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On Characteristic Classes for Spherical Fibre Spaces

by J. MILNOR, Princeton, New Jersey

Let G(n) denote the associative H-space consisting of all homotopy equivalences
from the sphere S"~! to itself.l) According to STASHEFF [21] this H-space G(n) has a
“classifying space” Bg,, which serves as universal base space for fibre spaces having
a homotopy (n—1)-sphere as fibre. (See also DoLD [7, § 16].)

The object of this paper is to make a preliminary study of the singular cohomology
groups of Bg,); and particularly of the stable groups

H*(Bgw; Z,), k<n,

with mod p coefficients, which will be denoted briefly by H*(Bg; Z,). Following THOM
and WU one can use the Steenrod operations P’ to define characteristic classes

qe H* P~ 1)(BG(n); z,)
for any odd prime p. Our main result is the following.

THEOREM 4. In dimensions less than 2p(p—1)—1 the cohomology ring H*(Bg; Z,)
is isomorphic to the tensor product of a polynomial algebra freely generated by the Wu
classes

915925935 -

and a Grassmann algebra freely generated by the Bockstein coboundaries

Bai, B4q: Bas, ...

of the Wu classes.

Briefly speaking we will say that H*(Bg; Z,) is free commutative?) in this range
of dimensions, with the g; and fq; as independent generators.

This is proved (in § 3 and § 4) by a cumbersome argument which depends on
inductively building up a complete description of the Postnikov system of B; in
dimensions less than 2p(p—1)—1.

GITLER and STASHEFF [10] and STASHEFF [22] have succeeded in computing some-
what further. They show that Theorem 4 breaks down precisely in the dimension
2p(p—1)—1. More precisely:

H*P?~ D Y(Bg Z)~Z

p°

1) This notation is non-standard. Compare § 2.
2) The word commutative means of course that

ba=(—1)dima dimbgp,
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where the generator is a new kind of characteristic class, which cannot be expressed
in terms of the g; and fg,.

Even in dimensions greater than 2p(p—1) it is easy to see that the g; are algebrai-
cally independent. However, I do not know whether all of the f¢q;, 1<i<oo, are
independent. This question is discussed in Appendix 3.

Just for completeness let me mention what is known about the cohomology of B
with other coefficients. BROWDER, LIULEVICIUS and PETERSON [4] have shown that the
algebra H*(Bg; Z,) is isomorphic to a tensor product

H*(Bo§ Zz)®A*

where A* is a certain 2-connected Hopf algebra over the mod2 Steenrod algebra.
Unfortunately very little is known about 4*.

With rational coefficients, B; has the cohomology of a point. This follows im-
mediately from the fact that the homotopy groups of B are all finite. (We will see
in § 3 that n; B;=7n,G has two elements, and that n; Bo=~n;_; G is isomorphic to the
stable homotopy group n,,;_,S" for all 1 <i<n.) However:

THEOREM 5. The cohomology algebra

H*(Bo(z s Q) = H*(BG(21+1); Q)

is free commutative on one generator p, of dimension 4t, providing that t > 1.

This will be proved in Appendix 1. The notation p, is chosen since this generator
corresponds to the #-th Pontryagin class3) in H*' (Bo2,); Q).

I want to thank STASHEFF for his interest and help.

§ 1. The Wu characteristic classes

A Hurewicz fibre space n: E— B is called (n— 1)-spherical if each fibre has the
homotopy type of an (n— 1)-sphere.

Let B> E be the mapping cylinder of , and let 7: B— B be the natural projection.
If = is orientable (that is if the fibres can be coherently oriented) then Thom showed
that the cohomology group H* Bisisomorphicto H**" (B, E), using any commutative
coeflicient ring A.

A more precise statement is the following. Note that the cup product

H*(B; AY® H'(B,E; A) > H**'(B, E; A)
makes the graded group H*(B, E; A)into a module over the graded algebra H*(B; A).

%) For general information about classical characteristic classes see for example HUSEMOLLER,
“Fibre Bundles”, Mc Graw Hill, 1966 (§ 16).
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Assertion. H*(B, E; A)is a free module over H*(B; A)= H*(B; A)ononegenerator
u of dimension n.

This can be proved, for example, by a spectral sequence argument.

The generator u, also called the fundamental cohomology class of the fibration, is
uniquely determined up to multiplication by units in H°(B; A). Any particular choice
of generator u will be called a A-orientation?*) of the fibration.

Given such a generator u the Thom isomorphism

&:H*(B; A)—» H**"(B, E; A)
is defined by the formula
®(a)=(7*a)vu.

Fundamental construction. Any cohomology operation 6 which operates on
H*(B, E; A) gives rise to a corresponding characteristic class

@ '0d(1)eH*(B; A).

If 0 is linear (that is if 0(Aa+A1'a’)=16(a)+A'0(a’)), note that this construction
does not depend on the choice of orientation. For (A®) ™! 0(A®)isthenequalto d~ 1 0.
In particular, starting with the Steenrod operation

P:H"(;Z,)-»H""?"*"Y(;Z)
(see [9]) we obtain a corresponding cohomology class
@ 'Po(1)=o ' (Pu)

in H**?~Y(B; Z,); which will be denoted by g; or g;(n), and called the i-th Wu char-
acteristic class of the fibration n. Here i can be any positive integer.

Since P’ is linear, the Wu class g; does not depend on the choice of orientation.

Similarly the mod2 Steenrod operation Sq' H"( ; Z,)—»H""'( ; Z,) gives rise to
the Stiefel-Whitney class w(n)=®~'Sq'®(1) in H'(B; Z,).

Here is an important example of a non-linear cohomology operation. For any
ring A the cup product squaring operation

at—-»aua:az

gives rise to a characteristic class
x =& " (u*)eH"(B; A)

which is called the Euler class of the fibration. This class x does depend on the par-
ticular choice of orientation.

4) In the special case 4 = Z one speaks simply of an orientation. Of course any Z-orientation
determines a A-orientation using the unique homomorphism Z — A.
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If n is odd note that 2x=0. This follows from the commutativity of the cup
product. Note also the identity @(ax)=®(a) u. From this we see inductively that

o()=u, &(x)=u>, &)=u’...
and in general ®(x)=u'"1.
For any cohomology class ac H*( ; Z,) the Steenrod operations are known to
satisfy the following two identities:

Pla=0 if i>1}dim(a), (1.1)
Pa=a? if i=14dim(a). (1.2)

Applying these to the fundamental cohomology class u in H"(B, E; Z,) we obtain
corresponding relations for the Wu classes g; of any oriented (n — 1)-spherical fibration:

g;=0 if i>n/2, (1.3)
g =x""" if i=n/2, (1.4)

where x is the modp Euler class.

[Similarly the Cartan formula for P"(a Ub) gives rise to a formula for the Wu
classes of a Whitney join. If = and g are spherical fibre spaces over B then the Whitney
Jjoin mxg is the fibre space over B such that each fibre (n*@) ™! b is equal to the join of
n~'b and ¢~ 'b. (See HALL [12] or SpivAK [20].) The required formula is now

gu(n*g) = Zi+j=h q:(n) v q;(0);
where g,=1 by definition.]

The formulas (1.3) and (1.4) are polynomial relations which must be satisfied by
the modp characteristic classes gy, ¢,, 43, ... and x of every (n— 1)-spherical fibration.
For n odd one has the additional relation x=0. We will next give an example to show
that these are the only such universal polynomial relations.

LEMMA 1. (WU). There exists a space B and a fibre bundle with fibre S*™ ! over B
so that the characteristic classes q,,..., -, and x in H*(B; Z,) do not satisfy any
polynomial relations.

Proof. First consider the case m=1. Consider the universal complex line bundle 7y
over the infinite complex projective space P(C). Then H*(P(C); Z,) is known to be
a polynomial algebra generated by the Chern class

¢y =c,(y)eH*(P(C); Z,).
But ¢, is equal to the Euler class x of the associated 1-sphere bundle 9. Hence
g1 () =x@F =",

Now consider the cartesian product ¢ of m copies of y. This is a complex vector
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bundle over the product P(C) x --- x P(C). The “total Wu class”
1+4q;+q,++que®;H (P(C) x---x P(C); Z,)
of the associated (2m— 1)-sphere bundle & is equal to the cross product

(1+4a:(9) x-x (1 +q,(9)
=1+ Y xex(1+47Y.

In other words ¢;(&) is equal to the i-th elementary symmetric function of the m
algebraically independent elements

1 xooxcf™ ! xox 1eH**"V(P(C) x -+ x P(C): Z,).

This proves that the Wu classes q,(&),..., ¢,.(¢) are algebraically independent.
Since ¢,,(&) is equal to x(&)P~ 1, it follows that the classes g, (&), ..., g,—1(&) and x(&)
are also algebraically independent; which completes the proof.

Now consider an arbitrary spherical fibre space, with base space B and with Wu
classes g;. We will study the action of the Steenrod operations P" on the Wu classes,
and also on the Bockstein coboundaries

ﬁq,-EHZ i(p-l)+l(B; Zp)
of the Wu classes.

[We will see later that fg; is non-zero in general. Of course if we happen to be
working with a sphere bundle (having the orthogonal group as structural group),
rather than a general fibration, then g; comes from an integral cohomology class, and
hence fg; must be zero.]

THEOREM 1. The cohomology class P" q; can be expressed as a polynomial in the Wu
classes qy, 4, ..., Qu+i; the coefficient of q, . ; in this polynomial being equal to the bi-

nomial coefficient
(p—1i-1
— 1) .
(-1) ( )

Similarly each P"(Bq;) can be expressed as a linear combination

f1Bay +f2B492 + -+ furi Bdn+i

of the classes Bq,..., Bq,+:; the coefficients in this case being polynomials

/i =fth’i(‘h, G2s o> Qhti-t)
in the Wu classes.

Proof. Let 0 be any element of degree k in the Steenrod algebra A(p). In other
words let
0:H'(;Z,)>H"(;Z,)
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be a universally defined modp cohomology operation. It is convenient to define a
homomorphism
[0):H'(B;Z,)> H'"*(B; Z,)
by the formula
[0]=0""00,

where @ is the Thom isomorphism. (This homomorphism [6#] is of course not a
cohomology operation in the usual sense.) Note the four identities:

[66']=[0][0], (1.5)
[P"]1=gq,, andmore generally (1.6)
[PPla=Pla+q, P" 'a+q,P" *a+-+q,_,Pa+gqg,a, (1.7
[8] = B; (1.8)

where Be A(p)' is the Bockstein operation.
Proof. The first two are clear from the definitions, and the last is proved as follows:
[Bla=@ 'poa=¢ ' B(au)
= o7 ((Ba)u L &(Bu)) = fa,
since pu=0. Formula (1.7) is proved similarly, using the Cartan formula for P"(au).
We will show by induction on 4 +i that P*g; can be expressed as a polynomial in

the Wu classes. We may assume that 4 < pi since otherwise P"q; would be zero by (1.1).
First consider the cohomology class

[P*]q;=[P"][P]1=[P"P]L.

According to the Adem relations [9, p. 77] the composition P"P' is equal to
(- 1)"((p - 1’3 - 1) ph+i

plus a sum of terms of the form AP"P°, with
r>ps>0, r+s=h+i,
and with AeZ,. Now [P"*+'] 1 is equal to g,; and each

[P"PT]1=[P] g,
is equal to
Pg.+q, P g+ + 4,4

by (1.7). But the inequality > ps implies that P"q,=0 by (1.1). The remaining terms
q,P" "'g, can all be expressed as polynomials in the g;, using the induction hypothesis.
Therefore [P") q; is equal to a polynomial in the q;.
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But, using (1.7) together with the induction hypothesis again, this implies that
P"g; can also be expressed as such a polynomial.

The proof for P*Bq; is similar; and is again by induction on 4 +i. Again we may
assume that A<pi. The Adem relations state that P*BP' is equal to

A BP" '+ 2, P""' B (with Ay, A,€Z))
plus a linear combination of terms
pP"P° and P'BP°,
with

r>ps>0, r+s=h+i.
Hence the class

[P"] Bq:=[P"BP]1
is equal to
[/llﬁp"“ + 12Ph+lﬁ] 1 =24 Bqn+i

plus a linear combination of terms of the form

[BP P°]1=B[P]q,

[PTBP]1=[PT] By,.

But [ P"]g,can be expressed as a polynomial £ (g, ..., g,+,) by the portion of Theorem 1
which has already been established; hence

B[Pr] qs = ﬁf(qla"‘9 qr+s) = Z(af/6Q_])ﬂqJ

can be expressed in the required form. Similarly

[P]Bgqs=P Bqg,+q, P 'Bg,++ q,B4qs,

where the first term is zero since r>ps, and the remaining terms can be expressed in
the required form by the induction hypothesis. This proves that [P"] Bg; can be ex-
pressed as a linear combination ), f; f g, with polynomial coefficients. Now using (1.7)
and the induction hypothesis it follows that P" B¢; can also be expressed in this form.
This completes the proof of Theorem 1.

The above proof is fairly effective for actual computation of the polynomials. As
an example suppose that A=1. The Adem relations then take the simple form

and

P'P =(i+1)P™"1,
Plﬁpi= iﬁPi+1+Pi+1ﬁ;
and it follows that:
P14i=(i+1)4i+1_Q1‘1ia (1.9)
Plﬂ‘]i=iﬁfh+1—‘hﬁqi- (1.10)
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(For example the following computation proves (1.10):

P'Bq;+q,fq;=[P']1Bq;=[P'BP]1
= [iﬂPHl + Pi“ﬂ] 1=ifq;s; +0.)

Combining (1.9) and (1.10) for the special case i =1, we obtain a relation

BP'q,=2P'Bq, (1.11)
which will be needed in § 3.
Another fact which will be needed later is the following.

Ifh<p then P*q, is equal to (h+1) g, | plus a polynomialinq,,...,q, (1.12)

This can be proved either by manipulating the binomial coefficient in Theorem 1,
or by induction, starting with (1.9).

Remark. There is another, quite different method for computing the polynomial
for P"g;. One can start with the particular bundle considered in Lemma 1 and use the
theory of symmetric functions; following BOREL and SERRE [1]. I do not know whether
a similar procedure will work for P*Bq;. (Compare Appendix 3.)

§ 2. The classifying space B

Recall that G(n+ 1) denotes the associative H-space consisting of maps of degree
+ 1 from the sphere S" to itself. Let F(n) =G (n+ 1) denote the sub H-space consisting
of those homotopy equivalences S"—S" which carry the north pole x, into itself.
Clearly F(n) is the fibre of a fibration

F(n)-»G(n+1)-S".
Therefore
mF(n)xn,G(n+1) for i<n-—1. 2.1

Each homotopy equivalence from the equator S$”~! to itself suspends to a homo-
topy equivalence of the pair (S”, x,). This defines an embedding G(n)<= F(n). The
notation has been chosen so that

O(n) = G(n) = F(n)

where O(n) is the orthogonal group.
According to HAEFLIGER [11] the pair (F(n), G(n))is(2n—3)-connected. (Compare
JamEs [13].) Hence

n,G(n)xm;F(n) for i<2n-3. (2.2)
It follows that the homomorphisms

1,G(n)>mF(n)->n,G(n+1)»>mF(n+1)>mn,G(n+2)—>--



On Characteristic Classes for Spherical Fibre Spaces 59

are all isomorphisms providing that i <n—1. These stable groups will sometimes be
denoted by n,G=m,F.

The component of the identity in G(n) or F(n), consisting of maps of degree 1,
will be denoted by SG(n) or S F(n) respectively.5) Thus

SO(n)=SG(n)= SF(n).

Clearly S F(n) is homeomorphic to one component of the n-fold loop space Q"(S", x,).
Therefore

nF(n)z2nrQ"S"~n,,S" for i>0. (2.3)

Remark. It is important that the H-space structure in S F(n)should come from
the operation of composing mappings from (S”, x,) to itself. The loop space Q"(S", x,)
also has a natural H-space structure, which is not the one we want. This distinction
is discussed further in Appendix 2.

Now let H be any topological space with a product operation

HxH-H

which is associative, has a 2-sided unit, and makes the set n, H of path components
into a group. DoLD and LASHOF [6] construct a “‘classifying space’” By. As part of
the construction they show that

m,By~mn,_,H for i>0.

STASHEFF [21] has applied this construction to the particular H-space G(n). He shows
that there is an (n—1)-spherical fibre space y" over B, which is universal in the
following sense:

Given any (n—1)-spherical fibre space n over a CW-complex X there exists a map

so that © is fibre homotopy equivalent to the induced fibre space f *y". Furthermore f is
unique up to homotopy.

STASHEFF also notes (p. 243) that the spaces Bg, and Bg,, have the homotopy
types of CW-complexes, say Bg,, and By, respectively. Since the homotopy groups
7; Bgny and m; Br, are all countable, we may assume that B, and By, are countable
CW-complexes.

The inclusions G(1)cF(1)cG(2)< -+ give rise to mappings Bg;y—=Bg)— """
Using an iterated mapping cylinder construction we may replace these by inclusion
mappings

Bg1) = Bra1) < B2y © Bray =

5) There is no general agreement on notation. For example our SG(n) is denoted by G» in
reference [11] and by G(n — 1) in reference [10].
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of countable CW-complexes. In practice, since these last complexes are the only ones
we will actually use, we will drop the double primes and write simply

Bg(1) = Br(1y © Bgay =+
The union CW-complex will be denoted by B = By. Clearly
T;Boy & M;Bpy = m;Bg  for i<n.
A similar argument shows that
H'Bgw = H'Bp,y < H'B; for i<n,

using any coefficient group.

Note that n; Bguy=n; Bppy=Z,. The two fold covering complex of Bg,, will be
identified with Bgg,,. This is a universal base space for oriented (n— 1)-spherical
fibrations.

THEOREM 2. (STASHEFF). The classifying space Br= Bg has the structure of a homo-
topy associative, homotopy commutative H-space.

Proof. The Whitney join operation for spherical fibre spaces gives rise to a product
operation

BGmy X By = Bm+n) -

which is clearly well defined, commutative, and associative, up to homotopy. Further-
more it is not difficult to check that this product is compatible, up to homotopy, with
the inclusions Bg ) < Bgn+ 1)-

These partial products can easily be pieced together, using the homotopy extension
theorem, so as to obtain a product operation w: B; x B;— B;. In order to show that
w is homotopy associative and commutative, we will make use of the fortunate fact
that the homotopy groups

B Gy S
are all finite.

LEMMA 2. If X is a countable CW-complex and if n;Y is finiteS) for all i, then the
set [X, Y] of homotopy classes of maps X—Y is equal to the inverse limit of [K, Y] as
K ranges over all finite subcomplexes of X.

Proof. Let K, = K, = --- be finite subcomplexes with union X and let f, g: X— Y be
maps such that each f|K; is homotopic to g|K;. Consider all possible homotopies
h:K; x[0, 1]- Y between f|K, and g|K;. These fall into a finite number of homotopy

6) Here is an example to show that this finiteness assumption is necessary. Let X be the comple-
ment of a “solenoid” in S3 (compare EILENBERG and STEENROD, Foundations of Algebraic Topology,
p. 230), and let Y be either S2 or K(Z, 2). Then [X, Y] is uncountably infinite. Yet X can be expressed
as the union of subcomplexes K1 < K2 < --+ where each Kj is a solid torus; so that [K;, Y]=0.



On Characteristic Classes for Spherical Fibre Spaces 61

classes, relative to A|(K; x {0, 1}). Among this finite number there must be at least one
which extends to a homotopy between f|K; and g|K; for all i. Choose a homotopy 4,
in this prefered class. Now consider homotopies between f|K, and g| K, which extend
h,. Again we can use the finiteness assumption to choose one, say #,, which can be
extended over K;x [0, 1] for all i. Continuing inductively, we obtain the required
homotopy between f and g. The rest of the proof of Lemma 2 is straightforward.

Theorem 2 now follows easily by applying Lemma 2 to the sets [B; x Bg, Bg] and
[Bg % Bg % Bg, Bg]. This completes the proof.

It follows that both H,(Bg; Z,) and H*(Bg; Z,) are commutative Hopf algebras.
According to Borel’s theorem, each must be isomorphic, as an algebra, to the tensor
product of a Grassman algebra and a possibly truncated polynomial algebra. (Compare
[17,§ 7).

Another useful consequence of Theorem 2 is the following. Let P(R) denote the
infinite real projective space.

COROLLARY 1. Bg has the homotopy type of Bsg x P(R).
Proof. The twisted S°-bundle over P(R) gives rise to a classifying map

P(R)—) BG(I) C BG «
Combining this with the natural map Bg;— B; we obtain a map
Bsg x P(R)> B; x B3> B;

which clearly induces isomorphisms of homotopy groups in all dimensions. This
completes the proof.

Since the cohomology of P(R) consists completely of 2-torsion, this implies:

COROLLARY 2. For p odd the cohomology algebra H*(Bg; Z,) is isomorphic to
H*(Bsg; Z,).

We can now construct the universal Wu class g,e H*"?~ ') (Bg; Z,) as follows. This
group is canonically isomorphic to

H? i(p_l)(BSG; Zp) = H*"?~ 1)(BSG(n); Zp)

for n>2i(p—1); and in the last group one has the i-th Wu class of the universal
oriented (n— 1)-spherical fibration.

It follows incidentally that the characteristic class g;(n) of a spherical fibration =
can be defined even if n is not orientable.”) For 7 is classified by a map f: B— Bg,, < B,
and we can define ¢;() to be the class f*g;.

) This could also be proved by constructing a Thom isomorphism with suitably twisted co-
efficients.
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The diagonal mapping w* in the Hopf algebra H*(Bg; Z,) satisfies

W*qk=2i+j=kqi®qj’ (2.4)
w*(Bai) = Yi+j=x(B9: ® q; + 4: ® Bq;), (2.5)

where g, is defined to be 1. This shows that the g; and fg; generate a sub Hopf algebra
of H*(Bg; Z,). But it follows from Lemma 1 that the g, are algebraically independent.
Applying Borel’s theorem to this subalgebra, this proves:

COROLLARY 3. The subalgebra of H*(Bg; Z,) generated by the q; and Bq; is free
commutative, with all of the q; and some subset of the Bq; as independent generators.

Of course this “subset” may be the entire set. The question as to whether the fg;
are independent is discussed further in Appendix 3.

(Remark. No fq;in H*(Bg; Z,) is actually zero. This follows from (2.5) and the
fact, which we will prove in § 3, that fq,+0.)

These results leave many unanswered questions. For example consider the natural
homomorphism
j*:H*(Bg; Z,)—~ H* (Bo; Z,).

Question 1. Is the image of j* generated by the Wu classes j*(g;)?

Question 2. Does this image coincide with the set of all characteristic classes in
H*(Bo; Z,) which are invariants of fibre homotopy type?

Question 3. Does H*(Bg; Z,) split as a tensor product of Hopf algebras:

H*(Bg; Z,) =~ (Image j*) ® (7).

The second factor should presumably be equal (in the notation of [17, § 3]) to (Image
J*V\H*(Bg; Z,).

§ 3. The k-invariants of B,

First let me give a brief review of the concept of “k-invariant”. Given a simply
connected CW-complex B let BL%*~11 denote some complex which is obtained from B
by adjoining cells of dimension >7+1 so as to kill off all of the homotopy groups in
dimensions >¢. Clearly the pair (B'®*~ '), B) is t-connected; so that:

Hi(B[O"_”,B)=0 for i<t, and 3 1
H,.\ (B, B)xr,, (B, B) 7, B. G-D

Thus the homology exact sequence of the pair (B!%'~1, B) in dimensions ¢, 7+ 1 takes
the form

H, B~ H, B " ">nB~HB-HB* 0. (3.2)
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The (#+ 1)-dimensional k-invariant of B is a cohomology class
kt+ 1 th+ 1 (B[O,!— 1]; T, B)

defined as follows. For any coefficient group A the universal coefficient theorem,
together with (3.1) shows that H**!(B!%*~!), B; A) is isomorphic to Hom(z, B, A).
In particular, taking A to be n, B itself, we obtain a canonical cohomology class in

H'"'(B'*~'1 B; n,B) ~ Hom(n, B, 7, B)

corresponding to the identity map of n, B. The image of this canonical class under the
natural homomorphism

Ht+l(B[0,t—'1]’ B; T[tB)“") Ht+1(B[0,t“l]; TftB)
is called the k-invariant k'*! of B.
Now consider a complex Bl We may assume that B!>" is a subcomplex of

B%*~11 (In fact starting with any given B!®" one can adjoin cells of dimension
>t+1 so as to kill «,; thus yielding a suitable B!%*~1) The inclusion

Blo:11 — glo.t—11
can be made into a fibre space
BIiO,t]__)B[O,t—l]

by the usual construction. Here B> "1 denotes the space of all paths in B *~ 11 which
end in the subcomplex BI®"l, The fibre will be denoted by K'. Clearly K* is an
Eilenberg-MacLane space of type K(=,B, t).

We will apply these constructions to the simply connected complex B= Bg,;; and
will try to compute the modp cohomology of BL%: " by induction on ¢.

Let p be a fixed odd prime. The integer 2(p—1) will always be denoted by r. Ac-
cording to ToDA [24] the p-primary component 7;(Bsg; p) of the finite group

M;Bsg =i 144S"
1s isomorphic to:
Z, for j=r2r3r.,(p—-1)r
Z, for j=pr-1

Z,. for j=pr;

p
and is zero for all other values of j less than (p+1)r—2. (TopA computes many
further groups, but this will be more than enough for our purposes.)
If 7, B has no p-primary component then clearly

H*(B*; Z,) =~ H*(B*'"1;Z,).

So we only need to concentrate on the cases t=r, 2r, 3r, ..., (p—1) r. For the first case
t=r, note that B!>'] has the same modp cohomology as the Eilenberg-MacLane
Space K".
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For each m between 2 and p—1 let
kmEHmr+l(BgOémr—l]; Zp)

denote the cohomology class which corresponds to the p-primary component of the

k-invariant mrt1
mr+1 [O,mr—11].
k €eH (BSG anmrBSG)
under some coefficient isomorphism8)

7':mr(BSG; P) = Zp'

THEOREM 3. If 2<m<p then the algebra H*BSy™" ~'1; Z,) is isomorphic, in di-
mensions less than pr=2p(p—1), to the free commutative algebra on generators

P'4, P4, (i=0),

and Pk, BP'k,, (i >0);

where q corresponds to the first Wu class q, under the natural isomorphism
H'(B§¢""™"; Z2,) > H'(Bsg; Z,)

and where k,, is the p-primary component of the (mr+ 1)-dimensional k-invariant.
Furthermore, if m<p—1 then k,, satisfies the relation:

(m+1)P'B—mpBPYk,=0. (3.3)

The proof, which will occupy the rest of § 3, will be by induction on m.

Proof of Theorem 3 for m=2. Consider first the mod p cohomology of an Eilenberg-
Maclane complex K(Z,, 2¢). Let u denote a 2¢-dimensional generator. According to
CARTAN [5]:

The algebra H*(K(Z,, 2t); Z,) is free commutative on the generators

P'u, BPu, P*'Bu, P\ Bu, (0<i<t);

together with other generators (such as PP P'u) of dimension > (p+1) r+2t.
(See also [9, p. 29]. The precise statement is that H*(K(Z,, n); Z,) is free commu-
tative on generators
ﬁm Pi1 ﬁ.‘:zPizﬂsgPig U

where the integers ;>0 and ¢;=0 or 1 are almost all zero, and are subject to the
inequalities

g, +pi;<ij_y <4dim(B¥ PP+ P+t u)

for j>2.) :

8) Since this coefficient isomorphism is more or less arbitrary we will feel free to replace k» by
any non-zero multiple A-km, with AeZp.
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Now recall that the space BI® 2"~ 11= BL0: 2"~ 1] ha5 the mod p cohomology of an
Eilenberg-MacLane complex K(Z,, r). Letge H"(B!* 2"~ '1; Z ) correspond to the Wu
class ¢q,. It follows that:

The algebra H* (B'**"~1); Z) is free commutative on the generators

P'g,BP'§, P Bg, BPT BG, (0<i<p-2);

together with other generators of dimension >(p+2)r.
Let us compute the k-invariant

kZGH2r+1 (B[O,Zr-ll; Zp)

This can be characterized, up to multiplication by units in Z,, as the element which
generates the kernel of the restriction homomorphism

i*:H*" (B2 Z ) > HY (B Z,).
But recall the identity (1.11):
2P'fq,~ P q, =0,
in H2""1(B; Z,). Since i*§=gq, this shows that
i*QP'Bg—BP' g =0.

Therefore k, must be a multiple of 2P'Bj—pP'4. By changing the isomorphism
7,,.(B; p)—Z, if necessary, we may assume that k, is equal to 2P'BG—pPq.
A short computation now shows that:

Pk,=(i+2)P"'Bg—pP* g, (3.4)
BPk,=(i+2)BP*" B4, and (3.5)
PiBk,=2BP*'Bg; for i<p. (3.6)

(Here is a convenient subset of the Adem relations for this purpose. If i <p then

P'P' =(i+1) P,
PiﬁP1=iPi+1ﬂ+ﬁPi+l.

Using these relations the three formulas above follow immediately.)

Formula (3.4) clearly shows that we can use P'k, in place of P**! B4 as a free
generator for the algebra H*(B!®2"~!1; Z); providing only that i+2<p. But if
i+2>p then the element P'*! B4 has dimension (i+2) r+1>pr. If we only attempt
to describe the situation in dimensions <pr, then such elements can be ignored.

Similarly (3.5) shows that fP'k, can be used in place of BP'*' B4 as a free genera-
tor. Thus:



66 J. MILNOR

The algebra H*(B!*2"~1; Z)) is free commutative, in dimensions <pr, on the re-
quired generators

P'g,BP G, P'k,, fP'k,, (i=0).
Finally we must verify the relation
3P'Bk,—2pP" k,=0.

But this follows immediately from (3.5) and 3.6). Thus we have proved Theorem 3
for m=2.

Remark. If we go slightly beyond the range of dimensions under consideration, it
is interesting to note the relations PP~ !'§=4” and

PP 2k, =—BP" 1§=0.

This last relation gives rise to a new cohomology class in H?"(B'*2"; Z ).
Now suppose inductively that Theorem 3 is true for a given value of m, with
2<m<p—1. Making the inclusion BI%™"1c Bt%™ =11 into a fibre space

Kmr__)BEO,mr]__’B[O,mr—l]

b

we recall that the fibre is an Eilenberg-MacLane space of type K(=,,,B, mr). We will

study the mod p cohomology spectral sequence of this fibration. (See for example
SPANIER [19].) Let

u,sH""(K""; Z,)

be the generator whose transgression tu,,=d,,, 4, is equal to the k-invariant k,,.

In dimensions less than (p+m+1) r the cohomology of K™ is free commutative on
the generators

Pium,ﬁpium, Pi+1ﬂum’ﬂpi+lﬁum;
where 0<i<m(p—1).

It will be convenient to let 6 denote the cohomology operation (m+1) P' B—mpBP,
of degree r+ 1. Note the identity

0k, =0,

which is assumed (3.3) as part of the induction hypothesis. Let v,,, ; denote the class
O u,, of dimension mr+r+1in H*(K™"; Z,). Since u,, is transgressive it is clear that
V41 18 transgressive?) and that

T(Vp+1)=10U,=+01u,==+0k,=0.

Similarly each of .the classes P'v,,;, BP 4y, P Pv,4, is transgressive. A short

9) At least this is clear if one uses the alternative definition: a cohomology class u € HtF is trans-
gressive, for a fibration F< E— B, if due H**1(E, F) comes from a cohomology class in H**1(B, bo).
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computation shows that
Po,.y=((i+m+1)P*"'B—mBP*)u,,
BP v, . =(+m+1)BP " Bu,, and
P Bvpy=(m+1)BP* Bu,; for i<p.

Combining these last two equalities for i=1 we obtain the relation:

(m+2)P'B—(m+1)BPYv,,, =0. 3.7

From the first two we see that P'v,,, , and fP'v,,,, can be used in place of P'+'Bu,
and BP'*! Bu,, as free generators for the cohomology of the fibre K™"; providing that
that i+m+ 1 <p. But the dimension of P**! Bu,, is (i+m+1) r+1; so those P+ Bu,,
with i+m+1>p have dimensions > pr and can be ignored. This proves:

ASSERTION A. The cohomology of the fibre K™ is free commutative in dimensions
<pr on transgressive generators

Pium’ﬁpium’Pivm+l’ﬂPivm+l9 (120)

The cohomology of the base B'*'™ "' js free commutative in dimensions <pr on
generators

P'g, BP'q, P'k,, BP'k,, (i=0);
and the transgression is given by:
t1P'u, = P'k,, tpP'u, =+ fPk,,
tPv,.,=0,18Pv,., =0.

[It is important to note that the fibre has no cohomology in dimension pr—1.
Hence we do not need to worry about the transgression

Hpr —I(Kmr; Zp)__)Hpr(B[O,mr—l]; Zp)

where the group on the right is unknown.]
We are now in a position to completely describe our cohomology spectral sequence
in the dimensions less than pr. The E, term is given of course by

E;* — H*(B[O,mr- 1]; H*(Kmr; Zp));
and is free commutative, in dimensions less than pr, on the generators
Pi“m’ ﬂpium’ Pivm+19 ﬁpivm+1 ’
P4, BP'g, P'k,, BP'k,,.
The transgression
t=d;:E}'" > Ep°
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is zero for t<mr; and it follows that d, is identically zero for t<mr, so that

Ey;=Ey=-=E,, =Eq .
The boundary operator

. 0,t mr+1,t—mr
dmr+1 'Em’r+1 _’Emr+l

carries u,, into k,, and is zero on the other free generators. It follows easily that the
cohomology E,,,, of (Ep, 41> dnr4 1) is free commutative, in dimensions <pr, on all
of the generators listed above except u,, and k,,.

[ Proof. The identity d, ,, 4 (1)) =ik,u. ' shows that the free subalgebra generated
by u,, and k,, has trivial homology in positive dimensions less than pmr. But the entire
algebra can be considered as the tensor product of this subalgebra and a complementa-
ry free algebra on which d,,,,, operates trivially. The Kiinneth theorem asserts that
the cohomology of such a tensor product is equal to the tensor product of the cohomol-
ogies. Hence E,,, , is free commutative on the remaining generators, in dimensions
<pr].

Similarly the operator d,,.,, kills the generators fu, and fk,, the operator
d,m+1)+1 Kills P'u, and P'k,, and so on, until all of the P'u,, P'k,, BP'u, and
BP'k, have disappeared. This proves:

ASSERTION B. The E_, term of this spectral sequence is free commutative in di-
mensions less than pr on the generators

P'q, .BPiqa Pivm+1,,BPiUm+1 .
It now follows immediately that H*(B%Y™™"; Z )isalso free commutative in this
range of dimensions. In fact, if

v:n+leH(m+l)r+1(B£0,mr]; Zp)

denotes any cohomology class whose restriction to the fibre is v, ;, then we can take
as free generators.

P'q, BP'q, Plop.q, B Ot 1
The same description holds for H*(Bt®™*1r=11; 7 3 since this algebra is canoni-
cally isomorphic to H*(B'*™1; Z ). Now consider the next k-invariant

km+leH(m+l)r+l(B[0,(m+ 1))‘-1]; Zp)
~ H(m+1)r+1(B[10,mr]; Zp)-

LEMMA 3. The restriction of k,, , ; to the fibre K™" of the fibration B{®>™"1— pt0-mr-1]
is non-zero.

This will be proved at the end of § 3. Assuming Lemma 3 for the time being, the
proof of Theorem 3 proceeds as follows.
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The restriction of k,, ., to the fibre K™" is clearly some multiple of v, ;. (For the
only other basis element fP'u, in H™*Dr*1(K™"; Z ) does not extend over the
total space.) Since this restriction is non-zero, by Lemma 3, we may as well use k,,, ,
in place of v,,, , as the extension of v, ,. This proves:

ASSERTION C. The algebra H* (B> ™+ V=11, 7 s free commutative, in dimensions
less than pr, on the generators

Pi -aﬁPi.-’Pikm+lsﬁPikm+la (120)

Thus in order to complete the induction we need only prove that k,, , , satisfies the
required relation (3.3). The following proof is due to STASHEFF.

Recall from § 2 that B is an H-space. It follows that each B! 1 is an H-space, and
hence that H*(B!®"; Z,) is a Hopf algebra. Furthermore the k-invariant

k.. EH*(B[O,(m+1)r-— 1. Zp)
must be primitive, since it is the lowest dimensional element in the kernel of the
homomorphism H*(BY ™+ D111 2y H*(B; 7).
of Hopf algebras. Hence all of our free generators
PG, BP'q, P ks s BP ks
for this algebra H*(B'>* =D 7 ) are primitive. In fact:

These generators, and their linear combinations, are the only primitive

3.8
elements in dimensions less than pr. (28

This follows easily from the more general statement that the set P (4, ®--®4,)
of primitive elements in a tensor product of Hopf algebras is equal to the direct sum
P(A)®:-®P(A,) of the sets of primitive elements. (Compare [17, § 4.10].)

Now consider the element

Plﬁkmﬂ eH(m+2)r+2(B|iO,mr]; Zp).
This is also primitive. Hence (if we assume that m+2 <p) there must be some linear
relation of the form PRk, . = ABP Ky, (3.9)
with Ae Z . Restricting to the fibre K™" this implies that
P'Bv,y=ABP vy, .

But formula (3.7) shows that A must be congruent to (m+ 1)/(m+2) modulo p. Hence
formula (3.9) must take the required form:

(1 +2) P* Bl y = (m +1) BP Ky = 0.
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This completes the induction; except that we have not yet proved Lemma 3.

Proof of Lemma 3. Suppose that the restriction of the k-invariant k,, . ; to the fibre
K™ were equal to zero. Using Assertion B it would follow easily that k,,; must
belong to the subalgebra of H*(B{>™"); Z,) generated by the classes P'g and BP'q
which come from the base space.

On the other hand we know that k,,,; is a primitive element; and that the only
primitive elements in this subalgebra are the generators and their multiples. (Compare
(3.8).) In particular the primitive elements in dimension (m+ 1) r+ 1 are all multiples
of the generator fP™q. Thus:

In order to prove Lemma 3 it is sufficient to prove that k,,, , is not a

multiple of BP™q. 3.10)

Now consider the inclusion maps

U(n)=S0(2n)<=SG(2n).
These give rise to a map
j:By— Bgg -

We will use j to compare the k-invariants of B= Bg, with those of By.
First consider the more general case of a map f: X— Y. There is an induced map

f[O,t“llzx[O,!‘I]_) Y[O,t—l]

b

which is well defined up to homotopy. Consider the diagram

Ht+1(X[0,t~1]; n,X) Hr+1(Y[O,t—-1]; nt Y)
(s K flo.t-1la
Ht+1(x[0,t“1]; nt Y),

where f, denotes the coefficient homomorphism 7, X— =, Y. The relationship between
the k-invariant &' *'(X) in the left hand group and the k-invariant k'*!(Y) on the
right is now described by the identity

(f*)*kt+1(X)=f[0’t—1]*kt+1(Y). (311)

(Compare KAHN [14].)

In order to apply (3.11) we first need a description of the k-invariants of the space
By. Recall that:

(a) The homotopy group =, By is infinite cyclic for n even and is zero for n odd.

(b) The integral homology group H, By is free abelian for n even and is zero for
n odd.

(c¢) The Hurewicz homomorphism 7, ,By— H, , By carries a generator into an ele-
ment which is divisible by precisely (z—1)!

(See Bott [3, p. 88] and [2].) Using the exact sequence (3.2) it follows that
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H,,,, B %' s zero, and that
HztBE]O’2t—1] = Z@).“@Z@Z(t—l)! .

Therefore the cohomology group H?**'(BY:?'~'); Z) is cyclic of order (¢—1)!.
Furthermore:

The k-invariant k*'*' of By is a generator of this finite cyclic group

- 3.12
H2rr1pgloze-1) (3.12)

This is clear since k*'*! must generate the kernel of the homomorphism

H2'HA B2, g2t g Also we will need:
The Bockstein homomorphisms

ﬁ:HZt(BEIO,Zt—l]; Zp)__>H2t+1(BEJO,2!—I]; Zp) (3.13)

is zero if t>2p+1.
For B can be non-zero only if the corresponding homology group

H, B ? Uy Z® - DLDZ;_yy,

admits the cyclic group Z, as a direct summand. If #—1>2p then this is certainly
not the case.

Now set 2¢ equal to (m+1) r=2(m+1) (p—1). Since 3<m+1<p, the required
inequality #>2p+1 is easily verified; so the assertion (3.13) applies.

Next we must look at the coefficient homomorphism

Jx:73 By = 1y Bsg -
Again we assume that 2t=(m+ 1) r<pr.

The image j, 7, ,By contains the p-primary component
(%) t(BSG;p) == Zp‘

For j, can be described as a composition

(3.14)

J .
Ty By —= 7y, Bso > my¢Bsg;

where the first homomorphism maps a generator onto either a generator or twice a
generator, according to BorT; and where the image J(,,Bso) is known to contain
the p-primary component of n,,Bgg for 2¢<pr—1. (See [16].)

It follows easily from (3.12) and (3.14) that the induced homomorphism

(j*)*:H2'+1(BE]0’2t_1]; nztBU)"’}HZt.*_l(B%O,Zt_l]; RZtBSG)

carries the (2¢+ 1)-dimensional k-invariant of By into a class (jy)«k*'*'(By) whose
p-primary component is not zero.
Proof that k,, . , is not a multiple of fP™q. If k,,,, were a multiple of fP™q then
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the image j1% 2~ 11*k_ ., would be a multiple of
j[O, 2!—1]*ﬁqu- — ﬁ(ij[O,Zt-l]*q—);

which is zero by (3.13). On the other hand j!%2'~17*k__ . is equal to the p-primary
component of (j,)xk2'**(By) by (3.11); and we have just shown that this p-primary
component is not zero.

Thus k,, ;. ; cannot be a multiple of §P™4. According to (3.10) this proves Lemma 3,
and completes the proof of Theorem 3.

§ 4. Conclusion: The cohomology of B

Now let us carry the inductive calculation of H*(B%%"; Z,) one stage further.

LEMMA 4. Thealgebra H* (B~ 1" Z,) > H*(BYs 7"~ *1; Z,)is free commutative
in dimensions less than pr on the generators P'q and BP'q. Hence H*(Bs¢; Z,) is free
commutative in dimensions less than pr—1 on the corresponding generators P'q, and
BP'q;.

Proof. First consider the fibration

K(P“l)r_,B[IO,(p—l)f]_)B[O,(P—l)r—l]-

The fibre has only the cohomology classes u,_, and fu,_; in dimensions less than
pr. According to Theorem 3 the base is free commutative on

Pi -’ ﬁPiq., kp—-19 ﬁkp—-l
in this range of dimensions. Since

T(Up-1) =kpys T(Bup_1) =Bk,

it is clear that the cohomology of the total space BL> ?~1"1 js obtained simply by
eliminating these four generators.

The cohomology of B%?"~21js the same since n,(B; p)=0for (p—1) r<t<pr-—2.
But BI%?"~2]can be obtained from B= By by attaching cells of dimension > pr. This
operation may diminish the cohomology in dimension pr—1; but it certainly cannot
change anything in dimensions <pr—1. This proves Lemma 4.

In order to prove Theorem 4, as stated in the introduction, it is only necessary to
note that we can use g, in place of P'q, and Bgq;., in place of BP'q, as free gener-
ators. Since this follows immediately from § 1.12; this completes the proof.

Appendix 1. The rational cohomology of B,

This appendix will prove Theorem 5, as stated in the introduction.
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From the fibration
SFQt—-1)-»SG(2t)-» 8%,

and Serre’s theorem that 7;S%'~ ! is finite for i+2¢—1, we see that n; SG(2¢) is finite
for i+2¢—1, and that m,,_; SG(2¢) has rank 1. Passing to the classifying space
Bs (21 it follows that the rational cohomology H*(Bs g2+ ; @) is a polynomial algebra
on one generator of dimension 2¢. But the rational Euler class x lives in dimension
2t, and is not zero. Thus:

LEMMA 5. The algebra H*(Bgg(2,y; Q) is free commutative, with the Euler class x
as generator.

This space Bgg(a,) is equal to the 2-fold covering of B, ,. Let

f:Bsc(z n = Bsgan

be the non-trivial covering transformation. Since f corresponds to the operation of
reversing the orientation of a bundle, it is clear that

f¥*x=-x.

Now H*(Bg(,,y; Q) can be identified with the subalgebra of H*(Bsg(2,); Q) consisting
of elements invariant under f *. Hence:

The algebra H*(Bg2); Q) is free commutative, generated by the class x*.

If we map back to the cohomology of Bgg, ., it is well known that x? corresponds
to the 4¢-dimensional Pontryagin class p,. This proves half of Theorem 5.

Similar arguments show that the homotopy group =;SG(2¢+1) is finite for
i+4r—1 and of rank 1 for i=4¢—1. Hence:

The algebra H*(Bgg(21+1); Q) is free commutative on one generator of dimension 4t.

To complete the proof we must show that the natural homomorphism

i*:H*'(Bsg2:+1)> @) = H*'(Bsg2); Q)

is not zero. Consider the diagram

H4t(BSG(2t+1); Q)it’HM(BSG(z:); Q)
L !
H4t(BSO(2t+1); Q)—’HM(Bso(zz); Q),

where the bottom arrow is known to have kernel zero.
Comparing the fibrations SO(2¢+1)—S?* and SG(2¢+1)—S?* one sees that

Js:Ta¢Bso@i+1) 2 TarBsgae+ 1)

has rank 1. Hence the corresponding rational cohomology homomorphism j* is
certainly not zero. Looking at the diagram above it follows that i* 0.
The only possibility is clearly that j* carries the generator in H 4'(BSG(ZH.I); 0)
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into a multiple of the Pontryagin class p,. Since the Pontryagin classes of a bundle do
not depend on orientation, it follows easily that

H*(BG(2t+1); Q)= H*(BSG(ZHI); Q).

This completes the proof.

Appendix 2. The two H-space structures on S F

Any loop space Q X has a natural H-space structure, and the corresponding classi-
fying space Bgx has the homotopy type of X. In particular the n-fold loop space Q"S"
has a classifying space which we can identify with Q"~!S". The component (2"S"),
of the constant path also has a classifying space which we can identify with the uni-
versal covering space 3"~ 1 S". (An argument similar to the proof of Corollary 1 in § 2
shows that Q"~1S" has the homotopy type of S* x 3"~1S")

Since the H-space (2"S"), has the homotopy type of S F(n) one might conjecture
that the classifying space "~ ! S™ has the homotopy type of B F(n)> but this is far from
true. Thus H*(Bsr (s ; Z,) contains the full polynomial algebra with independent
generators g, 4z, ..., ga/27- In contrast:

ASSERTION. Every positive dimensional cohomology class y in H*(Q""'S"; Z »)
satisfies the identity y?=0.

Proof. DYER and LASHOF [8, § 5.2] show that the homology H, (2"~ 'S"; Z,) is a
primitively generated Hopf algebra. This implies that every element of the dual Hopf
algebra has height p. (Compare [17, § 4.20].)

Similar remarks hold modulo 2. Although the spaces @"~!S" and By F(ny have the
same homotopy groups, they are distinguished already by the first k-invariant in
H*(K(Z,,2); Z,).

It should be remarked however that modulo p, and in the range of dimensions
considered in Theorem 4, one cannot distinguish between the two classifying spaces.

It seems likely that one could use these ideas to get a better grasp on the cohomology
of Bgp=Bsg-.

Appendix 3. Are the fg; independent?

It follows from Theorem 4, together with Theorem 2 Corollary 3, that the cohomol-
ogy classes

Bdas,....Bq,-1€H*(Bs; Z,)

are independent. That is they freely generate a free commutative subalgebra. But the
question as to whether all of the B ¢;, i>1, are independent remains open. One possible
attack on this question is the following.



On Characteristic Classes for Spherical Fibre Spaces 75

PROBLEM. Does there exist a spherical fibre space £ over some base B, so that the
two cohomology classes q, (&) and Bq, (£) in H*(B,; Z,) are independent, but so that all
of the q;(&) with i>2 are zero?

One candidate for such a & would be the canonical 3-spherical fibre space over

Bsr(s)-

THEOREM 6. Suppose that such a fibre space & exists. Then all of the universal classes
q; and Bq;, i>1, in H*(Bg; Zp) are independent.

The proof, which is similar to that of Lemma 1, will require a graded version of
the classical theory of symmetric functions, as follows.

Over a field of characteristic +2 let A be the free commutative (graded) algebra
on generators

Xyy..or X,€ A%
and generators
Viseeor yoe AT,

Let f: A— A be the derivation which carries each x; into y; and each y; into 0. Let
0,6 A%' be the i-th elementary symmetric function of x, ..., x,.

LEMMA 6. The elementso,...,6,and fo,,..., Bo,freely generate a free commutative
subalgebra of A.

[In fact this subalgebra consists precisely of those elements of 4 which are “symmet-
ric” in the sense that they are fixed under the action of the symmetric group of degree
n, which acts on 4 by permuting the x; and permuting the y;=f x; correspondingly.]

The main step in the proof is the verification that the #-fold product

(Bay)(Bo2)...(Bay,)

is non-zero!?). This can best be checked by inserting the explicit formulas

poy=yy+-t oy,
Bo,=(y1 X+ %1V, + Vi X3 4 Xpm 1 V)
ﬁan=(y1x2"'xn+"'+xl”'xn—lyn)

and then multiplying out and noting that the coefficient of y; y,...y,x7™ ' x5 2...x5_,

in the resulting expression is equal to +1=0.
The rest of the argument is purely formal. Let N denote the set {1,2,..., n} and
for each SN let
s = [Jics(Boy).

10) Actually one has the following explicit identity: (Bo1)(Ba2)...(Bon) =y1...yulli<i<j<n
(xi —xp).



76 J. MILNOR

Since 75+ 0 we see that there is no relation of the form

f(xyenx)ty =0, f*0.

Hence a fortiori there is no relation of the form

g(O’l,...,Gn)’CN=O, g4=0.
Now consider a relation
ng(alou-s 0,)Ts=0. (1)

Multiplying by 7 we see that g,7y=0 and hence that g,=0. Suppose by induction
that gr=0 for all proper subsets T S. Then multiplying (1) by 7y_5 we obtain
+gs7y=0 and hence gg=0. This completes the proof of Lemma 6.

Remark. Here is an outline of a rather inelegant proof that the o; and o, generate
the subalgebra consisting of all “symmetric’’ elements of 4. It is convenient to assume
that #>n. The number of linearly independent symmetric elements of 42*™** where
0<k<n, turns out to be given by the expression

F = zg——-o Pk(i) Pa-i(d — i)

d=m—k(k+1)2,

where

and where p,(i) denotes the number of partitions of i into at most k parts. On the
other hand the number of linearly independent monomials of the form

ot ...on(Bo;)...(Bo;)

in A*'™** turns out to be
Y =Y i=0Pa(i) P, w-s(d — i)

where p; ,(j) denotes the number of partitions of j into at most k parts each of which
is less than or equal to /. Since y=y’ (compare the generating functions given in [15,
p. 5]), the conclusion follows.
Proof of Theorem 6. Consider the product of n copies of B, and the n projection
maps
m;:Bg X+ x B> B, (1<i<n).

Let n be the Whitney join of the n induced fibre spaces n7 ¢, ..., n) £. It follows easily
from Lemma 6 that the classes

a1 (m)s-ees @ (m)s Ba1 (1) s Bqa()

in H*(B;x - Bg; Z,) are independent. Since n can be arbitrarily large, this proves
Theorem 6.
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