H^{*}\left(B_{G(2 t)} ; Q\right) \cong H^{*}\left(B_{G(2 t+1)} ; Q\right)
$$

is free commutative on one generator p_{t} of dimension $4 t$, providing that $t \geq 1$.
This will be proved in Appendix 1. The notation p_{t} is chosen since this generator corresponds to the t-th Pontryagin class ${ }^{3}$) in $H^{4 t}\left(B_{O(2 t)} ; Q\right)$.

I want to thank Stasheff for his interest and help.

§ 1. The Wu characteristic classes

A Hurewicz fibre space $\pi: E \rightarrow B$ is called $(n-1)$-spherical if each fibre has the homotopy type of an ($n-1$)-sphere.

Let $\bar{B} \supset E$ be the mapping cylinder of π, and let $\bar{\pi}: \bar{B} \rightarrow B$ be the natural projection. If π is orientable (that is if the fibres can be coherently oriented) then Thom showed that the cohomology group $H^{k} B$ is isomorphic to $H^{k+n}(\bar{B}, E)$, using any commutative coefficient ring Λ.

A more precise statement is the following. Note that the cup product

$$
H^{k}(\bar{B} ; \Lambda) \otimes H^{l}(\bar{B}, E ; \Lambda) \rightarrow H^{k+l}(\bar{B}, E ; \Lambda)
$$

makes the graded group $H^{*}(\bar{B}, E ; \Lambda)$ into a module over the graded algebra $H^{*}(\bar{B} ; \Lambda)$.

[^0]Assertion. $H^{*}(\bar{B}, E ; \Lambda)$ is a free module over $H^{*}(\bar{B} ; \Lambda) \cong H^{*}(B ; \Lambda)$ onone generator u of dimension n.

This can be proved, for example, by a spectral sequence argument.
The generator u, also called the fundamental cohomology class of the fibration, is uniquely determined up to multiplication by units in $H^{0}(\bar{B} ; \Lambda)$. Any particular choice of generator u will be called a Λ-orientation ${ }^{4}$) of the fibration.

Given such a generator u the Thom isomorphism

$$
\Phi: H^{k}(B ; \Lambda) \rightarrow H^{k+n}(\bar{B}, E ; \Lambda)
$$

is defined by the formula

$$
\Phi(a)=\left(\bar{\pi}^{*} a\right) \cup u
$$

Fundamental construction. Any cohomology operation θ which operates on $H^{*}(\bar{B}, E ; \Lambda)$ gives rise to a corresponding characteristic class

$$
\Phi^{-1} \theta \Phi(1) \in H^{*}(B ; \Lambda)
$$

If θ is linear (that is if $\left.\theta\left(\lambda a+\lambda^{\prime} a^{\prime}\right)=\lambda \theta(a)+\lambda^{\prime} \theta\left(a^{\prime}\right)\right)$, note that this construction does not depend on the choice of orientation. For $(\lambda \Phi)^{-1} \theta(\lambda \Phi)$ is then equal to $\Phi^{-1} \theta \Phi$.

In particular, starting with the Steenrod operation

$$
P^{i}: H^{n}\left(; Z_{p}\right) \rightarrow H^{n+2 i(p-1)}\left(; Z_{p}\right)
$$

(see [9]) we obtain a corresponding cohomology class

$$
\Phi^{-1} P^{i} \Phi(1)=\Phi^{-1}\left(P^{i} u\right)
$$

in $H^{2 i(p-1)}\left(B ; Z_{p}\right)$; which will be denoted by q_{i} or $q_{i}(\pi)$, and called the i-th Wu characteristic class of the fibration π. Here i can be any positive integer.

Since P^{i} is linear, the Wu class q_{i} does not depend on the choice of orientation.
Similarly the mod 2 Steenrod operation $\operatorname{Sq}^{i} H^{n}\left(; Z_{2}\right) \rightarrow H^{n+i}\left(; Z_{2}\right)$ gives rise to the Stiefel-Whitney class $w_{i}(\pi)=\Phi^{-1} \operatorname{Sq}^{i} \Phi(1)$ in $H^{i}\left(B ; Z_{2}\right)$.

Here is an important example of a non-linear cohomology operation. For any ring Λ the cup product squaring operation

$$
a \mapsto a \cup a=a^{2}
$$

gives rise to a characteristic class

$$
x=\Phi^{-1}\left(u^{2}\right) \in H^{n}(B ; \Lambda)
$$

which is called the Euler class of the fibration. This class x does depend on the particular choice of orientation.

[^1]If n is odd note that $2 x=0$. This follows from the commutativity of the cup product. Note also the identity $\Phi(a x)=\Phi(a) u$. From this we see inductively that

$$
\Phi(1)=u, \quad \Phi(x)=u^{2}, \quad \Phi\left(x^{2}\right)=u^{3}, \ldots
$$

and in general $\Phi\left(x^{i}\right)=u^{i+1}$.
For any cohomology class $a \in H^{*}\left(; Z_{p}\right)$ the Steenrod operations are known to satisfy the following two identities:

$$
\begin{array}{llll}
P^{i} a=0 & \text { if } & i>\frac{1}{2} \operatorname{dim}(a), \\
P^{i} a=a^{p} & \text { if } & i=\frac{1}{2} \operatorname{dim}(a) . \tag{1.2}
\end{array}
$$

Applying these to the fundamental cohomology class u in $H^{n}\left(\bar{B}, E ; Z_{p}\right)$ we obtain corresponding relations for the Wu classes q_{i} of any oriented $(n-1)$-spherical fibration:

$$
\begin{array}{llll}
q_{i}=0 & & \text { if } & i>n / 2, \\
q_{i}=x^{p-1} & & \text { if } & i=n / 2, \tag{1.4}
\end{array}
$$

where x is the $\bmod p$ Euler class.
[Similarly the Cartan formula for $P^{h}(a \cup b)$ gives rise to a formula for the Wu classes of a Whitney join. If π and ϱ are spherical fibre spaces over B then the Whitney join $\pi * \varrho$ is the fibre space over B such that each fibre $(\pi * \varrho)^{-1} b$ is equal to the join of $\pi^{-1} b$ and $\varrho^{-1} b$. (See Hall [12] or Spivak [20].) The required formula is now

$$
q_{h}(\pi * \varrho)=\sum_{i+j=h} q_{i}(\pi) \cup q_{j}(\varrho) ;
$$

where $q_{0}=1$ by definition.]
The formulas (1.3) and (1.4) are polynomial relations which must be satisfied by the $\bmod p$ characteristic classes $q_{1}, q_{2}, q_{3}, \ldots$ and x of every $(n-1)$-spherical fibration. For n odd one has the additional relation $x=0$. We will next give an example to show that these are the only such universal polynomial relations.

Lemma 1. (Wu). There exists a space B and a fibre bundle with fibre $S^{2 m-1}$ over B so that the characteristic classes q_{1}, \ldots, q_{m-1} and x in $H^{*}\left(B ; Z_{p}\right)$ do not satisfy any polynomial relations.

Proof. First consider the case $m=1$. Consider the universal complex line bundle γ over the infinite complex projective space $P(C)$. Then $H^{*}\left(P(C) ; Z_{p}\right)$ is known to be a polynomial algebra generated by the Chern class

$$
c_{1}=c_{1}(\gamma) \in H^{2}\left(P(C) ; Z_{p}\right) .
$$

But c_{1} is equal to the Euler class x of the associated 1 -sphere bundle $\hat{\gamma}$. Hence

$$
q_{1}(\hat{\gamma})=x(\hat{\gamma})^{p-1}=c_{1}^{p-1} .
$$

Now consider the cartesian product ξ of m copies of γ. This is a complex vector
bundle over the product $P(C) \times \cdots \times P(C)$. The "total Wu class"

$$
1+q_{1}+q_{2}+\cdots+q_{m} \in \oplus_{j} H^{j}\left(P(C) \times \cdots \times P(C) ; Z_{p}\right)
$$

of the associated $(2 m-1)$-sphere bundle $\hat{\xi}$ is equal to the cross product

$$
\begin{aligned}
& \left(1+q_{1}(\hat{\gamma})\right) \times \cdots \times\left(1+q_{1}(\hat{\gamma})\right) \\
= & \left(1+c_{1}^{p-1}\right) \times \cdots \times\left(1+c_{1}^{p-1}\right) .
\end{aligned}
$$

In other words $q_{i}(\hat{\xi})$ is equal to the i-th elementary symmetric function of the m algebraically independent elements

$$
1 \times \cdots \times c_{1}^{p-1} \times \cdots \times 1 \in H^{2(p-1)}\left(P(C) \times \cdots \times P(C): Z_{p}\right) .
$$

This proves that the Wu classes $q_{1}(\hat{\xi}), \ldots, q_{m}(\hat{\xi})$ are algebraically independent. Since $q_{m}(\hat{\xi})$ is equal to $x(\hat{\xi})^{p-1}$, it follows that the classes $q_{1}(\hat{\xi}), \ldots, q_{m-1}(\hat{\xi})$ and $x(\hat{\xi})$ are also algebraically independent; which completes the proof.

Now consider an arbitrary spherical fibre space, with base space B and with Wu classes q_{i}. We will study the action of the Steenrod operations P^{h} on the Wu classes, and also on the Bockstein coboundaries

$$
\beta q_{i} \in H^{2 i(p-1)+1}\left(B ; Z_{p}\right)
$$

of the Wu classes.
[We will see later that βq_{i} is non-zero in general. Of course if we happen to be working with a sphere bundle (having the orthogonal group as structural group), rather than a general fibration, then q_{i} comes from an integral cohomology class, and hence βq_{i} must be zero.]

Theorem 1. The cohomology class $P^{h} q_{i}$ can be expressed as a polynomial in the $W u$ classes $q_{1}, q_{2}, \ldots, q_{h+i}$; the coefficient of q_{h+i} in this polynomial being equal to the binomial coefficient

$$
(-1)^{h}\binom{(p-1) i-1}{h} .
$$

Similarly each $P^{h}\left(\beta q_{i}\right)$ can be expressed as a linear combination

$$
f_{1} \beta q_{1}+f_{2} \beta q_{2}+\cdots+f_{h+i} \beta q_{h+i}
$$

of the classes $\beta q_{1}, \ldots, \beta q_{h+i}$; the coefficients in this case being polynomials

$$
f_{t}=f_{t}^{h, i}\left(q_{1}, q_{2}, \ldots, q_{h+i-t}\right)
$$

in the Wu classes.
Proof. Let θ be any element of degree k in the Steenrod algebra $A(p)$. In other words let

$$
\theta: H^{i}\left(; Z_{p}\right) \rightarrow H^{i+k}\left(; Z_{p}\right)
$$

be a universally defined $\bmod p$ cohomology operation. It is convenient to define a homomorphism

$$
[\theta]: H^{i}\left(B ; Z_{p}\right) \rightarrow H^{i+k}\left(B ; Z_{p}\right)
$$

by the formula

$$
[\theta]=\Phi^{-1} \theta \Phi,
$$

where Φ is the Thom isomorphism. (This homomorphism [θ] is of course not a cohomology operation in the usual sense.) Note the four identities:

$$
\begin{align*}
& {\left[\theta \theta^{\prime}\right]=[\theta]\left[\theta^{\prime}\right],} \tag{1.5}\\
& {\left[P^{h}\right] 1=q_{h}, \quad \text { and more generally }} \tag{1.6}\\
& {\left[P^{h}\right] \alpha=P^{h} \alpha+q_{1} P^{h-1} \alpha+q_{2} P^{h-2} \alpha+\cdots+q_{h-1} P^{1} \alpha+q_{h} \alpha,} \tag{1.7}\\
& {[\beta]=\beta} \tag{1.8}
\end{align*}
$$

where $\beta \in A(p)^{1}$ is the Bockstein operation.
Proof. The first two are clear from the definitions, and the last is proved as follows:

$$
\begin{aligned}
& {[\beta] \alpha=\Phi^{-1} \beta \Phi \bar{\alpha}=\phi^{-1} \beta(\bar{\alpha} u) } \\
= & \Phi^{-1}((\beta \bar{\alpha}) u \pm \bar{\alpha}(\beta u))=\beta \alpha,
\end{aligned}
$$

since $\beta u=0$. Formula (1.7) is proved similarly, using the Cartan formula for $P^{h}(\bar{\alpha} u)$.
We will show by induction on $h+i$ that $P^{h} q_{i}$ can be expressed as a polynomial in the Wu classes. We may assume that $h<p i$ since otherwise $P^{h} q_{i}$ would be zero by (1.1).

First consider the cohomology class

$$
\left[P^{h}\right] q_{i}=\left[P^{h}\right]\left[P^{i}\right] 1=\left[P^{h} P^{i}\right] 1 .
$$

According to the Adem relations [9, p. 77] the composition $P^{h} P^{i}$ is equal to

$$
(-1)^{h}\binom{(p-1) i-1}{h} P^{h+i}
$$

plus a sum of terms of the form $\lambda P^{r} P^{s}$, with

$$
r>p s>0, \quad r+s=h+i
$$

and with $\lambda \in Z_{p}$. Now $\left[P^{h+i}\right] 1$ is equal to $q_{h+i} ;$ and each

$$
\left[P^{r} P^{s}\right] 1=\left[P^{r}\right] q_{s}
$$

is equal to

$$
P^{r} q_{s}+q_{1} P^{r-1} q_{s}+\cdots+q_{r} q_{s}
$$

by (1.7). But the inequality $r>p s$ implies that $P^{r} q_{s}=0$ by (1.1). The remaining terms $q_{t} P^{r-t} q_{s}$ can all be expressed as polynomials in the q_{j}, using the induction hypothesis. Therefore $\left[P^{h}\right] q_{i}$ is equal to a polynomial in the q_{j}.

But, using (1.7) together with the induction hypothesis again, this implies that $P^{h} q_{i}$ can also be expressed as such a polynomial.

The proof for $P^{h} \beta q_{i}$ is similar; and is again by induction on $h+i$. Again we may assume that $h<p i$. The Adem relations state that $P^{h} \beta P^{i}$ is equal to

$$
\lambda_{1} \beta P^{h+i}+\lambda_{2} P^{h+i} \beta \quad \text { (with } \lambda_{1}, \lambda_{2} \in Z_{p} \text {) }
$$

plus a linear combination of terms

$$
\beta P^{r} P^{s} \quad \text { and } \quad P^{r} \beta P^{s}
$$

with

$$
r>p s>0, \quad r+s=h+i
$$

Hence the class

$$
\left[P^{h}\right] \beta q_{i}=\left[P^{h} \beta P^{i}\right] 1
$$

is equal to

$$
\left[\lambda_{1} \beta P^{h+i}+\lambda_{2} P^{h+i} \beta\right] 1=\lambda_{1} \beta q_{h+i}
$$

plus a linear combination of terms of the form

$$
\left[\beta P^{r} P^{s}\right] 1=\beta\left[P^{r}\right] q_{s}
$$

and

$$
\left[P^{r} \beta P^{s}\right] 1=\left[P^{r}\right] \beta q_{s}
$$

But $\left[P^{r}\right] q_{s}$ can be expressed as a polynomial $f\left(q_{1}, \ldots, q_{r+s}\right)$ by the portion of Theorem 1 which has already been established; hence

$$
\beta\left[P^{r}\right] q_{s}=\beta f\left(q_{1}, \ldots, q_{r+s}\right)=\sum\left(\partial f / \partial q_{j}\right) \beta q_{j}
$$

can be expressed in the required form. Similarly

$$
\left[P^{r}\right] \beta q_{s}=P^{r} \beta q_{s}+q_{1} P^{r-1} \beta q_{s}+\cdots+q_{r} \beta q_{s}
$$

where the first term is zero since $r>p s$, and the remaining terms can be expressed in the required form by the induction hypothesis. This proves that [$\left.P^{h}\right] \beta q_{i}$ can be expressed as a linear combination $\sum f_{t} \beta q_{t}$ with polynomial coefficients. Now using (1.7) and the induction hypothesis it follows that $P^{h} \beta q_{i}$ can also be expressed in this form. This completes the proof of Theorem 1.

The above proof is fairly effective for actual computation of the polynomials. As an example suppose that $h=1$. The Adem relations then take the simple form

$$
\begin{aligned}
P^{1} P^{i} & =(i+1) P^{i+1} \\
P^{1} \beta P^{i} & =i \beta P^{i+1}+P^{i+1} \beta
\end{aligned}
$$

and it follows that:

$$
\begin{align*}
P^{1} q_{i} & =(i+1) q_{i+1}-q_{1} q_{i} \tag{1.9}\\
P^{1} \beta q_{i} & =i \beta q_{i+1}-q_{1} \beta q_{i} \tag{1.10}
\end{align*}
$$

(For example the following computation proves (1.10):

$$
\begin{aligned}
& P^{1} \beta q_{i}+q_{1} \beta q_{i}=\left[P^{1}\right] \beta q_{i}=\left[P^{1} \beta P^{i}\right] 1 \\
= & {\left.\left[i \beta P^{i+1}+P^{i+1} \beta\right] 1=i \beta q_{i+1}+0 .\right) }
\end{aligned}
$$

Combining (1.9) and (1.10) for the special case $i=1$, we obtain a relation

$$
\begin{equation*}
\beta P^{1} q_{1}=2 P^{1} \beta q_{1} \tag{1.11}
\end{equation*}
$$

which will be needed in § 3 .
Another fact which will be needed later is the following.

$$
\begin{equation*}
\text { If } h<p \text { then } P^{h} q_{1} \text { is equal to }(h+1) q_{h+1} \text { plus a polynomial in } q_{1}, \ldots, q_{h} . \tag{1.12}
\end{equation*}
$$

This can be proved either by manipulating the binomial coefficient in Theorem 1, or by induction, starting with (1.9).

Remark. There is another, quite different method for computing the polynomial for $P^{h} q_{i}$. One can start with the particular bundle considered in Lemma 1 and use the theory of symmetric functions; following Borel and Serre [1]. I do not know whether a similar procedure will work for $P^{h} \beta q_{i}$. (Compare Appendix 3.)

§ 2. The classifying space B_{G}

Recall that $G(n+1)$ denotes the associative H-space consisting of maps of degree ± 1 from the sphere S^{n} to itself. Let $F(n) \subset G(n+1)$ denote the sub H-space consisting of those homotopy equivalences $S^{n} \rightarrow S^{n}$ which carry the north pole x_{0} into itself. Clearly $F(n)$ is the fibre of a fibration

$$
F(n) \rightarrow G(n+1) \rightarrow S^{n} .
$$

Therefore

$$
\begin{equation*}
\pi_{i} F(n) \cong \pi_{i} G(n+1) \quad \text { for } \quad i<n-1 \tag{2.1}
\end{equation*}
$$

Each homotopy equivalence from the equator S^{n-1} to itself suspends to a homotopy equivalence of the pair $\left(S^{n}, x_{0}\right)$. This defines an embedding $G(n) \subset F(n)$. The notation has been chosen so that

$$
O(n) \subset G(n) \subset F(n)
$$

where $O(n)$ is the orthogonal group.
According to HAEFLIGER [11] the pair $(F(n), G(n))$ is $(2 n-3)$-connected. (Compare James [13].) Hence

$$
\begin{equation*}
\pi_{i} G(n) \cong \pi_{i} F(n) \quad \text { for } \quad i<2 n-3 . \tag{2.2}
\end{equation*}
$$

It follows that the homomorphisms

$$
\pi_{i} G(n) \rightarrow \pi_{i} F(n) \rightarrow \pi_{i} G(n+1) \rightarrow \pi_{i} F(n+1) \rightarrow \pi_{i} G(n+2) \rightarrow \cdots
$$

are all isomorphisms providing that $i<n-1$. These stable groups will sometimes be denoted by $\pi_{i} G=\pi_{i} F$.

The component of the identity in $G(n)$ or $F(n)$, consisting of maps of degree 1 , will be denoted by $S G(n)$ or $S F(n)$ respectively. ${ }^{5}$) Thus

$$
S O(n) \subset S G(n) \subset S F(n)
$$

Clearly $S F(n)$ is homeomorphic to one component of the n-fold loop space $\Omega^{n}\left(S^{n}, x_{0}\right)$. Therefore

$$
\begin{equation*}
\pi_{i} F(n) \cong \pi_{i} \Omega^{n} S^{n} \cong \pi_{i+n} S^{n} \quad \text { for } \quad i>0 \tag{2.3}
\end{equation*}
$$

Remark. It is important that the H-space structure in $S F(n)$ should come from the operation of composing mappings from $\left(S^{n}, x_{0}\right)$ to itself. The loop space $\Omega^{n}\left(S^{n}, x_{0}\right)$ also has a natural H-space structure, which is not the one we want. This distinction is discussed further in Appendix 2.

Now let H be any topological space with a product operation

$$
H \times H \rightarrow H
$$

which is associative, has a 2 -sided unit, and makes the set $\pi_{0} H$ of path components into a group. Dold and Lashof [6] construct a "classifying space" B_{H}. As part of the construction they show that

$$
\pi_{i} B_{H} \cong \pi_{i-1} H \quad \text { for } \quad i>0
$$

Stasheff [21] has applied this construction to the particular H-space $G(n)$. He shows that there is an $(n-1)$-spherical fibre space γ^{n} over $B_{G(n)}$ which is universal in the following sense:

Given any $(n-1)$-spherical fibre space π over a CW-complex X there exists a map

$$
f: X \rightarrow B_{G(n)}
$$

so that π is fibre homotopy equivalent to the induced fibre space $f^{*} \gamma^{n}$. Furthermore f is unique up to homotopy.

STASHEFF also notes (p. 243) that the spaces $B_{G(n)}$ and $B_{F(n)}$ have the homotopy types of CW-complexes, say $B_{G(n)}^{\prime}$ and $B_{F(n)}^{\prime}$ respectively. Since the homotopy groups $\pi_{i} B_{G(n)}$ and $\pi_{i} B_{F(n)}$ are all countable, we may assume that $B_{G(n)}^{\prime}$ and $B_{F(n)}^{\prime}$ are countable CW-complexes.

The inclusions $G(1) \subset F(1) \subset G(2) \subset \cdots$ give rise to mappings $B_{G(1)}^{\prime} \rightarrow B_{F(1)}^{\prime} \rightarrow \cdots$. Using an iterated mapping cylinder construction we may replace these by inclusion mappings

$$
B_{G(1)}^{\prime} \subset B_{F(1)}^{\prime \prime} \subset B_{G(2)}^{\prime \prime} \subset B_{F(2)}^{\prime \prime} \subset \cdots
$$

[^2]of countable CW-complexes. In practice, since these last complexes are the only ones we will actually use, we will drop the double primes and write simply
$$
B_{G(1)} \subset B_{F(1)} \subset B_{G(2)} \subset \cdots
$$

The union CW-complex will be denoted by $B_{G}=B_{F}$. Clearly

$$
\pi_{i} B_{G(n)} \cong \pi_{i} B_{F(n)} \cong \pi_{i} B_{G} \quad \text { for } \quad i<n
$$

A similar argument shows that

$$
H^{i} B_{G(n)} \cong H^{i} B_{F(n)} \cong H^{i} B_{G} \quad \text { for } \quad i<n
$$

using any coefficient group.
Note that $\pi_{1} B_{G(n)} \cong \pi_{1} B_{F(n)} \cong Z_{2}$. The two fold covering complex of $B_{G(n)}$ will be identified with $B_{S G(n)}$. This is a universal base space for oriented ($n-1$)-spherical fibrations.

Theorem 2. (STASHEFF). The classifying space $B_{F}=B_{G}$ has the structure of a homotopy associative, homotopy commutative H-space.

Proof. The Whitney join operation for spherical fibre spaces gives rise to a product operation

$$
B_{G(m)} \times B_{G(n)} \rightarrow B_{G(m+n)}
$$

which is clearly well defined, commutative, and associative, up to homotopy. Furthermore it is not difficult to check that this product is compatible, up to homotopy, with the inclusions $B_{G(n)} \subset B_{G(n+1)}$.

These partial products can easily be pieced together, using the homotopy extension theorem, so as to obtain a product operation $w: B_{G} \times B_{G} \rightarrow B_{G}$. In order to show that w is homotopy associative and commutative, we will make use of the fortunate fact that the homotopy groups

$$
\pi_{i} B_{G} \cong \pi_{i-1} G \cong \pi_{n+i-1} S^{n}
$$

are all finite.
Lemma 2. If X is a countable CW-complex and if $\pi_{i} Y$ is finite ${ }^{6}$) for all i, then the set $[X, Y]$ of homotopy classes of maps $X \rightarrow Y$ is equal to the inverse limit of $[K, Y]$ as K ranges over all finite subcomplexes of X.

Proof. Let $K_{1} \subset K_{2} \subset \cdots$ be finite subcomplexes with union X and let $f, g: X \rightarrow Y$ be maps such that each $f \mid K_{i}$ is homotopic to $g \mid K_{i}$. Consider all possible homotopies $h: K_{1} \times[0,1] \rightarrow Y$ between $f \mid K_{1}$ and $g \mid K_{1}$. These fall into a finite number of homotopy

[^3]classes, relative to $h \mid\left(K_{1} \times\{0,1\}\right)$. Among this finite number there must be at least one which extends to a homotopy between $f \mid K_{i}$ and $g \mid K_{i}$ for all i. Choose a homotopy h_{1} in this prefered class. Now consider homotopies between $f \mid K_{2}$ and $g \mid K_{2}$ which extend h_{1}. Again we can use the finiteness assumption to choose one, say h_{2}, which can be extended over $K_{i} \times[0,1]$ for all i. Continuing inductively, we obtain the required homotopy between f and g. The rest of the proof of Lemma 2 is straightforward.

Theorem 2 now follows easily by applying Lemma 2 to the sets $\left[B_{G} \times B_{G}, B_{G}\right]$ and $\left[B_{G} \times B_{G} \times B_{G}, B_{G}\right]$. This completes the proof.

It follows that both $H_{*}\left(B_{G} ; Z_{p}\right)$ and $H^{*}\left(B_{G} ; Z_{p}\right)$ are commutative Hopf algebras. According to Borel's theorem, each must be isomorphic, as an algebra, to the tensor product of a Grassman algebra and a possibly truncated polynomial algebra. (Compare [17, § 7]).

Another useful consequence of Theorem 2 is the following. Let $P(R)$ denote the infinite real projective space.

Corollary 1. B_{G} has the homotopy type of $B_{S G} \times P(R)$.
Proof. The twisted S^{0}-bundle over $P(R)$ gives rise to a classifying map

$$
P(R) \rightarrow B_{G(1)} \subset B_{G}
$$

Combining this with the natural map $B_{S G} \rightarrow B_{G}$ we obtain a map

$$
B_{S G} \times P(R) \rightarrow B_{G} \times B_{G} \xrightarrow{w} B_{G}
$$

which clearly induces isomorphisms of homotopy groups in all dimensions. This completes the proof.

Since the cohomology of $P(R)$ consists completely of 2-torsion, this implies:
Corollary 2. For p odd the cohomology algebra $H^{*}\left(B_{G} ; Z_{p}\right)$ is isomorphic to $H^{*}\left(B_{S G} ; Z_{p}\right)$.

We can now construct the universal Wu class $q_{i} \in H^{2 i(p-1)}\left(B_{G} ; Z_{p}\right)$ as follows. This group is canonically isomorphic to

$$
H^{2 i(p-1)}\left(B_{S G} ; Z_{p}\right)=H^{2 i(p-1)}\left(B_{S G(n)} ; Z_{p}\right)
$$

for $n>2 i(p-1)$; and in the last group one has the i-th Wu class of the universal oriented ($n-1$)-spherical fibration.

It follows incidentally that the characteristic class $q_{i}(\pi)$ of a spherical fibration π can be defined even if π is not orientable. ${ }^{7}$) For π is classified by a map $\mathrm{f}: B \rightarrow B_{G(n)} \subset B_{G}$, and we can define $q_{i}(\pi)$ to be the class $f^{*} q_{i}$.

[^4]The diagonal mapping w^{*} in the Hopf algebra $H^{*}\left(B_{G} ; Z_{p}\right)$ satisfies

$$
\begin{align*}
w^{*} q_{k} & =\sum_{i+j=k} q_{i} \otimes q_{j}, \tag{2.4}\\
w^{*}\left(\beta q_{k}\right) & =\sum_{i+j=k}\left(\beta q_{i} \otimes q_{j}+q_{i} \otimes \beta q_{j}\right), \tag{2.5}
\end{align*}
$$

where q_{0} is defined to be 1 . This shows that the q_{i} and βq_{i} generate a sub Hopf algebra of $H^{*}\left(B_{G} ; Z_{p}\right)$. But it follows from Lemma 1 that the q_{k} are algebraically independent. Applying Borel's theorem to this subalgebra, this proves:

Corollary 3. The subalgebra of $H^{*}\left(B_{G} ; Z_{p}\right)$ generated by the q_{i} and βq_{i} is free commutative, with all of the q_{i} and some subset of the βq_{i} as independent generators.

Of course this "subset" may be the entire set. The question as to whether the βq_{i} are independent is discussed further in Appendix 3.
(Remark. No βq_{i} in $H^{*}\left(B_{G} ; Z_{p}\right)$ is actually zero. This follows from (2.5) and the fact, which we will prove in § 3 , that $\beta q_{1} \neq 0$.)

These results leave many unanswered questions. For example consider the natural homomorphism

$$
j^{*}: H^{*}\left(B_{G} ; Z_{p}\right) \rightarrow H^{*}\left(B_{o} ; Z_{p}\right) .
$$

Question 1. Is the image of j^{*} generated by the Wu classes $j^{*}\left(q_{i}\right)$?
Question 2. Does this image coincide with the set of all characteristic classes in $H^{*}\left(B_{0} ; Z_{p}\right)$ which are invariants of fibre homotopy type?

Question 3. Does $H^{*}\left(B_{G} ; Z_{p}\right)$ split as a tensor product of Hopf algebras:

$$
H^{*}\left(B_{G} ; Z_{p}\right) \cong\left(\operatorname{Image} j^{*}\right) \otimes(?) .
$$

The second factor should presumably be equal (in the notation of [17, § 3]) to (Image $\left.j^{*}\right) \backslash H^{*}\left(B_{G} ; Z_{p}\right)$.

§ 3. The k-invariants of $B_{S G}$

First let me give a brief review of the concept of " k-invariant". Given a simply connected CW-complex B let $B^{[0, t-1]}$ denote some complex which is obtained from B by adjoining cells of dimension $\geq t+1$ so as to kill off all of the homotopy groups in dimensions $\geq t$. Clearly the pair $\left(B^{[0, t-1]}, B\right)$ is t-connected; so that:

$$
\begin{align*}
H_{i}\left(B^{[0, t-1]}, B\right) & =0 \quad \text { for } \quad i \leqslant t, \quad \text { and } \\
H_{t+1}\left(B^{[0, t-1]}, B\right) & \cong \pi_{t+1}\left(B^{[0, t-1]}, B\right) \cong \pi_{t} B . \tag{3.1}
\end{align*}
$$

Thus the homology exact sequence of the pair $\left(B^{[0, t-1]}, B\right)$ in dimensions $t, t+1$ takes the form

$$
\begin{equation*}
H_{t+1} B \rightarrow H_{t+1} B^{[0, t-1]} \rightarrow \pi_{t} B \rightarrow H_{t} B \rightarrow H_{t} B^{[0, t-1]} \rightarrow 0 . \tag{3.2}
\end{equation*}
$$

The $(t+1)$-dimensional k-invariant of B is a cohomology class

$$
k^{t+1} \in H^{t+1}\left(B^{[0, t-1]} ; \pi_{t} B\right)
$$

defined as follows. For any coefficient group Λ the universal coefficient theorem, together with (3.1) shows that $H^{t+1}\left(B^{[0, t-1]}, B ; \Lambda\right)$ is isomorphic to $\operatorname{Hom}\left(\pi_{t} B, \Lambda\right)$. In particular, taking Λ to be $\pi_{t} B$ itself, we obtain a canonical cohomology class in

$$
H^{t+1}\left(B^{[0, t-1]}, B ; \pi_{t} B\right) \cong \operatorname{Hom}\left(\pi_{t} B, \pi_{t} B\right)
$$

corresponding to the identity map of $\pi_{t} B$. The image of this canonical class under the natural homomorphism

$$
H^{t+1}\left(B^{[0, t-1]}, B ; \pi_{t} B\right) \rightarrow H^{t+1}\left(B^{[0, t-1]} ; \pi_{t} B\right)
$$

is called the k-invariant k^{t+1} of B.
Now consider a complex $B^{[0, t]}$. We may assume that $B^{[0, t]}$ is a subcomplex of $B^{[0, t-1]}$. (In fact starting with any given $B^{[0, t]}$ one can adjoin cells of dimension $\geq t+1$ so as to kill π_{t}; thus yielding a suitable $B^{[0, t-1]}$.) The inclusion

$$
B^{[0, t]} \subset B^{[0, t-1]}
$$

can be made into a fibre space

$$
B_{1}^{[0, t]} \rightarrow B^{[0, t-1]}
$$

by the usual construction. Here $B_{1}^{[0, t]}$ denotes the space of all paths in $B^{[0, t-1]}$ which end in the subcomplex $B^{[0, t]}$. The fibre will be denoted by K^{t}. Clearly K^{t} is an Eilenberg-MacLane space of type $K\left(\pi_{t} B, t\right)$.

We will apply these constructions to the simply connected complex $B=B_{S G}$; and will try to compute the $\bmod p$ cohomology of $B_{S G}^{[0, t]}$ by induction on t.

Let p be a fixed odd prime. The integer $2(p-1)$ will always be denoted by r. According to Toda [24] the p-primary component $\pi_{j}\left(B_{S G} ; p\right)$ of the finite group

$$
\pi_{j} B_{S G} \cong \pi_{j-1+n} S^{n}
$$

is isomorphic to:

$$
\begin{aligned}
& Z_{p} \text { for } \quad j=r, 2 r, 3 r, \ldots,(p-1) r \\
& Z_{p} \text { for } \quad j=p r-1 \\
& Z_{p^{2}} \text { for } \quad j=p r ;
\end{aligned}
$$

and is zero for all other values of j less than $(p+1) r-2$. (Toda computes many further groups, but this will be more than enough for our purposes.)

If $\pi_{t} B$ has no p-primary component then clearly

$$
H^{*}\left(B^{[0, t]} ; Z_{p}\right) \cong H^{*}\left(B^{[0, t-1]} ; Z_{p}\right)
$$

So we only need to concentrate on the cases $t=r, 2 r, 3 r, \ldots,(p-1) r$. For the first case $t=r$, note that $B^{[0, r]}$ has the same $\bmod p$ cohomology as the Eilenberg-MacLane space K^{r}.

For each m between 2 and $p-1$ let

$$
k_{m} \in H^{m r+1}\left(B_{S}^{[0, m r-1]} ; Z_{p}\right)
$$

denote the cohomology class which corresponds to the p-primary component of the k-invariant

$$
k^{m r+1} \in H^{m r+1}\left(B_{S G}^{[0, m r-1]} ; \pi_{m r} B_{S G}\right)
$$

under some coefficient isomorphism ${ }^{8}$)

$$
\pi_{m r}\left(B_{S G} ; p\right) \cong Z_{p}
$$

Theorem 3. If $2 \leq m<p$ then the algebra $H^{*} B_{S G}^{[0, m r-1]} ; Z_{p}$) is isomorphic, in dimensions less than $p r=2 p(p-1)$, to the free commutative algebra on generators

$$
P^{i} \bar{q}, \beta P^{i} \bar{q}, \quad(i \geqslant 0)
$$

and

$$
P^{i} k_{m}, \beta P^{i} k_{m}, \quad(i \geqslant 0)
$$

where \bar{q} corresponds to the first $W u$ class q_{1} under the natural isomorphism

$$
H^{r}\left(B_{S G}^{[0, m r-1]} ; Z_{p}\right) \rightarrow H^{r}\left(B_{S G} ; Z_{p}\right)
$$

and where k_{m} is the p-primary component of the $(m r+1)$-dimensional k-invariant. Furthermore, if $m<p-1$ then k_{m} satisfies the relation:

$$
\begin{equation*}
\left((m+1) P^{1} \beta-m \beta P^{1}\right) k_{m}=0 \tag{3.3}
\end{equation*}
$$

The proof, which will occupy the rest of $\S 3$, will be by induction on m.
Proof of Theorem 3 for $m=2$. Consider first the $\bmod p$ cohomology of an EilenbergMaclane complex $K\left(Z_{p}, 2 t\right)$. Let u denote a $2 t$-dimensional generator. According to Cartan [5]:

The algebra $H^{*}\left(K\left(Z_{p}, 2 t\right) ; Z_{p}\right)$ is free commutative on the generators

$$
P^{i} u, \beta P^{i} u, P^{i+1} \beta u, \beta P^{i+1} \beta u, \quad(0 \leqslant i<t)
$$

together with other generators (such as $P^{p} P^{1} u$) of dimension $\geq(p+1) r+2 t$.
(See also [9, p. 29]. The precise statement is that $H^{*}\left(K\left(Z_{p}, n\right) ; Z_{p}\right)$ is free commutative on generators

$$
\beta^{\varepsilon_{1}} P^{i_{1}} \beta^{\varepsilon_{2}} P^{i_{2}} \beta^{\varepsilon_{3}} P^{i_{3}} \ldots u
$$

where the integers $i_{j} \geq 0$ and $\varepsilon_{j}=0$ or 1 are almost all zero, and are subject to the inequalities
for $j \geq 2$.)

$$
\varepsilon_{j}+p i_{j} \leqslant i_{j-1}<\frac{1}{2} \operatorname{dim}\left(\beta^{\varepsilon_{j}} P^{i_{j}} \beta^{\varepsilon_{j+1}} P^{i_{j+1}} \ldots u\right)
$$

[^5]Now recall that the space $B^{[0,2 r-1]}=B_{S G}^{[0,2 r-1]}$ has the $\bmod p$ cohomology of an Eilenberg-MacLane complex $K\left(Z_{p}, r\right)$. Let $\bar{q} \varepsilon H^{r}\left(B^{[0,2 r-1]} ; Z_{p}\right)$ correspond to the Wu class q_{1}. It follows that:

The algebra $H^{*}\left(B^{[0,2 r-1]} ; Z_{p}\right)$ is free commutative on the generators

$$
P^{i} \bar{q}, \beta P^{i} \bar{q}, P^{i+1} \beta \bar{q}, \beta P^{i+1} \beta \bar{q}, \quad(0 \leqslant i \leqslant p-2) ;
$$

together with other generators of dimension $\geq(p+2) r$.
Let us compute the k-invariant

$$
k_{2} \in H^{2 r+1}\left(B^{[0,2 r-1]} ; Z_{p}\right) .
$$

This can be characterized, up to multiplication by units in Z_{p}, as the element which generates the kernel of the restriction homomorphism

$$
i^{*}: H^{2 r+1}\left(B^{[0,2 r-1]} ; Z_{p}\right) \rightarrow H^{2 r+1}\left(B ; Z_{p}\right) .
$$

But recall the identity (1.11):

$$
2 P^{1} \beta q_{1}-\beta P^{1} q_{1}=0,
$$

in $H^{2 r+1}\left(B ; Z_{p}\right)$. Since $i^{*} \bar{q}=q_{1}$ this shows that

$$
i^{*}\left(2 P^{1} \beta \bar{q}-\beta P^{1} \bar{q}\right)=0 .
$$

Therefore k_{2} must be a multiple of $2 P^{1} \beta \bar{q}-\beta P^{1} \bar{q}$. By changing the isomorphism $\pi_{2 r}(B ; p) \rightarrow Z_{p}$ if necessary, we may assume that k_{2} is equal to $2 P^{1} \beta \bar{q}-\beta P^{1} \bar{q}$.

A short computation now shows that:

$$
\begin{align*}
P^{i} k_{2} & =(i+2) P^{i+1} \beta \bar{q}-\beta P^{i+1} \bar{q}, \tag{3.4}\\
\beta P^{i} k_{2} & =(i+2) \beta P^{i+1} \beta \bar{q}, \quad \text { and } \tag{3.5}\\
P^{i} \beta k_{2} & =2 \beta P^{i+1} \beta \bar{q} ; \quad \text { for } \quad i<p . \tag{3.6}
\end{align*}
$$

(Here is a convenient subset of the Adem relations for this purpose. If $i<p$ then

$$
\begin{aligned}
P^{i} P^{1} & =(i+1) P^{i+1}, \\
P^{i} \beta P^{1} & =i P^{i+1} \beta+\beta P^{i+1} .
\end{aligned}
$$

Using these relations the three formulas above follow immediately.)
Formula (3.4) clearly shows that we can use $P^{i} k_{2}$ in place of $P^{i H+1} \beta \bar{q}$ as a free generator for the algebra $H^{*}\left(B^{[0,2 r-1]} ; Z_{p}\right)$; providing only that $i+2<p$. But if $i+2 \geq p$ then the element $P^{i+1} \beta \bar{q}$ has dimension $(i+2) r+1>p r$. If we only attempt to describe the situation in dimensions $<p r$, then such elements can be ignored.

Similarly (3.5) shows that $\beta P^{i} k_{2}$ can be used in place of $\beta P^{i+1} \beta \bar{q}$ as a free generator. Thus:

The algebra $H^{*}\left(B^{[0,2 r-1]} ; Z_{p}\right)$ is free commutative, in dimensions $<p r$, on the required generators

$$
P^{i} \bar{q}, \beta P^{i} \bar{q}, P^{i} k_{2}, \beta P^{i} k_{2}, \quad(i \geqslant 0)
$$

Finally we must verify the relation

$$
3 P^{1} \beta k_{2}-2 \beta P^{1} k_{2}=0
$$

But this follows immediately from (3.5) and 3.6). Thus we have proved Theorem 3 for $m=2$.

Remark. If we go slightly beyond the range of dimensions under consideration, it is interesting to note the relations $P^{p-1} \bar{q}=\tilde{q}^{p}$ and

$$
P^{p-2} k_{2}=-\beta P^{p-1} \bar{q}=0
$$

This last relation gives rise to a new cohomology class in $H^{p r}\left(B^{[0,2 r]} ; Z_{p}\right)$.
Now suppose inductively that Theorem 3 is true for a given value of m, with $2 \leq m<p-1$. Making the inclusion $B^{[0, m r]} \subset B^{[0, m r-1]}$ into a fibre space

$$
K^{m r} \rightarrow B_{1}^{[0, m r]} \rightarrow B^{[0, m r-1]}
$$

we recall that the fibre is an Eilenberg-MacLane space of type $K\left(\pi_{m r} B, m r\right)$. We will study the $\bmod p$ cohomology spectral sequence of this fibration. (See for example Spanier [19].) Let

$$
u_{m} \subseteq H^{m r}\left(K^{m r} ; Z_{p}\right)
$$

be the generator whose transgression $\tau u_{m}=d_{m+1} u_{m}$ is equal to the k-invariant k_{m}. In dimensions less than $(p+m+1) r$ the cohomology of $K^{m r}$ is free commutative on the generators

$$
P^{i} u_{m}, \beta P^{i} u_{m}, P^{i+1} \beta u_{m}, \beta P^{i+1} \beta u_{m}
$$

where $0 \leq i<m(p-1)$.
It will be convenient to let θ denote the cohomology operation $(m+1) P^{1} \beta-m \beta P_{1}$ of degree $r+1$. Note the identity

$$
\theta k_{m}=0
$$

which is assumed (3.3) as part of the induction hypothesis. Let v_{m+1} denote the class θu_{m} of dimension $m r+r+1$ in $H^{*}\left(K^{m r} ; Z_{p}\right)$. Since u_{m} is transgressive it is clear that v_{m+1} is transgressive ${ }^{9}$) and that

$$
\tau\left(v_{m+1}\right)=\tau \theta u_{m}= \pm \theta \tau u_{m}= \pm \theta k_{m}=0
$$

Similarly each of the classes $P^{i} v_{m+1}, \beta P^{i} v_{m+1}, P^{i} \beta v_{m+1}$ is transgressive. A short

[^6]computation shows that
\[

$$
\begin{aligned}
P^{i} v_{m+1} & =\left((i+m+1) P^{i+1} \beta-m \beta P^{i+1}\right) u_{m}, \\
\beta P^{i} v_{m+1} & =(i+m+1) \beta P^{i+1} \beta u_{m}, \quad \text { and } \\
P^{i} \beta v_{m+1} & =(m+1) \beta P^{i+1} \beta u_{m} ; \quad \text { for } \quad i<p .
\end{aligned}
$$
\]

Combining these last two equalities for $i=1$ we obtain the relation:

$$
\begin{equation*}
\left((m+2) P^{1} \beta-(m+1) \beta P^{1}\right) v_{m+1}=0 . \tag{3.7}
\end{equation*}
$$

From the first two we see that $P^{i} v_{m+1}$ and $\beta P^{i} v_{m+1}$ can be used in place of $P^{i+1} \beta u_{m}$ and $\beta P^{i+1} \beta u_{m}$ as free generators for the cohomology of the fibre $K^{m r}$; providing that that $i+m+1<p$. But the dimension of $P^{i+1} \beta u_{m}$ is $(i+m+1) r+1$; so those $P^{i+1} \beta u_{m}$ with $i+m+1 \geq p$ have dimensions $>p r$ and can be ignored. This proves:

Assertion A. The cohomology of the fibre $K^{m r}$ is free commutative in dimensions $<p r$ on transgressive generators

$$
P^{i} u_{m}, \beta P^{i} u_{m}, P^{i} v_{m+1}, \beta P^{i} v_{m+1}, \quad(i \geqslant 0) .
$$

The cohomology of the base $B^{[0, m r-1]}$ is free commutative in dimensions $<p r$ on generators

$$
P^{i} \bar{q}, \beta P^{i} \bar{q}, P^{i} k_{m}, \beta P^{i} k_{m}, \quad(i \geqslant 0)
$$

and the transgression is given by:

$$
\begin{gathered}
\tau P^{i} u_{m}=P^{i} k_{m}, \tau \beta P^{i} u_{m}= \pm \beta P^{i} k_{m} \\
\tau P^{i} v_{m+1}=0, \tau \beta P^{i} v_{m+1}=0 .
\end{gathered}
$$

[It is important to note that the fibre has no cohomology in dimension $p r-1$. Hence we do not need to worry about the transgression

$$
H^{p r-1}\left(K^{m r} ; Z_{p}\right) \rightarrow H^{p r}\left(B^{[0, m r-1]} ; Z_{p}\right)
$$

where the group on the right is unknown.]
We are now in a position to completely describe our cohomology spectral sequence in the dimensions less than $p r$. The E_{2} term is given of course by

$$
E_{2}^{* *}=H^{*}\left(B^{[0, m r-1]} ; H^{*}\left(K^{m r} ; Z_{p}\right)\right) ;
$$

and is free commutative, in dimensions less than $p r$, on the generators

$$
\begin{aligned}
& P^{i} u_{m}, \beta P^{i} u_{m}, P^{i} v_{m+1}, \beta P^{i} v_{m+1}, \\
& P^{i} \bar{q}, \beta P^{i} \bar{q}, P^{i} k_{m}, \beta P^{i} k_{m} .
\end{aligned}
$$

The transgression

$$
\tau=d_{t}: E_{t}^{0, t-1} \rightarrow E_{t}^{t, 0}
$$

is zero for $t \leq m r$; and it follows that d_{t} is identically zero for $t \leq m r$, so that

$$
E_{2}=E_{3}=\cdots=E_{m r}=E_{m r+1}
$$

The boundary operator

$$
d_{m r+1}: E_{m r+1}^{0, t} \rightarrow E_{m r+1}^{m r+1, t-m r}
$$

carries u_{m} into k_{m} and is zero on the other free generators. It follows easily that the cohomology $E_{m r+2}$ of $\left(E_{m r+1}, d_{m r+1}\right)$ is free commutative, in dimensions $<p r$, on all of the generators listed above except u_{m} and k_{m}.
[Proof. The identity $d_{r m+1}\left(u_{m}^{i}\right)=i k_{m} u_{m}^{i-1}$ shows that the free subalgebra generated by u_{m} and k_{m} has trivial homology in positive dimensions less than $p m r$. But the entire algebra can be considered as the tensor product of this subalgebra and a complementary free algebra on which $d_{r m+1}$ operates trivially. The Künneth theorem asserts that the cohomology of such a tensor product is equal to the tensor product of the cohomologies. Hence $E_{r m+2}$ is free commutative on the remaining generators, in dimensions <pr].

Similarly the operator $d_{r m+2}$ kills the generators βu_{m} and βk_{m}, the operator $d_{r(m+1)+1}$ kills $P^{1} u_{m}$ and $P^{1} k_{m}$, and so on, until all of the $P^{i} u_{m}, P^{i} k_{m}, \beta P^{i} u_{m}$ and $\beta P^{i} k_{m}$ have disappeared. This proves:

ASSERTION B. The E_{∞} term of this spectral sequence is free commutative in dimensions less than pr on the generators

$$
P^{i} \bar{q}, \beta P^{i} \bar{q}, P^{i} v_{m+1}, \beta P^{i} v_{m+1}
$$

It now follows immediately that $H^{*}\left(B_{1}^{[0, m r]} ; Z_{p}\right)$ is also free commutative in this range of dimensions. In fact, if

$$
v_{m+1}^{\prime} \in H^{(m+1) r+1}\left(B_{1}^{[0, m r]} ; Z_{p}\right)
$$

denotes any cohomology class whose restriction to the fibre is v_{m+1}, then we can take as free generators.

$$
P^{i} \bar{q}, \beta P^{i} \bar{q}, P^{i} v_{m+1}^{\prime}, \beta P^{i} v_{m+1}^{\prime}
$$

The same description holds for $H^{*}\left(B^{[0,(m+1) r-1]} ; Z_{p}\right)$, since this algebra is canonically isomorphic to $H^{*}\left(B^{[0, m r]} ; Z_{p}\right)$. Now consider the next k-invariant

$$
\begin{aligned}
& k_{m+1} \in H^{(m+1) r+1}\left(B^{[0,(m+1) r-1]} ; Z_{p}\right) \\
\cong & H^{(m+1) r+1}\left(B_{1}^{[0, m r]} ; Z_{p}\right)
\end{aligned}
$$

LEMMA 3. The restriction of k_{m+1} to the fibre $K^{m r}$ of the fibration $B_{1}^{[0, m r]} \rightarrow B^{[0, m r-1]}$ is non-zero.

This will be proved at the end of §3. Assuming Lemma 3 for the time being, the proof of Theorem 3 proceeds as follows.

The restriction of k_{m+1} to the fibre $K^{m r}$ is clearly some multiple of v_{m+1}. (For the only other basis element $\beta P^{1} u_{m}$ in $H^{(m+1) r+1}\left(K^{m r} ; Z_{p}\right)$ does not extend over the total space.) Since this restriction is non-zero, by Lemma 3, we may as well use k_{m+1} in place of v_{m+1}^{\prime} as the extension of v_{m+1}. This proves:

ASSERTION C. The algebra $H^{*}\left(B^{[0,(m+1) r-1]} ; Z_{p}\right)$ is free commutative, in dimensions less than pr, on the generators

$$
P^{i} \bar{q}, \beta P^{i} \bar{q}, P^{i} k_{m+1}, \beta P^{i} k_{m+1}, \quad(i \geqslant 0)
$$

Thus in order to complete the induction we need only prove that k_{m+1} satisfies the required relation (3.3). The following proof is due to Stasheff.

Recall from $\S 2$ that B is an H-space. It follows that each $B^{[0, t]}$ is an H-space, and hence that $H^{*}\left(B^{[0, t]} ; Z_{p}\right)$ is a Hopf algebra. Furthermore the k-invariant

$$
k_{m+1} \in H^{*}\left(B^{[0,(m+1) r-1]} ; Z_{p}\right)
$$

must be primitive, since it is the lowest dimensional element in the kernel of the homomorphism

$$
H^{*}\left(B^{[0,(m+1) r-1]} ; Z_{p}\right) \rightarrow H^{*}\left(B ; Z_{p}\right)
$$

of Hopf algebras. Hence all of our free generators

$$
P^{i} \bar{q}, \beta P^{i} \bar{q}, P^{i} k_{m+1}, \beta P^{i} k_{m+1}
$$

for this algebra $H^{*}\left(B^{[0,(m+1) r-1)} ; Z_{p}\right)$ are primitive. In fact:
These generators, and their linear combinations, are the only primitive elements in dimensions less than pr.

This follows easily from the more general statement that the set $P\left(A_{1} \otimes \cdots \otimes A_{n}\right)$ of primitive elements in a tensor product of Hopf algebras is equal to the direct sum $P\left(A_{1}\right) \oplus \cdots \oplus P\left(A_{n}\right)$ of the sets of primitive elements. (Compare [17, § 4.10].)

Now consider the element

$$
P^{1} \beta k_{m+1} \in H^{(m+2) r+2}\left(B_{1}^{[0, m r]} ; Z_{p}\right) .
$$

This is also primitive. Hence (if we assume that $m+2<p$) there must be some linear relation of the form

$$
\begin{equation*}
P^{1} \beta k_{m+1}=\lambda \cdot \beta P^{1} k_{m+1}, \tag{3.9}
\end{equation*}
$$

with $\lambda \varepsilon Z_{p}$. Restricting to the fibre $K^{m r}$ this implies that

$$
P^{1} \beta v_{m+1}=\lambda \cdot \beta P^{1} v_{m+1}
$$

But formula (3.7) shows that λ must be congruent to $(m+1) /(m+2)$ modulo p. Hence formula (3.9) must take the required form:

$$
(m+2) P^{1} \beta k_{m+1}-(m+1) \beta P^{1} k_{m+1}=0
$$

This completes the induction; except that we have not yet proved Lemma 3.
Proof of Lemma 3. Suppose that the restriction of the k-invariant k_{m+1} to the fibre $K^{m r}$ were equal to zero. Using Assertion B it would follow easily that k_{m+1} must belong to the subalgebra of $H^{*}\left(B_{1}^{[0, m r]} ; Z_{p}\right)$ generated by the classes $P^{i} \bar{q}$ and $\beta P^{i} \bar{q}$ which come from the base space.

On the other hand we know that k_{m+1} is a primitive element; and that the only primitive elements in this subalgebra are the generators and their multiples. (Compare (3.8).) In particular the primitive elements in dimension $(m+1) r+1$ are all multiples of the generator $\beta P^{m} \bar{q}$. Thus:

In order to prove Lemma 3 it is sufficient to prove that k_{m+1} is not a multiple of $\beta P^{m} \bar{q}$.

Now consider the inclusion maps

$$
U(n) \subset S O(2 n) \subset S G(2 n)
$$

These give rise to a map

$$
j: B_{U} \rightarrow B_{S G} .
$$

We will use j to compare the k-invariants of $B=B_{S G}$ with those of B_{U}.
First consider the more general case of a map $f: X \rightarrow Y$. There is an induced map

$$
f^{[0, t-1]}: X^{[0, t-1]} \rightarrow Y^{[0, t-1]},
$$

which is well defined up to homotopy. Consider the diagram

$$
\begin{array}{cc}
H^{t+1}\left(X^{[0, t-1]} ;\right. & \left.\pi_{t} X\right) \\
\searrow\left(f_{*) *}\right. & H^{t+1}\left(Y^{[0, t-1]} ; \pi_{t} Y\right) \\
H^{t+1}\left(X^{[0, t-1]} ; \pi_{t} Y\right),
\end{array}
$$

where f_{*} denotes the coefficient homomorphism $\pi_{t} X \rightarrow \pi_{t} Y$. The relationship between the k-invariant $k^{t+1}(X)$ in the left hand group and the k-invariant $k^{t+1}(Y)$ on the right is now described by the identity

$$
\begin{equation*}
\left(f_{*}\right)_{*} k^{t+1}(X)=f^{[0, t-1] *} k^{t+1}(Y) . \tag{3.11}
\end{equation*}
$$

(Compare Kahn [14].)
In order to apply (3.11) we first need a description of the k-invariants of the space B_{U}. Recall that:
(a) The homotopy group $\pi_{n} B_{U}$ is infinite cyclic for n even and is zero for n odd.
(b) The integral homology group $H_{n} B_{U}$ is free abelian for n even and is zero for n odd.
(c) The Hurewicz homomorphism $\pi_{2 t} B_{U} \rightarrow H_{2 t} B_{U}$ carries a generator into an element which is divisible by precisely $(t-1)$!
(See Bott [3, p. 88] and [2].) Using the exact sequence (3.2) it follows that
$H_{2 t+1} B_{U}^{[0,2 t-1]}$ is zero, and that

$$
H_{2 t} B_{U}^{[0,2 t-1]} \cong Z \oplus \cdots \oplus Z \oplus Z_{(t-1)!}
$$

Therefore the cohomology group $H^{2 t+1}\left(B_{U}^{[0,2 t-1]} ; Z\right)$ is cyclic of order $(t-1)$!. Furthermore:

$$
\begin{align*}
& \text { The } k \text {-invariant } k^{2 t+1} \text { of } B_{U} \text { is a generator of this finite cyclic group } \\
& H^{2 t+1} B_{U}^{[0,2 t-1]} \text {. } \tag{3.12}
\end{align*}
$$

This is clear since $k^{2 t+1}$ must generate the kernel of the homomorphism $H^{2 t+1} B_{U}^{[0,2 t-1]} \rightarrow H^{2 t+1} B_{U}$. Also we will need:

The Bockstein homomorphisms

$$
\begin{equation*}
\beta: H^{2 t}\left(B_{U}^{[0,2 t-1]} ; Z_{p}\right) \rightarrow H^{2 t+1}\left(B_{U}^{[0,2 t-1]} ; Z_{p}\right) \tag{3.13}
\end{equation*}
$$

is zero if $t \geq 2 p+1$.
For β can be non-zero only if the corresponding homology group

$$
H_{2 t} B_{U}^{[0,2 t-1]} \cong Z \oplus \cdots \oplus Z \oplus Z_{(t-1)!}
$$

admits the cyclic group Z_{p} as a direct summand. If $t-1 \geq 2 p$ then this is certainly not the case.

Now set $2 t$ equal to $(m+1) r=2(m+1)(p-1)$. Since $3 \leq m+1<p$, the required inequality $t \geq 2 p+1$ is easily verified; so the assertion (3.13) applies.

Next we must look at the coefficient homomorphism

$$
j_{*}: \pi_{2 t} B_{U} \rightarrow \pi_{2 t} B_{S G}
$$

Again we assume that $2 t=(m+1) r<p r$.

$$
\begin{align*}
& \text { The image } j_{*} \pi_{2 t} B_{U} \text { contains the p-primary component } \tag{3.14}\\
& \pi_{2 t}\left(B_{S G} ; p\right) \cong Z_{p} \text {. }
\end{align*}
$$

For j_{*} can be described as a composition

$$
\pi_{2 t} B_{U} \rightarrow \pi_{2 t} B_{S o} \xrightarrow{J} \pi_{2 t} B_{S G}
$$

where the first homomorphism maps a generator onto either a generator or twice a generator, according to Bott; and where the image $J\left(\pi_{2 t} B_{S o}\right)$ is known to contain the p-primary component of $\pi_{2 t} B_{S G}$ for $2 t<p r-1$. (See [16].)

It follows easily from (3.12) and (3.14) that the induced homomorphism

$$
\left(j_{*}\right)_{*}: H^{2 t+1}\left(B_{U}^{[0,2 t-1]} ; \pi_{2 t} B_{U}\right) \rightarrow H^{2 t+1}\left(B_{U}^{[0,2 t-1]} ; \pi_{2 t} B_{S G}\right)
$$

carries the $(2 t+1)$-dimensional k-invariant of B_{U} into a class $\left(j_{*}\right)_{*} k^{2 t+1}\left(B_{U}\right)$ whose p-primary component is not zero.

Proof that k_{m+1} is not a multiple of $\beta P^{m} \bar{q}$. If k_{m+1} were a multiple of $\beta P^{m} \bar{q}$ then
the image $j^{[0,2 t-1] *} k_{m+1}$ would be a multiple of

$$
j^{[0,2 t-1]} * \beta P^{m} \tilde{q}=\beta\left(P^{m} j^{[0,2 t-1]} * \tilde{q}\right)
$$

which is zero by (3.13). On the other hand $j^{[0,2 t-1] *} k_{m+1}$ is equal to the p-primary component of $\left(j_{*}\right)_{*} k^{2 t+1}\left(B_{U}\right)$ by (3.11); and we have just shown that this p-primary component is not zero.

Thus k_{m+1} cannot be a multiple of $\beta P^{m} \bar{q}$. According to (3.10) this proves Lemma 3, and completes the proof of Theorem 3.

§ 4. Conclusion: The cohomology of $B_{S G}$

Now let us carry the inductive calculation of $H^{*}\left(B_{S G}^{[0, t]} ; Z_{p}\right)$ one stage further.
LEMMA 4. The algebra $H^{*}\left(B_{S G}^{[0,(p-1) r]} ; Z_{p}\right) \cong H^{*}\left(B_{S G}^{[0, \dot{G}-r-2]} ; Z_{p}\right)$ is free commutative in dimensions less than pr on the generators $P^{i} \bar{q}$ and $\beta P^{i} \bar{q}$. Hence $H^{*}\left(B_{S G} ; Z_{p}\right)$ is free commutative in dimensions less than $p r-1$ on the corresponding generators $P^{i} q_{1}$ and $\beta P^{i} q_{1}$.

Proof. First consider the fibration

$$
K^{(p-1) r} \rightarrow B_{1}^{[0,(p-1) r]} \rightarrow B^{[0,(p-1) r-1]}
$$

The fibre has only the cohomology classes u_{p-1} and βu_{p-1} in dimensions less than pr. According to Theorem 3 the base is free commutative on

$$
P^{i} \bar{q}, \beta P^{i} \bar{q}, k_{p-1}, \beta k_{p-1}
$$

in this range of dimensions. Since

$$
\tau\left(u_{p-1}\right)=k_{p-1}, \tau\left(\beta u_{p-1}\right)=\beta k_{p-1}
$$

it is clear that the cohomology of the total space $B_{1}^{[0,(p-1) r]}$ is obtained simply by eliminating these four generators.

The cohomology of $B^{[0, p r-2]}$ is the same since $\pi_{t}(B ; p)=0$ for $(p-1) r<t \leq p r-2$. But $B^{[0, p r-2]}$ can be obtained from $B=B_{S G}$ by attaching cells of dimension $\geq p r$. This operation may diminish the cohomology in dimension $p r-1$; but it certainly cannot change anything in dimensions $<p r-1$. This proves Lemma 4.

In order to prove Theorem 4, as stated in the introduction, it is only necessary to note that we can use q_{i+1} in place of $P^{i} q_{1}$ and βq_{i+1} in place of $\beta P^{i} q_{1}$ as free generators. Since this follows immediately from § 1.12 ; this completes the proof.

Appendix 1. The rational cohomology of $B_{G(n)}$

This appendix will prove Theorem 5, as stated in the introduction.

From the fibration

$$
S F(2 t-1) \rightarrow S G(2 t) \rightarrow S^{2 t-1}
$$

and Serre's theorem that $\pi_{i} S^{2 t-1}$ is finite for $i \neq 2 t-1$, we see that $\pi_{i} S G(2 t)$ is finite for $i \neq 2 t-1$, and that $\pi_{2 t-1} S G(2 t)$ has rank 1 . Passing to the classifying space $B_{S G(2 t)}$ it follows that the rational cohomology $H^{*}\left(B_{S G(2 t)} ; Q\right)$ is a polynomial algebra on one generator of dimension $2 t$. But the rational Euler class x lives in dimension $2 t$, and is not zero. Thus:

Lemma 5. The algebra $H^{*}\left(B_{S G(2 t)} ; Q\right)$ is free commutative, with the Euler class x as generator.

This space $B_{S G(2 t)}$ is equal to the 2-fold covering of $B_{G(2 t)}$. Let

$$
f: B_{S G(2 t)} \rightarrow B_{S G(2 t)}
$$

be the non-trivial covering transformation. Since f corresponds to the operation of reversing the orientation of a bundle, it is clear that

$$
f^{*} x=-x
$$

Now $H^{*}\left(B_{G(2 t)} ; Q\right)$ can be identified with the subalgebra of $H^{*}\left(B_{S G(2 t)} ; Q\right)$ consisting of elements invariant under f^{*}. Hence:

The algebra $H^{*}\left(B_{G(2 t)} ; Q\right)$ is free commutative, generated by the class x^{2}.
If we map back to the cohomology of $B_{S O(2 t)}$, it is well known that x^{2} corresponds to the $4 t$-dimensional Pontryagin class p_{t}. This proves half of Theorem 5.

Similar arguments show that the homotopy group $\pi_{i} S G(2 t+1)$ is finite for $i \neq 4 t-1$ and of rank 1 for $i=4 t-1$. Hence:

The algebra $H^{*}\left(B_{S G(2 t+1)} ; Q\right)$ is free commutative on one generator of dimension $4 t$.
To complete the proof we must show that the natural homomorphism

$$
i^{*}: H^{4 t}\left(B_{S G(2 t+1)} ; Q\right) \rightarrow H^{4 t}\left(B_{S G(2 t)} ; Q\right)
$$

is not zero. Consider the diagram

where the bottom arrow is known to have kernel zero.
Comparing the fibrations $S O(2 t+1) \rightarrow S^{2 t}$ and $S G(2 t+1) \rightarrow S^{2 t}$ one sees that

$$
j_{*}: \pi_{4 t} B_{S O(2 t+1)} \rightarrow \pi_{4 t} B_{S G(2 t+1)}
$$

has rank 1. Hence the corresponding rational cohomology homomorphism j^{*} is certainly not zero. Looking at the diagram above it follows that $i^{*} \neq 0$.

The only possibility is clearly that j^{*} carries the generator in $H^{4 t}\left(B_{S G(2 t+1)} ; Q\right)$
into a multiple of the Pontryagin class p_{t}. Since the Pontryagin classes of a bundle do not depend on orientation, it follows easily that

$$
H^{*}\left(B_{G(2 t+1)} ; Q\right) \cong H^{*}\left(B_{S G(2 t+1)} ; Q\right)
$$

This completes the proof.

Appendix 2. The two H-space structures on $S F$

Any loop space ΩX has a natural H-space structure, and the corresponding classifying space $B_{\Omega X}$ has the homotopy type of X. In particular the n-fold loop space $\Omega^{n} S^{n}$ has a classifying space which we can identify with $\Omega^{n-1} S^{n}$. The component ($\left.\Omega^{n} S^{n}\right)_{0}$ of the constant path also has a classifying space which we can identify with the universal covering space $\widetilde{\Omega}^{n-1} S^{n}$. (An argument similar to the proof of Corollary 1 in $\S 2$ shows that $\Omega^{n-1} S^{n}$ has the homotopy type of $S^{1} \times \widetilde{\Omega}^{n-1} S^{n}$.)

Since the H-space $\left(\Omega^{n} S^{n}\right)_{0}$ has the homotopy type of $S F(n)$ one might conjecture that the classifying space $\tilde{\Omega}^{n-1} S^{n}$ has the homotopy type of $B_{S F(n)}$; but this is far from true. Thus $H^{*}\left(B_{S F(n)} ; Z_{p}\right)$ contains the full polynomial algebra with independent generators $q_{1}, q_{2}, \ldots, q_{[n / 2]}$. In contrast:

Assertion. Every positive dimensional cohomology class y in $H^{*}\left(\widetilde{\Omega}^{n-1} S^{n} ; Z_{p}\right)$ satisfies the identity $y^{p}=0$.

Proof. Dyer and Lashof [8, § 5.2] show that the homology $H_{*}\left(\Omega^{n-1} S^{n} ; Z_{p}\right)$ is a primitively generated Hopf algebra. This implies that every element of the dual Hopf algebra has height p. (Compare [17, § 4.20].)

Similar remarks hold modulo 2. Although the spaces $\widetilde{\Omega}^{n-1} S^{n}$ and $B_{S F(n)}$ have the same homotopy groups, they are distinguished already by the first k-invariant in $H^{4}\left(K\left(Z_{2}, 2\right) ; Z_{2}\right)$.

It should be remarked however that modulo p, and in the range of dimensions considered in Theorem 4, one cannot distinguish between the two classifying spaces.

It seems likely that one could use these ideas to get a better grasp on the cohomology of $B_{S F}=B_{S G}$.

Appendix 3. Are the βq_{i} independent?

It follows from Theorem 4, together with Theorem 2 Corollary 3, that the cohomology classes

$$
\beta q_{1}, \ldots, \beta q_{p-1} \in H^{*}\left(B_{G} ; Z_{p}\right)
$$

are independent. That is they freely generate a free commutative subalgebra. But the question as to whether all of the $\beta q_{i}, i \geq 1$, are independent remains open. One possible attack on this question is the following.

Problem. Does there exist a spherical fibre space ξ over some base B_{ξ} so that the two cohomology classes $q_{1}(\xi)$ and $\beta q_{1}(\xi)$ in $H^{*}\left(B_{\xi} ; Z_{p}\right)$ are independent; but so that all of the $q_{i}(\xi)$ with $i \geq 2$ are zero?

One candidate for such a ξ would be the canonical 3 -spherical fibre space over $B_{S F(3)}$.

Theorem 6. Suppose that such a fibre space ξ exists. Then all of the universal classes q_{i} and $\beta q_{i}, i \geq 1$, in $H^{*}\left(B_{G} ; Z_{p}\right)$ are independent.

The proof, which is similar to that of Lemma 1, will require a graded version of the classical theory of symmetric functions, as follows.

Over a field of characteristic $\neq 2$ let A be the free commutative (graded) algebra on generators

$$
x_{1}, \ldots, x_{n} \in A^{2 t}
$$

and generators

$$
y_{1}, \ldots, y_{n} \in A^{2 t+1}
$$

Let $\beta: A \rightarrow A$ be the derivation which carries each x_{i} into y_{i} and each y_{i} into 0 . Let $\sigma_{i} \varepsilon A^{2 t i}$ be the i-th elementary symmetric function of x_{1}, \ldots, x_{n}.

Lemma 6. The elements $\sigma_{1}, \ldots, \sigma_{n}$ and $\beta \sigma_{1}, \ldots, \beta \sigma_{n}$ freely generate a free commutative subalgebra of A.
[In fact this subalgebra consists precisely of those elements of A which are "symmetric" in the sense that they are fixed under the action of the symmetric group of degree n, which acts on A by permuting the x_{i} and permuting the $y_{i}=\beta x_{i}$ correspondingly.]

The main step in the proof is the verification that the n-fold product

$$
\left(\beta \sigma_{1}\right)\left(\beta \sigma_{2}\right) \ldots\left(\beta \sigma_{n}\right)
$$

is non-zero ${ }^{10}$). This can best be checked by inserting the explicit formulas

$$
\begin{gathered}
\beta \sigma_{1}=y_{1}+\cdots+y_{n} \\
\beta \sigma_{2}=\left(y_{1} x_{2}+x_{1} y_{2}+y_{1} x_{3}+\cdots+x_{n-1} y_{n}\right) \\
\beta \sigma_{n}=\left(y_{1} x_{2} \cdots x_{n}+\cdots+x_{1} \cdots x_{n-1} y_{n}\right)
\end{gathered}
$$

and then multiplying out and noting that the coefficient of $y_{1} y_{2} \ldots y_{n} x_{1}^{n-1} x_{2}^{n-2} \ldots x_{n-1}^{1}$ in the resulting expression is equal to $+1 \neq 0$.

The rest of the argument is purely formal. Let N denote the set $\{1,2, \ldots, n\}$ and for each $S \subset N$ let

$$
\tau_{S}=\prod_{i \in S}\left(\beta \sigma_{i}\right)
$$

[^7]Since $\tau_{N} \neq 0$ we see that there is no relation of the form

$$
f\left(x_{1}, \ldots, x_{n}\right) \tau_{N}=0, \quad f \neq 0
$$

Hence a fortiori there is no relation of the form

$$
g\left(\sigma_{1}, \ldots, \sigma_{n}\right) \tau_{N}=0, \quad g \neq 0
$$

Now consider a relation

$$
\begin{equation*}
\sum g_{S}\left(\sigma_{1}, \ldots, \sigma_{n}\right) \tau_{S}=0 \tag{1}
\end{equation*}
$$

Multiplying by τ_{N} we see that $g_{\phi} \tau_{N}=0$ and hence that $g_{\phi}=0$. Suppose by induction that $g_{T}=0$ for all proper subsets $T \subset S$. Then multiplying (1) by τ_{N-S} we obtain $\pm g_{S} \tau_{N}=0$ and hence $g_{S}=0$. This completes the proof of Lemma 6.

Remark. Here is an outline of a rather inelegant proof that the σ_{i} and $\beta \sigma_{i}$ generate the subalgebra consisting of all "symmetric" elements of A. It is convenient to assume that $t \gg n$. The number of linearly independent symmetric elements of $A^{2 t m+k}$, where $0 \leq k \leq n$, turns out to be given by the expression

$$
y=\sum_{i=0}^{d} p_{k}(i) p_{n-k}(d-i)
$$

where

$$
d=m-k(k+1) / 2
$$

and where $p_{k}(i)$ denotes the number of partitions of i into at most k parts. On the other hand the number of linearly independent monomials of the form

$$
\sigma_{1}^{r_{1}} \ldots \sigma_{n}^{r_{n}}\left(\beta \sigma_{j_{1}}\right) \ldots\left(\beta \sigma_{j_{k}}\right)
$$

in $A^{2 t m+k}$ turns out to be

$$
y^{\prime}=\sum_{i=0}^{d} p_{n}(i) p_{k, n-k}(d-i)
$$

where $p_{k, l}(j)$ denotes the number of partitions of j into at most k parts each of which is less than or equal to l. Since $y=y^{\prime}$ (compare the generating functions given in [15, p. 5]), the conclusion follows.

Proof of Theorem 6. Consider the product of n copies of B_{ξ}, and the n projection maps

$$
\pi_{i}: B_{\xi} \times \cdots \times B_{\xi} \rightarrow B_{\xi}, \quad(1 \leqslant i \leqslant n)
$$

Let η be the Whitney join of the n induced fibre spaces $\pi_{1}^{*} \xi, \ldots, \pi_{n}^{*} \xi$. It follows easily from Lemma 6 that the classes

$$
q_{1}(\eta), \ldots, q_{n}(\eta), \beta q_{1}(\eta), \ldots, \beta q_{n}(\eta)
$$

in $H^{*}\left(B_{\xi} \times \cdots B_{\xi} ; Z_{p}\right)$ are independent. Since n can be arbitrarily large, this proves Theorem 6.

REFERENCES

[1] A. Borel and J. P. Serre, Groupes de Lie et puissances réduites de Steenrod, Amer. J. Math. 75 (1953), 409-448.
[2] R. Bott, The space of loops on a Lie group, Michigan Math. J. 5 (1958), 35-61.
[3] R. Bott and J. Milnor, On the parallelizability of the spheres, Bull. Amer. Math. Soc. 64 (1958), 87-88.
[4] W. Browder, A. Liulevicius and F. P. Peterson, Cobordism theories, Annals of Math. 84 (1966), 91-101.
[5] H. Cartan, Sur les groupes d'Eilenberg-MacLane II, Proc. Nat. Acad. Sci. U.S.A. 40 (1954), 704-707.
[6] A. Dold and R. Lashof, Principal quasi-fibrations and fibre homotopy equivalence of bundles, Illinois J. Math. 3 (1959), 285-305.
[7] A. Dold, Halbexakte Homotopiefunktoren, Springer Lecture Notes 12 (1966).
[8] E. Dyer and R. Lashof, Homology of iterated loop spaces, Amer. J. Math. 84 (1962), 35-88.
[9] D. Epstein and N. Steenrod, Cohomology operations, Princeton Univ Press, 1962, Annals Study \# 50.
[10] S. Gitler and J. Stasheff, The first exotic class of BF, Topology 4 (1965), 257-266.
[11] A. Haefliger, Differentiable embeddings of S^{n} in S^{n+q} for $q>2$, Annals of Math. 83 (1966), 402-436.
[12] I. M. Hall, The generalized Whitney sum, Quart. J. Math. Oxford (2), 19 (1965), 360-384.
[13] I. M. James, On the iterated suspension, Quarterly J. Math. Oxford (2) 5 (1954), 1-10.
[14] D. W. Kahn, Induced maps for Postnikov systems, Trans. Amer. Math. Soc. 107 (1963), 432450.
[15] P. A. McMahon, Combinatory analysis, 2, Cambridge Univ. Press 1916.
[16] J. Milnor, On the Whitehead homomorphism J., Bull. Amer. Math. Soc. 64 (1958), 79-82.
[17] J. Milnor and J. Moore, On the structure of Hopf algebras, Annals of Math. 81 (1965), 211-264.
[18] J. P. Serre, Groupes d'homotopie et classes de groupes abéliens, Annals of Math. 58 (1953), 258294.
[19] E. H. Spanier, Algebraic Topology, McGraw Hill, 1966.
[20] M. Spivak, Spaces satisfying Poincaré duality, Topology 6 (1967), 77-101.
[21] J. Stasheff, A classification theorem for fibre spaces, Topology 2 (1963), 239-246.
[22] J. Stasheff, More characteristic classes for spherical fibre spaces, Comment. Math. Helv. 43 (1968), 78-86.
[23] R. Тном, Espaces fibrés en sphères et carrés de Steenrod, Ann. Sci. Ec. Norm. Sup., Paris 69 (1952), 109-182.
[24] H. Toda, p-primary components of homotopy groups III, Stable groups of the sphere, Memoirs Univ. of Kyoto [A] 31 (1958), 191-210.
[25] Wu Wen-Tsün, Les i-carrés dans une variété Grassmanniénne, C. R. Acad. Sci. Paris, 230 (1950), 918-920.
[26] Wu Wen-Tsün, On Pontryagin classes II, Sci. Sinica 4 (1955), 455-490.

[^0]: ${ }^{3}$) For general information about classical characteristic classes see for example Husemoller, "Fibre Bundles", Mc Graw Hill, 1966 (§ 16).

[^1]: ${ }^{4}$) In the special case $\Lambda=Z$ one speaks simply of an orientation. Of course any Z-orientation determines a Λ-orientation using the unique homomorphism $Z \rightarrow \Lambda$.

[^2]: ${ }^{5}$) There is no general agreement on notation. For example our $S G(n)$ is denoted by G_{n} in reference [11] and by $G(n-1)$ in reference [10].

[^3]: ${ }^{6}$) Here is an example to show that this finiteness assumption is necessary. Let X be the complement of a "solenoid" in S^{3} (compare Ellenberg and Steenrod, Foundations of Algebraic Topology, p. 230), and let Y be either S^{2} or $K(Z, 2)$. Then [X, Y] is uncountably infinite. Yet X can be expressed as the union of subcomplexes $K_{1} \subset K_{2} \subset \ldots$ where each K_{i} is a solid torus; so that $\left[K_{i}, Y\right]=0$.

[^4]: ${ }^{7}$) This could also be proved by constructing a Thom isomorphism with suitably twisted coefficients.

[^5]: ${ }^{8}$) Since this coefficient isomorphism is more or less arbitrary we will feel free to replace k_{m} by any non-zero multiple $\lambda \cdot k_{m}$, with $\lambda \in Z_{p}$.

[^6]: ${ }^{9}$) At least this is clear if one uses the alternative definition: a cohomology class $u \in H^{t} F$ is transgressive, for a fibration $F \subset E \rightarrow B$, if $\delta u \in H^{t+1}(E, F)$ comes from a cohomology class in $H^{t+1}\left(B, b_{0}\right)$.

[^7]: ${ }^{10}$) Actually one has the following explicit identity: $\left(\beta \sigma_{1}\right)\left(\beta \sigma_{2}\right) \ldots\left(\beta \sigma_{n}\right)=y_{1} \ldots y_{n} \Pi_{1 \leq i<j \leq n}$ $\left(x_{i}-x_{j}\right)$.

