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On Characteristic Classes for Spherical Fibre Spaces

by J. Milnor, Princeton, New Jersey

Let G(n) dénote the associative /f-space consisting of ail homotopy équivalences
from the sphère Sn~l to îtselfx) According to Stasheff [21] this i/-space G(n) has a

"classifymg space" BG(n) which serves as universal base space for fibre spaces havmg
a homotopy (n— l)-sphere as fibre (See also Dold [7, § 16]

The object of this paper îs to make a preliminary study of the singular cohomology
groups of BG(n) ; and particularly of the stable groups

Hk(BGin);Zp), k<n,
with modp coefficients, which will be denoted bnefly by Hk(BG, Zp) FollowingThom
and Wu one can use the Steenrod opérations Pl to define characteristic classes

for any odd prime p Our main resuit îs the following

Theorem 4 In dimensions less than 2p(p — 1)— 1 the cohomology ring H*(BG; Zp)
is isomorphic to the tensor product of a polynomial algebra freely gêneratedby the Wu
classes

and a Grassmann algebra freely générâted by the Bockstein coboundanes

of the Wu classes

Bnefly speaking we will say that H*(BG, Zp) isfree commutative2) in this range
of dimensions, with the qx and f}qt as independent generators

This is proved (in § 3 and § 4) by a cumbersome argument which dépends on

inductively building up a complète description of the Postmkov System of BG in
dimensions less than 2/?(/7 — 1)— 1

Gitler and Stasheff [10] and Stasheff [22] hâve succeeded in Computing some-
what further. They show that Theorem 4 breaks down precisely in the dimension

— 1)— 1. More precisely:

x) This notation is non-standard Compare § 2

2) The word commutative means of course that
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where the generator is a new kind of characteristic class, which cannot be expressed

in terms of the qt and Pqt.
Even in dimensions greater than 2p(p— 1) it is easy to see that the q( are algebrai-

cally independent. However, I do not know whether ail of the fiqh l^/<oo, are
independent. This question is discussed in Appendix 3.

Just for completeness let me mention what is known about the cohomology of BG

with other coefficients. Browder, Liulevicius and Peterson [4] hâve shown that the

algebra H*(BG; Z2) is isomorphic to a tensor product

H*(BO;Z2)®A*

where A* is a certain 2-connected Hopf algebra over the mod2 Steenrod algebra.
Unfortunately very little is known about A*.

With rational coefficients, BG has the cohomology of a point. This follows im-
mediately from the fact that the homotopy groups of BG are ail finite. (We will see

in § 3 that n1BG^n0G has two éléments, and that niBG^ni^1G is isomorphic to the
stable homotopy group nn+i^iSn for ail 1 <i<n.) However:

Theorem 5. The cohomology algebra

isfree commutative on one generator pt of dimension 4t, providing thaï f ;> 1.

This will be proved in Appendix 1. The notation/?, is chosen since this generator
corresponds to the f-th Pontryagin class3) in H4t (BO(2t)l ô)«

I want to thank Stasheff for his interest and help.

§ 1. The Wu characteristic classes

A Hurewicz fibre space n:E-+B is called (n—l)-spherical if each fibre has the

homotopy type of an (n— l)-sphere.
Let 5=>E be the mapping cylinder of tt, and let n:B-*B be the natural projection.

If n is orientable (that is if the fibres can be coherently oriented) then Thom showed

that the cohomology group HkBi$ isomorphic to Hk+n (B, E), using any commutative
coefficient ring A.

A more précise statement is the following. Note that the cup product

Hk(B; A)®Hl(B, E; A)^Hk+l(B, E; A)

makes the graded group H* (B, E; A) into a module over the graded algebra H*(B; A).

3) For gênerai information about classical characteristic classes see for example Husemoller,
"Fibre Bundles", Me Graw Hill, 1966 (§ 16).
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Assertion.H*(B,E; A)isafreemodule over H*(B; A)^H*(B; A)ononegenerator
u of dimension n.

This can be proved, for example, by a spectral séquence argument.
The generator w, also called ihe fondamental cohomology class of the fibration, is

uniquely determined up to multiplication by units in H°(B; A). Any particular choice
of generator u will be called a A-orientation4) of the fibration.

Given such a generator u the Thom isomorphism

<P:Hk(B;A)->Hk+n(B,E;A)
is defined by the formula

<P(a) (n*a)uu.
Fundamental construction. Any cohomology opération 9 which opérâtes on

H*(B, E; A) gives rise to a corresponding characteristic class

If 9 is linear (that is if 9(Àa + k'a') X6(a) + A'0(a'))> note that this construction
does not dépend on the choice oforientation. For (A$) ~ * 9 (A4>) is then equal to <P ~* 9<P.

In particular, starting with the Steenrod opération

(see [9]) we obtain a corresponding cohomology class

in H2 i(p~1} (B; Zp); which will be denoted by qt or q^n), and called the i-th Wu
characteristic class of the fibration n. Hère i can be any positive integer.

Since Pl is linear, the Wu class qt does not dépend on the choice of orientation.
Similarly the mod2 Steenrod opération SqiHn( ; Z2)-+Hn+i( ; Z2) gives rise to

the Stiefel-Whitney class wi(ir) *"1 Sq'*(l) in H\B; Z2).
Hère is an important example of a non-linear cohomology opération. For any

ring A the cup product squaring opération

a\->a u a a2

gives rise to a characteristic class

x $~i(u2)eHn(B;A)

which is called the Euler class of the fibration. This class x does dépend on the
particular choice of orientation.

4) In the spécial case A=Z one speaks simply of an orientation. Of course any Z-orientation
détermines a /(-orientation using the unique homomorphism Z->A.
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If n is odd note that 2x 0. This follows from the commutativity of the cup
product. Note also the identity 4>(ax) &(a) u. From this we see inductively that

and in gênerai
For any cohomology class aeH*( ; Zp) the Steenrod opérations are known to

satisfy the following two identities:

Pla 0 if i>±dim(a), (1.1)
Pla ap if i idim(a). (1.2)

Applying thèse to the fundamental cohomology class u in Hn(B, E; Zp) we obtain
corresponding relations for the Wu classes qt of any oriented (n — l)-spherical fibration :

^ 0 if i>n/2, (1.3)

qi xp~1 if i fi/2, (1.4)

where x is the modp Euler class.

[Similarly the Cartan formula for Ph(aub) gives rise to a formula for the Wu
classes of a Whitney join. If n and q are spherical fibre spaces over B then the Whitney

join n*Q is the fibre space over B such that each fibre (n*g)~ * b is equal to the join of
n~1b and Q~1b. (See Hall [12] or Spivak [20].) The required formula is now

where qo \ by définition.]
The formulas (1.3) and (1.4) are polynomial relations which must be satisfied by

the mod/? characteristic classes qi9 q2, #3,... and x of every (n— l)-spherical fibration.
For n odd one has the additional relation x 0. We will next give an example to show
that thèse are the only such universal polynomial relations.

Lemma 1. (Wu). There exists a space B and a fibre bundle with fibre S2m~1 over B
so that the characteristic classes qi,-->, qm-i and x in H*(B; Zp) do not satisfy any
polynomial relations.

Proof. First consider the case m 1. Consider the universal complex line bundle y

over the infinité complex projective space P(C). Then H * (P(C); Zp) is known to be

a polynomial algebra generated by the Chern class

But ct is equal to the Euler class x of the associated 1-sphère bundle $. Hence

Now consider the cartesian product £ of m copies of y. This is a complex vector
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bundle over the product P(C) x ••• xP(C). The "total Wu elass"

1 + <h + q2 +-+ qme®jHj(P(C) x- x P(C); Zp)

of the associated (2m— l)-sphere bundle | is equal to the cross product

In other words qt{t) is equal to the f-th elementary symmetric function of the m

algebraically independent éléments

1 x... x c\~l x-- x \eH2{p~l)(P{C) x>- x P(C):Zp).

This proves that the Wu classes #i(|),..., qm(l) are algebraically independent.
Since qm(l) is equal to x{^)p"19 it follows that the classes <h(|),..., qm-i(î) and x(|)
are also algebraically independent ; which complètes the proof.

Now consider an arbitrary spherical fibre space, with base space B and with Wu
classes qt. We will study the action of the Steenrod opérations Ph on the Wu classes,

and also on the Bockstein coboundaries

of the Wu classes.

[We will see later that fiq{ is non-zero in gênerai. Of course if we happen to be

working with a sphère bundle (having the orthogonal group as structural group),
rather than a gênerai fibration, then qi cornes from an intégral cohomology class, and
hence Pqt must be zéro.]

Theorem 1. The cohomology class Phqi can be expressed as a polynomial in the Wu

classes #1, #2,..., #/,+*; the coefficient of qh+i in this polynomial being equal to the bi-
nomial coefficient

— l)i —

Similarly each Ph(f$qï) can be expressed as a linear combination

of the classes Pqii..., pqh+i; the coefficients in this case being polynomials

ft ^ff'^Qu <l2> »>> 4h+i-t)
in the Wu classes.

Proof Let 6 be any élément of degree k in the Steenrod algebra A(p). In other
words let
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be a universally defined modp cohomology opération. It is convenient to define a

homomorphism
lO']:Hi(B;Zp)-*Hi+k(B;Zp)

by the formula

where # is the Thom isomorphism. (This homomorphism [0] is of course not a

cohomology opération in the usual sensé.) Note the four identities:

(1.5)
1 qh, and more generally (1.6)

<x Phoc + qiPh-la + q2Ph-2a+-+qh.lPïot + qhot, (1.7)

W P', (1.8)

where PeA(p)1 is the Bockstein opération.
Proof. The first two are clear from the définitions, and the last is proved as follows :

since /?w=0. Formula (1.7) is proved similarly, using the Cartan formula for Ph(<xu).

We will show by induction on h + i that Phqt can be expressed as a polynomial in
the Wu classes. We may assume that h <p i since otherwise Phqt would be zéro by (1.1).

First consider the cohomology class

[p*] q. [pft] [/>'] l [Php1-] 1.

According to the Adem relations [9, p. 77] the composition PhPl is equal to

plus a sum of terms of the form ÀPrPs, with

r > ps >0, r + s h + i,

and with XeZp. Now [Ph + i] 1 is equal to qh+i; and each

is equal to

by (1.7). But the inequality r>ps implies that Prqs=0 by (1.1). The remaining terms

qtPr~lqs can ail be expressed as polynomials in the qj9 using the induction hypothesis.

Therefore [Ph] qt is equal to a polynomial in the qj.
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But, using (1.7) together with the induction hypothesis again, this implies that
Phqi can also be expressed as such a polynomial.

The proof for PhPqt is similar; and is again by induction on h + i. Again we may
assume that h<pi. The Adem relations state that PhpPl is equal to

-{-Â2Ph + ip (with XuX2eZp)

plus a linear combination of terms

pPrPs and PrpP\
with

r > ps > 0, r + s h + i.
Hence the class

is equal to

plus a linear combination of terms of the form

and

But [Pr]qscan be expressed as a polynomial/(^1?..., #r+s)by the portion of Theorem 1

which has already been established; hence

qr+s) î.(dfldqj)pqj

can be expressed in the required form. Similarly

[F-] fiqs PrPqs + qx Pr~lPqs +••• + qjqs,
where the first term is zéro since r>ps, and the remaining terms can be expressed in
the required form by the induction hypothesis. This proves that [Ph] Pqt can be

expressed as a linear combination YuftPQt with polynomial coefficients. Now using (1.7)
and the induction hypothesis it follows that Phpqi can also be expressed in this form.
This complètes the proof of Theorem 1.

The above proof is fairly effective for actual computation of the polynomials. As
an example suppose that h 1. The Adem relations then take the simple form

F1Pt' (/ + \)Pi+\
PlpPl=ipPi+1 + Pi+ip;

and it follows that :
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(For example the following computation proves (1.10):

Combining (1.9) and (1.10) for the spécial case i 1, we obtain a relation

pP1q1=2Plpqi (1.11)
which will be needed in § 3.

Another fact which will be needed later is the following.

Ifh<p thenPhq1 is equal to (h+1) qh+1 plus apolynomial in qi,...,qh. (1.12)

This can be proved either by manipulating the binomial coefficient in Theorem 1,

or by induction, starting with (1.9).
Remark. There is another, quite différent method for Computing the polynomial

for Phqv One can start with the particular bundle considered in Lemma 1 and use the

theory of symmetric functions; following Borel and Serre [1]. I do not know whether
a similar procédure will work for PhPqt. (Compare Appendix 3.)

§ 2. The classifying space BG

Recall that G(«+1) dénotes the associative /f-space consisting of maps of degree

± 1 from the sphère Sn to itself. Let F(n) czG(n+l) dénote the sub H-space consisting
of those homotopy équivalences Sn->Sn which carry the north pôle x0 into itself.
Clearly F(n) is the fibre of a fibration

F(n)->G(n + l)-*S\
Therefore

niF(n)*niG(n + 1) for i<n-l. (2.1)

Each homotopy équivalence from the equator S""1 to itself suspends to a homotopy

équivalence of the pair (Sn, x0). This defines an embedding G{n)aF{n). The

notation has been chosen so that

O(n)c:G(n)c:F(n)

where 0{n) is the orthogonal group.
According to Haefliger [11] the pair (F(n), G(n)) is(2n - 3)-connected. (Compare

James 113].) Hence

• 7rfG(n)^7rfF(n) for i<2n-3. (2.2)

It follows that the homomorphisms

niG{n)-+niF(n)-+niG(n + l)-»7rfF(n + l)->7TfG(rt + 2)-»--«
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are ail isomorphisms providing that i<n — 1 Thèse stable groups will sometimes be

denoted by nfi nlF
The component of the îdentity in G(n) or F(n), consistmg of maps of degree 1,

will be denoted by SG(n) or SF(n) respectively 5) Thus

SO(n)ŒSG(n)czSF(n)

Clearly SF(n) îs homeomorphic to one component of the «-fold loop space Qn(Sn, x0)
Therefore

7tlF(n)^nlQnSn^nl+nSn for i>0 (2 3)

Remark It îs important that the //-space structure in SF(n) should corne from
the opération of composing mappings from (Sn, x0) to îtself The loop space Qn(Sn9 x0)
also has a natural //-space structure, which îs not the one we want This distinction
îs discussed further in Appendix 2

Now let H be any topological space with a product opération

H xH-+H
which îs associative, has a 2-sided unit, and makes the set n0H of path components
into a group Dold and Lashof [6] construct a "classifymg space" BH As part of
the construction they show that

n^jj^n^xH for i>0
Stasheff [21] has apphed this construction to the particular //-space G(n) He shows

that there îs an (n — l)-sphencal fibre space yn over /?G(n) which îs universal in the

foliowing sensé*

Given any (n—\)-sphencalfibre space n over a CW-complex X there exists a map

f X->BGin)

so that n is fibre homotopy équivalent to the inducedfibre space f*yn Furthermoref is

unique up to homotopy
Stasheff also notes (p 243) that the spaces BG(n) and BF{n) hâve the homotopy

types of CW-complexes, say B'G(n) and BF(n) respectively Smce the homotopy groups
ni ^G(n) and nl BF(n) are ail countable, we may assume that B'G{n) and B'F(n) are countable
CW-complexes

The inclusions G(l)cJF(l)c=G(2)c: give nse to mappings BG{1)-*B'F{l)->
Using an iterated mappmg cylinder construction we may replace thèse by inclusion

mappings

5) There is no gênerai agreement on notation For example our SG (ri) is denoted by Gn in
référence [11] and by G(n — 1) m référence [10]



60 J. MILNOR

of countable CW-complexes. In practice, since thèse last complexes are the only ones

we will actually use, we will drop the double primes and write simply

The union CW-complex will be denoted by BG BF. Clearly

7T, BG{n) s nt BF(n) ^KiBG for i<n.
A similar argument shows that

HlBG(n) s H%(w) s tff *c for i<n,
using any coefficient group.

Note that nlBGin)^n1BFin)^Z2* The two fold covering complex of BG{n) will be

identified with BSG(n). This is a universal base space for oriented (n—l)-spherical
fibrations.

Theorem 2. (Stasheff). The classifying space BF BG has the structure of a homo-

topy associative, homotopy commutative H-space.
Proof. The Whitney join opération for spherical fibre spaces gives rise to a product

opération
^G(m) X Bg(ti) ~~* ^G(m + n) '

which is clearly well defined, commutative, and associative, up to homotopy. Further-
more it is not difficult to check that this product is compatible, up to homotopy, with
the inclusions 2?G(rt)c:i?G(lI+1).

Thèse partial products can easily be pieced together, using the homotopy extension

theorem, so as to obtain a product opération w: BG x BG-*BG. In order to show that
w is homotopy associative and commutative, we will make use of the fortunate fact
that the homotopy groups

7tiBG s Ki-xG £ nn+i^lSn
are ail finite.

Lemma 2. IfX is a countable CW-complex and if ni Y is finite^) for ail i, then the

set [X, Y] ofhomotopy classes ofmaps X-* Y is equal to the inverse limit of [K, Y] as

K ranges over ailfinite subcomplexes of X.

Proof Let Kx c K2 c • • • be finite subcomplexes with union X and let/, g : X-+ Y be

maps such that each/|JÇTj is homotopic to g\Kt. Consider ail possible homotopies
h : Kt x [0, 1 ]-> Y between/l^ and g\Kx. Thèse fall into a finite number of homotopy

6) Hère is an example to show that this finiteness assumption is necessary. Let X be the complément

of a "solenoid" in Sz (compare Eilenberg and Steenrod, Foundations of Algebraic Topology,
p. 230), and let Fbe either S2 or K(Z, 2). Then [X, Y] is uncountably infinité. Yet Zcan be expressed
as the union of subcomplexes K\ <= Ki c= • • • where each Ki is a solid torus; so that [Kif y] =0.
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classes, relative to h\(Kt x {0, 1}). Among this finite number there must be at least one
which extends to a homotopy between/|i^ and g\Kt for ail /. Choose a homotopy ht
in this prefered class. Now consider homotopies between/|K2 and g\K2 which extend

hv Again we can use the finiteness assumption to choose one, say h2, which can be

extended over Ktx [0, 1] for ail i. Continuing inductively, we obtain the required
homotopy between / and g. The rest of the proof of Lemma 2 is straightforward.

Theorem 2 now follows easily by applying Lemma 2 to the sets [BG x BG, BG] and
[BG xBGx BG, BG]. This complètes the proof.

It follows that both H*(BG; Zp) and H*(BG; Zp) are commutative Hopf algebras.

According to Borel's theorem, each must be isomorphic, as an algebra, to the tensor
product ofa Grassman algebra and a possibly truncated polynomial algebra. (Compare
[17, § 7]).

Another useful conséquence of Theorem 2 is the following. Let P(R) dénote the

infinité real projective space.

Corollary 1. BG has the homotopy type ofBSGxP(R).
Proof. The twisted S°-bundle over P(R) gives rise to a classifying map

P(R)-+BG{l)aBG.

Combining this with the natural map BSG->BG we obtain a map

BSG ^
which clearly induces isomorphisms of homotopy groups in ail dimensions. This
complètes the proof.

Since the cohomology of P(R) consists completely of 2-torsion, this implies:

Corollary 2. For p odd the cohomology algebra H*(BG; Zp) is isomorphic to

H*(BSG;Zp).

We can now construct the universal Wu class qteH2 l(p"1} (BG ; Zp) as follows. This

group is canonically isomorphic to

H2^-^(BSG; Z,) H2i<>-»(Bsew; Zp)

for n>2i(p — 1); and in the last group one has the i-th Wu class of the universal
oriented (« — l)-spherical fibration.

It follows incidentally that the characteristic class q^n) of a spherical fibration n

can be defined even ifn is not orientable.7) For n is classified by a map f : B-+BG(n) c BG,

and we can define q^n) to be the class f*qt.

7) This could also be proved by constructing a Thom isomorphism with suitably twisted
coefficients.
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The diagonal mapping h>* in the Hopf algebra H*(BG; Zp) satisfies

* E (2.4)

j ; + Qt ® Pqj), (2.5)

where q0 is defined to be 1. This shows that the qt and Pqt generate a sub Hopf algebra

ofH*(BG; Zp). But it follows from Lemma 1 that the qk are algebraically independent.
Applying Borel's theorem to this subalgebra, this proves:

Corollary 3. The subalgebra of H*(BG; Zp) gênerated by the qt and pqt is free
commutative, with ail of the qt and some subset of the pqt as independent générâtors.

Of course this "subset" may be the entire set. The question as to whether the Pqt

are independent is discussed further in Appendix 3.

(Remark. No fiqt in H*(BG\ Zp) is actually zéro. This follows from (2.5) and the

fact, which we will prove in § 3, that fiqx =t=0.)

Thèse results leave many unanswered questions. For example consider the natural
homomorphism

j*:H*(B0;Zp)^H*(Bo;Zp).

Question 1. Is the image ofy* generated by the Wu classes 7 *(^)?
Question 2. Does this image coincide with the set of ail characteristic classes in

H*(BO; Zp) which are invariants of fibre homotopy type?

Question 3. Does H*(BG; Zp) split as a tensor product of Hopf algebras:

The second factor should presumably be equal (in the notation of [17, § 3]) to (Image

j*)\\H*(BG;Zp).

§ 3. The A -invariants of BSG

First let me give a brief review of the concept of "A>invariant". Given a simply
connected CW-complex B let BiOft~^ dénote some complex which is obtained from B
by adjoining cells of dimension > t -f 1 so as to kill off ail of the homotopy groups in
dimensions >t. Clearly the pair (J3t(M~1], B) is f-connected; so that:

Hi(BiO't~i\B) 0 for i^t, and
(31)

Thus the homology exact séquence of the pair (BlOft "1], B) in dimensions t, t+1 takes

the form

Ht+1B-+Ht+lBiO>t-1}->ntB-*HtB->HtBiO>t-11->0. (3.2)
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The (t+ l)-dimensional k-invariant of B is a cohomology class

defined as follows. For any coefficient group A the universal coefficient theorem,
together with (3.1) shows that i/r + 1(£co'*-1], B; A) is isomorphic to Hom(ntB, A).
In particular, taking A to be ntB itself, we obtain a canonical cohomology class in

/J'+1(#co'f-1], B; ntB) s HomfoB, tt,B)

corresponding to the identity map of nt B. The image ofthis canonical class under the
natural homomorphism

is called the k-invariant kt+1 ofB.
Now consider a complex B[0*f]. We may assume that i?[(M] is a subcomplex of

^[o,t-i] (jn fact starting with any given BiOft} one can adjoin cells of dimension
>t+1 so as to kill nt\ thus yielding a suitable i^0''"13.) The inclusion

£[0,f] ^ J^[O,f"l]

can be made into a fibre space
5[o,f]_^£[o,f-i]

by the usual construction. Hère B[0'f] dénotes the space of ail paths in BL0' '"1] which
end in the subcomplex 5e0»'1. The fibre will be denoted by K*. Clearly K* is an
Eilenberg-MacLane space of type K(ntB, t).

We will apply thèse constructions to the simply connected complex B=BSG; and
will try to compute the modp cohomology of B1s°q f] by induction on t.

Let p be a fixed odd prime. The integer 2(/?— 1) will always be denoted by r. Ac-
cording to Toda [24] the /7-primary component nj(BSG;p) of the finite group

njBsG Kj-i+nS"
is isomorphic to :

Zp for j r,2r,3r,...,(p-l)r
Zp for j pr-\
Zp2 for j pr;

and is zéro for ail other values of j less than (/? +1) r — 2. (Toda computes many
further groups, but this will be more than enough for our purposes.)

If nt B has no /?-primary component then clearly

So we only need to concentrate on the cases t — r, 2r, 3r,...,(/? — 1) r. For the first case
/ r, note that Jg[0'r] has the same moàp cohomology as the Eilenberg-MacLane
space Kr.
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For each m between 2 and p — 1 let

dénote the cohomology class which corresponds to the /?-primary component of the
A>invariant lrmr+icffmr+i/n[o,Il.r-i],ff R \

under some coefficient isomorphism8)

Theorem 3.1f2<m<p then the algebra H*Bls°Gmr~u; Zp) is isomorphic, in
dimensions less thon pr 2p(p — l), to thefree commutative algebra on générâtors

P'q^P'q, (i>0),

where q corresponds to thefirst Wu class qx under the natural isomorphism

O, mr- 1], >y \ rjr n y \

and where km is the p-primary component of the {mr+\)-dimensional k-invariant.
Furthermore, ifm<p—\ then km satisfies the relation:

((m + l)Plp~mpPl)km O. (3.3)

The proof, which will occupy the rest of § 3, will be by induction on m.

ProofofTheorem 3for m 2. Consider first the modp cohomology of an Eilenberg-
Maclane complex K(ZP, 2t). Let u dénote a 2f-dimensional generator. According to
Cartan [5]:

The algebra H*(K(Zp, 2t); Zp) isfree commutative on the generators

Piu9fiPiu,P^1fiu,liP^lfiui (0 < î < 0;

together with other generators (such as PpPlu) of dimension > (p +1) r-\-2t.
(See also [9, p. 29]. The précise statement is that H*(K(Zp, n); Zp) is free commutative

on generators

pi pii pi pi2 pe3 pi3 u

where the integers ij>0 and ey 0 or 1 are almost ail zéro, and are subject to the

inequalities

Sj+pij < ij-i < idim(pBjPîjpej+lPij+i ...u)
fotj>2.)

8) Since this coefficient isomorphism is more or less arbitrary we will feel free to replace km by
any non-zero multiple A-km, with AeZp.
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Now recall that the space BiOt 2r~~n 2^'2 r~1] has the mod p cohomology of an
Eilenberg-MacLane complex K(ZP, r). LetqeHr(Bi0*2r~u; Zp) correspond to the Wu
class ql. It follows that:

The algebra H*(#t0' 2|"~ *J; Zp) isfree commutative on the generators

Plq, pPlq, Pi+1Pq, pPi + 1

Pq, (0 ^ i < p - 2);

together with other generators of dimension >{p + 2) r.
Let us compute the ^-invariant

This can be characterized, up to multiplication by units in Zp, as the élément which
générâtes the kernel of the restriction homomorphism

But recall the identity (1.11):

2P1/*<?1-iSP1<h

in H2r+1(B; Zp). Since i*q qi this shows that

Therefore k2 must be a multiple of 2P1/?*/—pplq. By changing the isomorphjsm

n2r(B;p)^Zp if necessary, we may assume that k2 is equal to 2P1 fiq — pPlq.
A short computation now shows that:

F/c2 0 + 2)Pi+1j5g-^Pi+1g, (3.4)

pPlk2 (ï + 2)pPi+1pq, and (3.5)

Pfj5fe2 2j?Pf+1jSg; for i<p. (3.6)

(Hère is a convenient subset of the Adem relations for this purpose. If i<p then

Using thèse relations the three formulas above follow immediately.)
Formula (3.4) clearly shows that we can use Plk2 in place of PlH+ipq as a free

generator for the algebra H*(Bi0l2r~11; Zp); providing only that i + 2<p. But if
i + 2>p then the élément Pi+ipq has dimension 0 + 2) r+1 >pr. If we only attempt
to describe the situation in dimensions <pr, then such éléments can be ignored.

Similarly (3.5) shows that pPlk2 can be used in place ofpPi+1 pq as a free generator.

Thus:
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The algebra H*(Bi0f2r~11; Zp) isfree commutative, in dimensions <pr, on the re~

quired generators

Finally we must verify the relation

But this follows immediately from (3.5) and 3.6). Thus we hâve proved Theorem 3

for m 2.

Remark. If we go slightly beyond the range of dimensions under considération, it
is interesting to note the relations Pp~1q qp and

This last relation gives rise to a new cohomology class in Hpr(Bi0t2r}; Zp).
Now suppose inductively that Theorem 3 is true for a given value of m, with

2<m</?-l. Making the inclusion BiOtm^ciBio>mr~n into a fibre space

we recall that the fibre is an Eilenberg-MacLane space of type K(nmrB, mr). We will
study the mod p cohomology spectral séquence of this fibration. (See for example
Spanier [19].) Let

umsHmr(Kmr;Zp)

be the generator whose transgression t:um dmr+1um is equal to the ^-invariant km.

In dimensions less than (p + m +1) r the cohomology of Kmr is free commutative on
the generators

Fu^pFu^F^pu^pP^'pu^
where 0<i<m(p— 1).

It will be convenient to let 6 dénote the cohomology opération (m+l)?1]?- m$P x

of degree r+1. Note the identity
0km 0,

which is assumed (3.3) as part of the induction hypothesis. Let vm+1 dénote the class

6um of dimension mr + r+l in H*(Kmr; Zp). Since um is transgressive it is clear that

vm+i is transgressive9) and that

T(vm+l) x6um ± 9xum ±0km O.

Similarly each ofthe classes PivmJ(.upPivm+uPipvmjtl is transgressive. A short

9) At least this is clear if one uses the alternative définition: a cohomology class ueHlFis
transgressive\ for a fibration Fc E-+B, if âueHt+1{Et F) cornes from a cohomology class in H*+1(B, 6o).
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computation shows that

P'vm+1 ((i + m + l)P' + lp - mpPt+l)um,
pP'vm+l=(i + m+l)pPl+1pum, and

P'pvm+l (m + l)jSP'+1jSum; for i<p.
Combining thèse last two equalities for ^ 1 we obtain the relation :

l l)vm+1=0. (3.7)

From the first two we see that Plvm+l and pplvm+i can be used in place of Pl +1Pum

and PP1 + 1
Pum as free generators for the cohomology of the fibre Kmr; providing that

that i + m+1 <p But the dimension ofPl+lPum îs (i + m+1) r+1 ; so thosePI+1/?wm
with z + m +1 >p hâve dimensions >pr and can be ignored This proves:

Assertion A The cohomology of the fibre Kmr is free commutative in dimensions

<pr on transgressée generators

Plum,pPlum9Plvm+upFvm + l, (i>0).
The cohomology of the base j5[0'mr~1] is free commutative in dimensions <pr on

generators
P'q,pP'q,P'km,pP'km, (i>0),

and the transgression is given by :

[It is important to note that the fibre has no cohomology m dimension pr— 1

Hence we do not need to worry about the transgression

Hpr ~' (Kmr; Zp)-? Hpr(BC0 mr~1]; Zp)

where the group on the nght is unknown ]

We are now in a position to completely descnbe our cohomology spectral séquence

in the dimensions less thanpr The E2 term is given of course by

£** /f*(e[0'mr"1]; H*(Kmr; Zp));

and is free commutative, in dimensions less than pr, on the generators

P'um,pPlum,P'vm+1,pPlvm+1,

P'q,pP'q,Plkm,pPlkm.
The transgression

0
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is zéro for t<mr; and it follows that dt is identically zéro for t<mr9 so that

E2 E3 =••• Emr Emr+l.
The boundary operator

j pO,t T?mr+l,t — mr
"mr+1 >£»ir+l ~"* nmr+l

carries um into fcm and is zéro on the other free generators. It follows easily that the

cohomology Emr+2 oï(Emr+l, dmr+l) is free commutative, in dimensions <pr9 on ail
of the generators listed above except um and km.

[Proof. The identity drm+ x 04) ikmul~ * shows that the free subalgebra generated
by um and km has trivial homology in positive dimensions less thanpmr. But the entire
algebra can be considered as the tensor product of this subalgebra and a complementa-

ry free algebra on which drm+l opérâtes trivially. The Kûnneth theorem asserts that
the cohomology of such a tensor product is equal to the tensor product of the cohomol-
ogies. Hence Erm+2 is free commutative on the remaining generators, in dimensions

<pr].
Similarly the operator drm+2 kills the generators fïum and fikm9 the operator

dr(m+i) + i kills P1um and Plkm> and so on, until ail of the Plum, Plkm9 pPlum and

pPlkm hâve disappeared. This proves:

Assertion B. The E^ term of this spectral séquence is free commutative in
dimensions less thon pr on the generators

It now follows immediately that if* (B1?'m r] ; Zp) is also free commutative in this

range of dimensions. In fact, if

dénotes any cohomology class whose restriction to the fibre is vm+19 then we can take

as free generators.

P'âpP'&P'v^pptv'^
The same description holds for H*(Bi0'(m+1) r~1]; Zp), since this algebra is canoni-

cally isomorphic to H*(Éi0*mr'ï; Zp). Now consider the next ^-invariant

2,

Lemma3. The restriction ofkm+1 to thefibre Kmr of thefibration Bl?>m^-+Bi0>mr-n
is non-zero.

This will be proved at the end of § 3. Assuming Lemma 3 for the time being, the

proof of Theorem 3 proceeds as follows.
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The restriction of km+1 to the fibre Kmr îs clearly some multiple of vm+ v (For the
only other basis élément pPlum m H(m + 1)r+1(Kmr; Zp) does not extend over the
total space Smce this restriction îs non-zero, by Lemma 3, we may as well use km+l
in place of ym'+1 as the extension ofvm+l This proves:

Assertion C. The algebra H*(B10'{m + i)r~n\Zp) isfree commutative, in dimensions
less than pr, on the generators

Plq9pPlq,Plkm+l9pFkm+1, (i>0).
Thus in order to complète the induction we need only prove that km+l satisfies the

required relation (3.3) The foliowing proof îs due to Stasheff
Recall from § 2 that B îs an //-space It follows that each BiOt f] îs an //-space, and

hence that H*(BiOftl; Zp) îs a Hopf algebra. Furthermore the /^-invariant

/cm+1€tf*(B[0'<m+1>'-1];Zp)

must be primitive, since it îs the lowest dimensional élément in the kernel of the

homomorphism ff
of Hopf algebras. Hence ail of our free generators

Plq,pPlq,Plkm+upPlkm+l

for this algebra H*(Bi0'(m + 1)r~î); Zp) are primitive In fact:

Thèse generators, and their linear combinations, are the only primitive
éléments in dimensions less than pr

This follows easily from the more gênerai statement that the set

of primitive éléments in a tensor product of Hopf algebras îs equal to the direct sum

P(Al)®*--®P(An) of the sets of primitive éléments (Compare [17, § 4 10]

Now consider the élément

This îs also primitive Hence (if we assume that m + 2<p) there must be some linear
relauonoftheform

P^fcm+1 A-^P1 km+1, (3.9)

with ÀsZp. Restncting to the fibre Kmr this implies that

But formula (3.7) shows that X must be congruent to (m + l)/(m + 2) modulo/?. Hence
formula (3.9) must take the required form:
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This complètes the induction; except that we hâve not yet proved Lemma 3.

ProofofLemma 3. Suppose that the restriction of the À>invariant km+1 to the fibre
Kmr were equal to zéro. Using Assertion B it would follow easily that km+l must
belong to the subalgebra of H*(É^'mrl; Zp) generated by the classes Plq and pPlq
which corne from the base space.

On the other hand we know that km+i is a primitive élément; and that the only
primitive éléments in this subalgebra are the generators and their multiples. (Compare
(3.8).) In particular the primitive éléments in dimension (m+1) r+1 are ail multiples
of the generator f}Pmq. Thus:

In order to prove Lemma 3 it is sufficient to prove that km+1 is not a

multiple ofpPmq.
}

Now consider the inclusion maps

U(n)czSO(2n)czSG(2n).
Thèse give rise to a map

BSG.

We will use j to compare the A:-invariants of B=BSG with those of Bv.
First consider the more gênerai case of a map/:lr-> Y. There is an induced map

which is well defined up to homotopy. Consider the diagram

-1];7TfX) Ht

where/* dénotes the coefficient homomorphism ntX-*nt Y. The relationship between
the ^-invariant kt+1(X) in the left hand group and the ^-invariant kt+1(Y) on the

right is now described by the identity

(Compare Kahn [14].)
In order to apply (3.11) we first need a description of the ^-invariants of the space

Bv. Recallthat:
(a) The homotopy group nnBv is infinité cyclic for n even and is zéro for n odd.

(b) The intégral homology group HnBv is free abelian for n even and is zéro for
n odd.

(c) The Hurewicz homomorphism n2tBu->H2tBv carries a generator into an
élément which is divisible by precisely (*— 1)!

(See Bott [3, p. 88] and [2].) Using the exact séquence (3.2) it follows that
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H21+! Étf*2 ' "1] is zéro, and that

Therefore the cohomology group Jf2'*1^0'2'"11; Z) is cyclic of order (f-1)!.
Furthermore:

77*e k-invariant k2t + l ofBv is a gênerator ofthisfinite cyclic group
^2f+l^[O,2f-l] (3.12)

This is clear since k2t + 1 must generate the kernel of the homomorphism
H2t+lB$'2t-"->H2t+lBv. Alsowewillneed:

The Bockstein homomorphisms

(}:H2'(B<i?'2'-";Zp)-+H2<+l(B[o-2'-ihZp) (3.13)

is zéro ift>2p+l.
For p can be non-zero only if the corresponding homology group

admits the cyclic group Zp as a direct summand. If t— \>2p then this is certainly
not the case.

Now set 2t equal to (m+1) r 2(m+l)(p — 1). Since 3<m + l</?, the required
inequality t>2p+1 is easily verified; so the assertion (3.13) applies.

Next we must look at the coefficient homomorphism

Again we assume that 2t (rn+ 1) r<pr.
The image j*nltBu contains thep-primary component

For j* can be described as a composition

n21&U -* n21&so "* n2tBsG>

where the first homomorphism maps a generator onto either a generator or twice a

generator, according to Bott; and where the image J{n2tBso)is known to contain
the/?-primary component of n2tBSG for 2t<pr—l, (See [16].)

It follows easily from (3.12) and (3.14) that the induced homomorphism

carnes the (2t+ l)-dimensional fc-invariant of Bv into a class (j^)^k2t+1(Bu) whose

/?-primary component is not zéro.

Proofthat km+l is not a multiple of pPmq. If km+1 were a multiple of f!Pmq then
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the image jiOt 2f~1]*fcw+1 would be a multiple of

which is zéro by (3.13). On the other handji0t2t~11*km+l is equal to the/?-primary
component of(j^klt+1(Bv) by (3.11); and we hâve just shown that this/?-primary
component is not zéro.

Thus km+1 cannot be a multiple ofpPmq. According to (3.10) this proves Lemma 3,

and complètes the proof of Theorem 3.

§ 4. Conclusion: The cohomology of BSG

Now let us carry the inductive calculation of H*(Bi£Gtl; Zp) one stage further.

Lemma 4.ThealgebraH*(Bls°è(p~1)rl; Zp)^//*(5^p:r~2]; Zp)isfreecommutative^ p)

in dimensions less than pr on the générâtors Plq and pPlq. Hence H*(BSG; Zp) isfree
commutative in dimensions less than pr—\ on the corresponding generators Plq\ and

Proof. First consider the fibration

£(p- l)r ^ £[0, (p-l)ri ^ £[0, (p- l)r- 1]

The fibre has only the cohomology classes up^1 and Pup^x in dimensions less than

pr. According to Theorem 3 the base is free commutative on

in this range of dimensions. Since

*("P-i) Vi> *(PuP-i) PkP-i

it is clear that the cohomology of the total space Bi?t{p~l)rl is obtained simply by
eliminating thèse four generators.

The cohomology ofBi0tPr~21 is the same since nt(B;p) 0for (p-1) r<t<pr-2.
But Bi0'pr~21 can be obtained from B=BSGby attaching cells of dimension >pr. This

opération may diminish the cohomology in dimension pr— 1 ; but it certainly cannot
change anything in dimensions <pr—\, This proves Lemma 4.

In order to prove Theorem 4, as stated in the introduction, it is only necessary to
note that we can use qi+i in place oîPiq1 and Pqi+1 in place oï pPlqx as free generators.

Since this follows immediately from § 1.12; this complètes the proof.

Appendix 1. The rational cohomology of BGin)

This appendix will prove Theorem 5, as stated in the introduction.



On Characteristic Classes for Spherical Fibre Spaces 73

From the fibration

and Serre's theorem that tt,^2'"1 is finite for i#2f — 1, we see that 7ZiSG(2t) is finite
for i + 2^—l, and that n2t-i SG(2t) has rank 1. Passing to the classifying space
BsG(21> it follows that the rational cohomology H* (BsG(2f) ; 0 is a polynomial algebra
on one generator of dimension 2t. But the rational Euler class x lives in dimension
2t, and is not zéro. Thus:

Lemma 5. The algebra H*(BSG(2t); fi) isfree commutative, with the Euler class x
as generator.

This space BSG(2t) is equal to the 2-fold covering of BG{2t). Let

f 'BsG(lt) ~* BsG(2t)

be the non-trivial covering transformation. Since / corresponds to the opération of
reversing the orientation of a bundle, it is clear that

Now H*(BG(2t); 0 can be identified with the subalgebraof i/*(j9SG(2f); 0consisting
of éléments invariant under/*. Hence:

The algebra H*(BG(2t); Q) isfree comrnutative, generatedby the class x2.

If we map back to the cohomology ofBSO(2t), it is well known that x2 corresponds
to the 4/-dimensional Pontryagin class pv This proves half of Theorem 5.

Similar arguments show that the homotopy group UiSG(2t+l) is finite for
/ 4= 4 / — 1 and of rank 1 for i 4t—l. Hence:

The algebra H* (Bs G(21 +1} ; Q) isfree commutative on one generator ofdimension 41.

To complète the proof we must show that the natural homomorphism

is not zéro. Consider the diagram

where the bottom arrow is known to hâve kernel zéro.

Comparing the fibrations SO{2t+ \)-*S2t and SG(2t+ \)->S2t one sees that

has rank 1. Hence the corresponding rational cohomology homomorphism j* is

certainly not zéro. Looking at the diagram above it follows that i"*#=0.

The only possibility is clearly that j* carries the generator in #4r(2JsG<2t+i); fi)
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into a multiple of the Pontryagin class/v Since the Pontryagin classes of a bundle do

not dépend on orientation, it follows easily that

This complètes the proof.

Appendix 2. The two if-space structures on SF

Any loop space QXhas a natural /f-space structure, and the corresponding classi-

fying space BQX has the homotopy type of X. In particular the «-fold loop space QnSn

has a classifying space which we can identify with Qn~1Sn. The component (QnSn)0

of the constant path also has a classifying space which we can identify with the uni-
versal covering space Qn~1Sn. (An argument sirnilar to the proof of Corollary 1 in § 2

shows that Qn~1 Sn has the homotopy type of S1 x Ûn~ * Sn.)
Since the //-space (QnSn)0 has the homotopy type of SF(n) one might conjecture

that the classifying space Ûn~l Sn has the homotopy type ofBSF(n) ; but this is far from
true. Thus H*(BSF{n);Zp) contains the full polynomial algebra with independent

generators qu q2,..., qW2y ïn contrast:

Assertion. Every positive dimensional cohomology class y in H*(Qn~1 Sn; Zp)
satisfies the identity yp 0.

Proof. Dyer and Lashof [8, § 5.2] show that the homology H^(Qn~l Sn; Zp) is a

primitively generated Hopf algebra. This implies that every élément of the dual Hopf
algebra has height/?. (Compare [17, § 4.20].)

Similar remarks hold modulo 2. Although the spaces Qn~1 Sn and BSFin) hâve the

same homotopy groups, they are distinguished already by the first A>invariant in
H4(K(Z2,2);Z2).

It should be remarked however that modulo p, and in the range of dimensions
considered in Theorem 4, one cannot distinguish between the two classifying spaces.

It seems likely that one could use thèse ideas to get a better grasp on the cohomology
of BSF BSG.

Appendix 3. Are the Pq( independent?

It follows from Theorem 4, together with Theorem 2 Corollary 3, that the cohomology

classes

are independent. That is they freely generate a free commutative subalgebra. But the

question as to whether ail of the pqh i>\, are independent remains open. One possible
attack on this question is the following.
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Problem. Does there exist a spherical fibre space £ over some base B% so thaï the

two cohomology classes q^Ç) andPqx{Ç) in H*(B^; Zp) are independent; but so thaï ail
of the qi{Ç) with i>2 are zéro?

One candidate for such a £ would be the canonical 3-spherical fibre space over

Theorem 6. Suppose that such afibre space £ exists. Then ail ofthe universal classes

qt and Pqh i> 1, in H*(BG; Zp) are independent.
The proof, which is similar to that of Lemma 1, will require a graded version of

the classical theory of symmetric functions, as follows.
Over a field of characteristic 4= 2 let A be the free commutative (graded) algebra

on generators
•*1> •••» XnEA

and generators
yu...,ymeA2t+1.

Let P:A-+A be the dérivation which carries each xt into yt and each yt into 0. Let
(TieA2ti be the z'-th elementary symmetric function of xt,..., xn.

Lemma 6. The éléments ou...ycrn and fi a t,..., j6 onfreely gênerate afree commutative

subalgebra of A.
[In fact this subalgebra consists precisely ofthose éléments of A which are "symmetric"

in the sensé that they are fixed under the action ofthe symmetric group of degree

n, which acts on A by permuting the xt and permuting the yi pxt correspondingly.]
The main step in the proof is the vérification that the w-fold product

is non-zero10). This can best be checked by inserting the explicit formulas

pax yi +••• + yn

P °2 Oi *2 + *i yi + J>i *3 + * •* + *»-1 yn)

and then multiplying out and noting that the coefficient of yty2...ynx\~l xn2~2 ...xxn_ t
in the resulting expression is equal to +14=0.

The rest of the argument is purely formai. Let TV dénote the set {1, 2,..., n} and
for each

10) Actually one has the following explicit identity: (/?cn)(/?cr2)...(pan)=yi...yn
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Since %#=() we see that there is no relation of the form

/(x1,...,xn)tJV 0, /*0.
Hence a fortiori there is no relation of the form

g((T1,...,orn)TN O, g+ 0.
Now consider a relation

£*i..->*i.)*s 0. (1)

Multiplying by tn we see that g4>tN=0 and hence that g<t>=0. Suppose by induction
that gr 0 f°r a^ proper subsets Ta S. Then multiplying (1) by rN_s we obtain
±gsTjV=0 and hence gs 0. This complètes the proof of Lemma 6.

Remark. Hère is an outline of a rather inélégant proof that the at and Pat generate
the subalgebra consisting of ail "symmetric" éléments of A. It is convenient to assume
that t^n. The number of linearly independent symmetric éléments of A2tm+k, where

0<k<n, turns out to be given by the expression

where

l)/29

and where pk(i) dénotes the number of partitions of i into at most k parts. On the
other hand the number of linearly independent monomials of the form

in A2tm+k turns out to be

where Pk,i(j) dénotes the number of partitions ofj into at most k parts each of which
is less than or equal to /. Since y=y' (compare the generating fonctions given in [15,

p. 5]), the conclusion follows.

Proof of Theorem 6. Consider the product of n copies of B^ and the n projection
maps

nt:Bç X"- x B^B^9 (1 ^ i < n).

Let rj be the Whitney join of the n induced fibre spaces ttJ8 £,..., n*Ç. It follows easily
from Lemma 6 that the classes

in H*(BçX -Bç; Zp) are independent. Since n can be arbitrarily large, this proves
Theorem 6.
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