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On Hopf Invariants

J. M. Boardman and B. Steer1)

Introduction

There are various opérations in homotopy theory ail called generalized Hopf
invariants. In § 2 we give axioms for Hopf invariants, resembling those for character-
istic classes. We prove that thèse axioms define a unique séquence of homotopy
opérations

Xn:[EA, EB\ -> [EnA, EB aEB a • • a ES]

From the axioms we can find the behaviour of Xn on composites and Whitehead
products. This enables us to express Xn in terms of the Hilton-Hopf invariants [12], in
§ 4. On the other hand, we show in § 3 that Xn is the («— l)-th suspension of the w-th

James-Hopf invariant [16]. We deduce that the James-Hopf invariants and the

Hilton-Hopf invariants détermine one another, apart from a few suspensions.
In § 5 we construct a séquence of homotopy opérations by writing down explicit

maps. Since the axioms hold, thèse opérations coincide with the opérations Xn. We
know after Pontrjagin [23] and Thom [30] that one may regard an élément of
nr (Sk) as a framed-cobordism class of framed, compact, smooth submanifolds of
Rr with codimension k. We interpret Xn in this context as a géométrie construction on
framed submanifolds of a smooth manifold, which generalizes the géométrie
interprétation given in [10] of the suspension of the Hopf invariant due to G. W.
Whitehead [35] and Hilton [12]. (Notice that with our conventions there is a

différence of sign between our invariant X2 and the invariant h' of [10].) Kervaire [18]
has given another géométrie construction for the suspended Hopf invariant, which is

easily seen to be a stable suspension (up to sign) of X2. One may regard our géométrie
invariant, or that of [10], as superseding it.

Perhaps the most interesting section is § 6, where we illustrate how the géométrie
invariants occur in differential topology. Many of their properties were initially
proved (in the case of sphères) by direct géométrie methods.

Particular attention has been paid throughout to signs. We include an Appendix,
§ 7, comparing the signs of the various Hopf invariants on homotopy groups of
sphères.

x) Pendant une partie de ce travail le deuxième auteur a bénéficié d'un bourse du Fonds National
Suisse.
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1. Notation

The only spaces we shall consider are connected CW-complexes and their loop
spaces. AU our spaces are assumed to be equipped with a basepoint o, whenever one is

needed; it is to be respected by maps and homotopies. In the case of a CW-complex
the basepoint must be a vertex. The support of a mapf:A-+B is the closure of the
inverse image/"1 (B—o). We say fis zéro ataeA iffa=o. We dénote the composite
oïf\A-+B and g:B^C by gof.

The wedge A v B of spaces A and B is their union with the two basepoints identified
together to form the new basepoint. If B is a subspace of A, AjB will dénote the
identification space formed from A by identifying B to a new basepoint o. We may
include A v B in A x B as {A x 6) u (o x B). The smash product (or reduced joiri) AaB
of two CW-complexes is the identification space (A x B)/(A v B), where we give

AxB, and hence AaB, the obvious CW-topology. We shall write AnB for the smash

product of n copies of B.

We shall write Rn for euclidean «-space, Dn for the unit disk in R", and S11""1 for
its boundary, the unit sphère. In homotopy theory it is useful to hâve also the sphère

In DnjSn~1, which is homeomorphic to Sn, but not canonically. (The choice of
homeomorphism Sn^In is discussed in more détail in the Appendix.) The suspension

EA of A is defined as AA(I/dI) (which is canonically homeomorphic to A aI1),
where / is the closed unit interval [0, 1], with endpoints ôl= Ou 1, and basepoint 0;
E is a functor. The «-fold suspension En is the functor E iterated n times. We shall
dénote by s any identification map. It will be convenient always to regard EA as

being obtained from A x R by the map s: A x R-*EA identifying o x R, A x — oo ,0]
and A x [1, oo), to the basepoint. Similarly for s: A x Rn-+EnA.

We dénote by \A9 B~\ the set of homotopy classes of maps from A to B, where the

maps and homotopies must, of course, respect the basepoints. By [4], track addition,
which we write as +, makes [EA, S] into a group, and [E2A, J5] into an abelian

group. Then the class -ie[EBy EB] is defined, where i is the class of the identity
map of EB. The involution U on [A, EB~\ is induced by composition with — i.
We stress that, even when aenr(Sn), the éléments a, £/a, — a, and — Ua are in
gênerai ail distinct. However, we do hâve, trivially, UEp EUf}=-Ef} for any

Associativity and commutativity of the smash product define shuffles EmAAEnB
^Em+n(AAB) uniquely, provided the copies of 7/3/remain in the same order. Thèse

shuffles are frequently used and suppressed from the notation.
Given any wedge B1vB2v "vBn or product B1xB2X"XBn9 we shall write

pr\B1w B2v •••v Bn-+Br or pr:BlxB2X'-xBn-+Br for the projection to the r-th
factor, and ir:BrczB1vB2 v ~-vBn or ir:BrczBi xB2x ••• x Bn for the inclusion of the
r-th factor (making use of basepoints). We write ir for the homotopy class of /,, and
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nr for the homotopy class of pr. (We shall normally use Greek letters for homotopy
classes, and Roman letters for maps.)

Thepinch map rn:EA-+EA v EA v ••• vEA (n factors) is given by

rns(a, t)= iks(a9 nt - h + 1) for k - 1 <nt <k, (1.1)

where s:A xR-+EA is the identification map, and aeA, teR. We write pn for the

homotopy class of rn. Then pn ix +12 H h /„. We also need the backwardpinch map
fn: EA-+EA v EA v • • • v EA defined by

rns(a, t) iks(a, nt - n + k) for n - k < nt < n - k + 1, (1.2)

and its homotopy class pn in+in-iH h^. It is clear that pn pn when A is a

suspension. In gênerai we hâve pn — Upn.

For any space A, the reduced diagonal A:A-+AaA is the map given by Aa

aAa(aeA). It is nullhomotopic when A is a suspension. The smash product functor
defines a pairing

[EmA, B~] x [EnA, C] -> [EmA a £M, B a C]

The reduced diagonal in ^4 yields the map

Em+nA'^n^-^Em+n(A a A)^EmA a £M,
which induces the opération

\EmA a £"yl, B a C] -> [Em+nA, B a C]

Définition 1.3. The cup product pairing

[EmA, B] x [EM, C] -> [£m+M, B a C]

is the composite of thèse two opérations. We write a- /? for the cup product of a and /?.

Thèse products are relative to A. If A is itself a suspension £"1), we hâve two cup
products, defined with respect to A or D. Those defined with respect to A vanish,
because A : ED-+ED a ED is nullhomotopic. We summarize the elementary properties
of the cup product.

Lemma 1.4. The cup product is bilinear and associative. It vanishes when A is a

suspension.
As a particular case of the cup product pairing, we hâve

[EA,EB] x \EA,EC\-+\_E2A,EB aEC].
From [28] we know that this can be desuspended, as a pairing

[EA,EB] x [EA,EC]-*[EA,E{B a C)], (1.5)

which is induced from a map %:QEBx QEC->QE(B a C).
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Loop spaces. The usual loop space on a space A is a //-space which is not associative.

Therefore we shall use Moore's loop space [22], which is.

Définition 1.6. Given a space A, the Moore loop space QA is the set of pairs
(/, k), where keR, k^O, and/:R-»v4 is a map such that/f o unless Q<t<k. We
topologize QA as a subspace of AR x R, where AR is given the compact-open topology.
The basepoint of QA is the zéro loop (o, 0). We call k the length of the loop (/, A:).

The multiplication (or 'addition') of loops in QA is defined by (/, k) + (g, m)
(h, k + rri), where

ft ifO<t<k,
ht g(t-k) if/c<r</c

o otherwise.

This makes QA into an associative //-space, having the zéro loop as identity élément.
The ordinary loop space Qt A is the subspace of Q A consisting of loops of length 1.

Lemma 1.7. Q1A is naturally a déformation retract ofQA.
Proof. Define the retraction q\QA-±Q^A by q(fk) (fu 1), where/1/=/(A:/).

Then q is continuous and is a déformation retraction. A deforming homotopy is

easily constructed.
Given a mapf:EA-+B, we have/o^-:^ x R-+B, and therefore/':A~* QB, defined

by (f'a)t=fs(a, t) (aeA, teR). We hâve a loop (ffa, 1) of length 1. This defines the
natural adjoint isomorphism of groups

where the multiplication in QB is used to make [AyQB~] into a group. The functors E
and Q are adjoint functors (on homotopy classes). The above isomorphism may also
be regarded as the transgression of the fibration LB->B, where LB is the space of
Moore paths on B.

2. Axioms for Hopf invariants

In the following définition B runs through ail connected based CW-complexes,
and A runs through ail finite connected based CW-complexes. We use the cup product
1.3.

Définition 2.1. A Hopf ladder is a séquence of natural transformations
(opérations)

Àn: [EA, EB] -> [EnA, AnEB~], for n 1, 2, 3,...,
such that:

(a) (identity) Àt is the identity opération,
(b) (normalization) XnEa 0 if ae\_A, B~] and n> 1,

(c) (Cartan formula)
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whenever a, p e [E A, E B~\.

(If «>1, the order of the terms in (c) is irrelevant, because then [EnA, AnEB~] is

abelian.)

Theorem 2.2. There exists precisely one Hopfladder.
The proof of this main theorem is deferred to § 3, where it will be included in 3.15.

In the subséquent sections we shall use thèse axioms to express kn in terms of
various kinds of previously defined Hopf invariants. This will justify the name

'Hopf ladder'.
A particularly useful spécial case is when A is a suspension. Then the cup products

vanish, by 1.4.

Corollary 2.3. Xn:[EA, EB~]^>[EnA, AnEB~] is a homomorphism whenever A is

a suspension.
The Cartan formula (c) suggests the usual formalism.

Définition 2.4. We define formally the exponential Hopf invariant

ea 1 + a + A2a + A3a + X4a H—

The terms lie in différent groups, except that 1 is purely formai. With this
définition we can rewrite the axioms succinctly as

eEa=l+£a, and ea+p e*-ep. (2.5)

Further support for the name 'exponential' will be given by 3.17, when we show

that in certain spécial cases n\ Ana a" (the cup power): so that, very formally,
e* Z<xnlnl

Various extensions of Theorem 2.2 are possible.

Remark. Our proof of 2.2 will show uniqueness of truncated Hopf ladders, in
which we are given kn only for n^n0, satisfying the relevant axioms. Further, we use

only the naturality in A, not that in B. Again, we can allow A to run through finite-
dimensional CW-complexes.

Remark. We can give a desuspended form of 2.1. Instead of the cup product, we
use the ^-pairing 1.5. We postulate opérations

[EA9EB~]-+[EA,EAnB]

satisfying (a) and (b) as before, but in (c) we demand equality only modulo an 'idéal'
generated by certain Whitehead products. Uniqueness is thus modulo this 'idéal',
which is killed by one suspension.
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3. The invariants of James

In this section we introduce James's theory [15] of reduced product spaces, and the
resulting James-Hopf invariants [16]

yH:lEA9EB]-+tEAfEAHB].

This theory enables us to prove our main theorem 2.2, and to show that the suspended

opérations En~lyn form a Hopf ladder.
As a by-product, we deduce the formula for /lrt(/?oa).
As always, B is to be a connected CW-complex with basepoint o. We collect from

[15] the salient facts about the reduced product space Bœ.

Lemma 3.1. B^ is thefree monoid on the points ofB—o, with o as identity, topolog-
ized as a CW-complex. It contains Basa subcomplex. Given any associative H-space Xf
with basepoint as the identity, any mapf: B-+ X (or homotopyft : B->X) extends uniquely
to a continuous homomorphism g'.B^-^X (or homotopy of homomorphisms g^B^-tX).

Proof. This is essentially Theorem 1.11 of [15].
If B has countably many cells, B^ is an //-space. In any case, the multiplication

B^ x Bn-tB^ (which we write as +, even though it is obviously not commutative) is

continuous if we use the CW-topology on the product B^xB^. The subcomplex
Bn of B^ is the subspace consisting of ail «-fold products of points of B. Thus B^ is

the union of the séquence of subcomplexes Bn9 and BJBn_1^AnB.
A distance d on B is a real-valued continuous function defined on B, such that

do 0, and db>0 for ail b^o. Such functions always exist on a CW-complex B, and

any two are homotopic through distances, because they form a convex subset of RB.

Suppose given a distance d on B. Given beB and keR(k>0), let w(b, k) be the

particular loop in QEB with length k defined by

where s:BxUL->EB. Also, define w(o, 0) to be the zéro loop.

Définition 3.2. The canonical homomorphism (relative to d)

u:BO0-+QEB

is the homomorphism extending the map B-*QEB given by

ub w(b9db) (which is continuous).

We can now state the main theorem on B^.

Theorem 3.3. Any canonical homomorphism w.B^-^QEB is a homotopy équivalence,

Any two are homotopic.
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Proof. InTheorem5.6of [15], Jamesproved thatthecomposite qow.B^-^Qj^EBis
a singular homotopy équivalence, where q : QEB-+ Qt EB is the déformation retraction
we used in the proof of 1.7. For examination of the formula (7.1 of [ 15] reveals that qou
is precisely the canonical map as defined by James. Finally, we may omit the word
'singular', because Milnor has proved [21] that Q^EB has the homotopy type of a

CW-complex.
We shall use an adjoint form of this theorem.

Définition 3.4. Define the homotopy class coe^EB^, EB~] as the adjoint to the

homotopy class of any canonical map u.BO0-*QEB. Write a>n /*coe[£i?n, EB\
where ii

Lemma 3.5. Let A be afinite CW-complex, and ae\_EA, EB~\. Then there exists an

integer n, and fie [A, B^\, such that a con oE/3.

Proof. The class in [A, QEB] adjoint to a can be factored through some Bm by
3.3 and the finiteness of A.

Let Bn dénote the product of « copies of B. It will play the same rôle in this section

as the maximal torus in the theory of Lie groups.
The following lemma is well known.

Lemma 3.6. The identification (i.e. multiplication) map s:Bn->Bn induces an

injection

for any space X.

Proof We know from Theorem 8.2 of [4] that

s*:\EAnB9X]-*[EB\X]
is injective. We consider the commutative diagram

[EAnB, X] - IEBH, X] -* IEBH-19 X]
ï l

in which the top row is exact because AnB^BJBn_1 (see [4]). By induction on n

assume that s*:[EBn_l9 Ar]-*[2s2T~1, X] is injective. Then the diagram shows that

s*:[EBn, X]-*[EBn9 X] is injective.
The induction starts trivially with n= 1. Hence the resuit holds generally.
We combine 3.5 and 3.6 to prove an important lemma, which may be viewed as a

splitting principle. (It has an interprétation for certain types of quasifibrations ; see

[17].)

Lemma 3.7. Let A be a variable finite CW-complex, and X and Y be fixed spaces.

Suppose we hâve two opérations
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0, «F:[EA, EX]->[£>!, Y],

natural in A, which agrée on ail éléments of the form E<x1-\-Eoc2-\ hEan, where

ocl9 a2,..., ane[A, X\for ail A and ail n. Then <f> W.

Similarly for opérations

\E(A v4),EX]-*[Eyl, Y].

Proof. Take ae\_EA, EX] ; we hâve to show that <P<x *Fa. Since A is finite, there
exists a finite CW-complex B and homotopy classes /3e[EA, EB], ye[B, X], such

that oc Ey o/?. By 3.5, there exists n such that /? factors as œn oErj, where ne[A, B^\.
Naturality in A yields the commutative diagram

[£ A, E X] V [£ Bn, £ X] -pr>[£ B",

y] V
We hâve lifted ae[£i, £X] to J^yoco^G^^, EX], which gives s*(Ey

]. The crucial observation is that from the définition of con, we hâve

s*œn Ejii +En2 +•- +Enne[EBn,EB],
Hence

on which # and T agrée by hypothesis. Since s* is injective by 3.6, it follows that

In the second case, ae[E(Av A), EX] has two components, ocje\_EA, EX]
(j= 1, 2). We factor each ocj as £}>; o/^., where yje\_Bj9 X] and pje[EA, EBj]. Then we

put B=BlvB2,p=ilol]l + i2ol]2e[EA,EB], and define ye[£v£, X] as the class

including yt on ^ vo, y2 on °v52, and zéro on i?2 vo and ovBv The proof can

now be completed much as before.

It is time to introduce the James-Hopf invariants [16].

Définition 3.8. We define, for each n^ 1,

gn:B^^{AnB)^ by

gn(bi+b2+.-+bm) Zab(Tl Aba2A'"Aban, (bteB) (3.9)

summing over ail strictly increasing functions

where the ternis are to be ordered lexicographically from the left. (Compare Lemma
2.5 of [15].)

This map is not a homomorphism.
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Définition 3.10. The James-Hopf invariant

is obtained fromg* : [A, B^\-^\A9 (AnB)O0~\ by taking adjoints and using Theorem 3.3.

In order to compare yn with other opérations by 3.7, we need to compute its value

on éléments of the form Eccx + Eol2 H h Eccm.

Lemma 3.11. Take any éléments aije[A, B\ (1 ^j <m). Then

(the cup product), where we sum over a as in 3.8.

Proof. For eachy, choose a représentative fj.A-^B of a,-. A convenient
représentative of the adjoint to the track sum Eai + Ect2-] \-E(xm is the

given by

fa=fxa+f2a+- + fma. {a s A)
Then

Za A/ff2a A-"Afana

l Afa2 A'-'A/^)^ A a A-A a),

from which the resuit is clear.

Remark 3.12. The terms in 3.9 may be ordered in différent ways. James, in [15],
orders them lexicographically from the right. Toda [32] orders them lexicographically
from the left, as we do. In fact, one could use any System for ordering the terms,
provided it gives rise to a continuous map gn. One can show that there are just 2n-n\
such Systems of ordering, ail of them essentially lexicographie. From 3.11 one can
deduce that in gênerai (e.g. when B is the w-fold wedgeP2n(R) vP2/J(R) v ••• vP2n(R))
no two of the resulting maps gn are homotopic. On the other hand, we see from 3.7

and 3.11 that the corresponding suspended opérations

Eyn: [EA, EB~] -y [E2 A, E2AnB~]

are independent of this choice.

We consider the suspended James-Hopf invariants

£M"1yn: IEA, ES] -> [EnA, EnAnB] £ [EnA, AnEB], (3.13)

which we now know are canonical (in the sensé that they do not dépend on any
arbitrary choices). For thèse, 3.11 yields

l-£aff2 £«,„. (3.14)
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Theorem 3.15. The suspended James-Hopf invariants 3.13

En'1yn:\_EA, EB~\ -» [£M, EnAnB] s [E"A, AnEB~]

form a Hopf ladder. For any Hopf ladder (Xn) we hâve Xn En~1yn.

Proof Write A'n En~1yn for the opération 3.13. We must verify the axioms 2.1.

Trivially, (a) and (b) hold. To prove the Cartan formula, we compare the two
opérations given on (a, ft)e[EA9 EB] x [EA, EB]^[E(AvA), EB~\ by Â'n(<x + P) and

That they agrée on (a, p) when a Eolx + E<x2 + • • • + Eocm and p £& + ££2 + • • • + Epr
is clear from 3.14. By the second part of 3.7 (taking X=B and Y=Qn~1AnEB), thèse

two opérations must agrée generally. Thus (c) holds, and we hâve a Hopf ladder.
For any Hopf ladder (Aw), the axioms 2.1 détermine the value of Àn on ail éléments

of the form Ea^ + Ea2 H h Eocm. Then 3.7 shows that >^ Xn generally. This complètes
the proof.

This theorem includes Theorem 2.2, which is therefore now proved.
We can also deduce from 3.7 the expansion of Àn(p°<x). Given strictly positive

integersyr (1 <r<q) such that yx +j2 H ^jq ri> define the permutation map

T(jlJ29...Jq):(EB)q xRn-«-(£E xR^1"1) x(EB xF"1) x-x(EB x R''"1)
by grouping the factors of R"~g as R-71"1 xR-72"1 x ••• xRirl and rearranging the
factors of (EB)qxRn~q, taking care to keep the q copies of EB in the same order.
That is,

J29-~Jq)(bl9 b29...,bq, tu t29...9tH-q)

where bteEB and tkeR. Let rj(j\,j2, ...9jq) be the class of the map

En~qAqEB ^ EJlB a EJ2B a •• a Ej«B

induced from T(jl9j29 jq) by identification. This is not a shuffle in the sensé of § 1.

Theorem 3.16. Let <ze\EA, EB} and pe\_EB, EC]. Then

where we sum over ail séquences (ji9j29 ...,jq) of strictly positive integers satisfying

Proof We regard both sides of the formula as opérations on ae\_EA, EB}, and in
3.7 take X=B, Y=Qn~i AnEC. By 3.7 we need verify equality only when a has the
form E^ + Eoc2 + • • • + Eam.

Suppose a Ecct + Ecc2 -\ h Eccm. Then

]8oa iîo£a1 + P°Ea2 +••• + p°Eocm.
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By 2.1, we obtain the formulae, in which (j\,j2, ...,./,) ranges over ail sets of integers
satisfying ./j+y^ H ï-jq~n> as in the statement of the theorem, and a runs through
ail strictly increasing functions {1, 2, ,#}->{l, 2, m}.

A *j2pA-AÂjJ)°(EJ>aal-EJ>xa2 EJ<aaq)

A *jj A>" A *jqP)°iUu J2,-Jq)
°E°-(E«ai-Exa2 E«aq)

Thus the formula holds for a, and therefore generally, by 3.7.

We next investigate in what sensé the éléments Xna are divided powers of a. If
ae[EA, EB], we wish to compare its «-th cup power an with Ana, which both lie in
\EnA9AnEÏÏ\.

Theorem 3.17. IfB is a suspension, and ae\_EA, EB\ then

where we sum over ail permutations n of the factors EB of AnEB, and s(n) dénotes the

sign of the permutation n.

Proof Both sides are natural in A; therefore by 3.7 we need verify the formula
only when a has the form I Eccj.

Suppose <x Ea1 + EoL2-\ \-Eccm9 where each dje\_A9 B~\, Then by 2.1

where a runs through ail functions tr:{l, 2, n}->{l, 2, m} satisfying crl<a2
< ••• <an. (The order of the terms is irrelevant.) Hence, by composing with a permutation

n,

where this time we sum over those functions a satisfying a{nX)<a{n2)< ••• <a(nri).
Summing over n yields

where we sum on the right over ail functions a such that al, a2, and an, are ail
distinct. But
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with no condition on a. The extra terms ail contain a repeated factor. Now for any
ye[A, 2?], we may use the naturality of the reduced diagonal to rewrite EyEy as the

composite

E2A~Y2-fE2B-^E2(B a B) s EB a EB.

Since by hypothesis B is a suspension, the diagonal A :B^B a Bis nullhomotopic, and
therefore EyEy 0. Thus the unwanted terms in the expansion of a" are ail zéro, and

we hâve proved the theorem.
As an example, taken A and B to be sphères.

Corollary 3.18. Suppose ccenr(Sk), where k is odd. Then Ànaenr+n^1(Snk)
satisfies n\ Ana 0.

For the case n 29 compare Theorem 5.42 of [35], apart from the question of
identifying our Hopf invariant A2 with the usual one (up to sign; see Appendix).

For the sake of completeness, let us note the behaviour of Xn on smash products.

Theorem 3.19. Given ae[EA, ES], and pe[C, Z>], let A:D-*AnD be the n-fold
reduced diagonal\ Then

An(aAj3) ^aA(^),
apart from some shuffles.

Proof. This is trivial for the James-Hopf invariant 3.10, which are we entitled to
use (after suspension) for An, by 3.15.

4. The invariants of Hilton

In this section we introduce the Hilton-Hopf invariants [12], [20],

Hc\ \EA, E C] -> [EA, EArC]

which are defined by the identity

EC v EC\ (4.1)

Hère, ic runs through certain iterated Whitehead products called basic products;
there are many choices of such a System, and consequently many choices ïorHc.

We compare thèse invariants with our axiomatic invariants Àn, and hence in-
directly with the James-Hopf invariants, by applying Xn to each side of 4.1 ; this was
the method used in [10] to compare h' with h. We evaluate kn on a sum by the axioms
2.1, and on a composite by 3.16. We need to evaluate Xn also on Whitehead products.

For this purpose we use Barratt's définition of the Whitehead product, as given
in § 3 of [5]. It is observed there that for any spaces A and B, the Barratt-Puppe exact

séquence (see [4] or [24]) for the inclusion map i:AvBaAxB breaks up into short
exact séquences, in particular
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0->[E(A A5),I]^[£(i xB% X]it[E(A v5)J]->0.
The projection maps p^'.AxB-*A and p2\A xB-*B embed \EA, X~\ and \EB, X~\

(though not, of course, their direct sum!) in [E{A xB), X~\. Given <xe\_EA, X~] and

fie[EB, X~]9 we can form the commutator £ a' + /T — a' — fi'e\_E(A xB), X~\9 where

aif=p\a and P'=p*fi. Evidently /*^ 0, because inclusion induces \_E{A v B), X~] £
\EA, X~\ x [EB, Z] ; and therefore Ç lifts uniquely to [E(A a B), X~].

Définition 4.2. Given ae[EA, X} and fie[EB, Z], we define their Whitehead

product [a, QÎ]e\E(A aB\ X] by

In case ^4 and B are sphères, this differs by a sign from J. H. C. Whitehead's
classical définition [36] (see Appendix). It has the property that if 8:[EA9X~\^
[A, QX] is the adjoint isomorphism, then ô [a, ff\ is the Samelson product [25] of <5a

and ôp.
Standard identities for commutators in groups yield corresponding formulae for

Whitehead products. We clearly hâve, always,

lJM] -[a,/*]°£^,B), (4.3)

where rj(A, B) dénotes the class of the map BaA^AaB interchanging the factors.

It will be quite safe to ignore natural isomorphisms arising from the associativity of
the smash product, but not in gênerai those from commutativity, except for shuffles

Let us write (x,y) for the commutator xyx~1y~i in a (multiplicative) group.
From the identity

(x, yz) (x, y) (y, (x, z)) (x, z)

and the fact that the reduced diagonal A.B-^BaB is nullhomotopic when B is a

suspension, we deduce that the Whitehead product

[EA, Z] x [EB, X] -? \E{A a B), X]
is linear in the second factor, when B is a suspension. From this and 4.3, it is linear in
the first factor when A is a suspension. Take also ye\EC, X~\. From the Witt identity

(x, ((x-1, z), y)) ((x-1, z), y) (y, {{y~\ x), z)) {{y~\ x), z)

{z,{(z-\y),x)){{z-i,y),x)=\
we deduce the Jacobi identity for the Whitehead product

[[a, j8], y] + [[& y], a] ° E n (B a C, A) + [[y, a], p] ° E r, (C, A a B) 0, (4.4)

again provided that A, B, and C are suspensions.
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Given éléments ae[EkA9 AmX~\ and pe[ElB9 AnX~\9 we can form by using
shuffles the éléments aA^ and (P Aa)oEk+lrj(B, A) in [Ek+l(A aB), Am+nX]. We
call the smash commutator <a, /?> of a and P the élément

<a, p} a a fi - (p a a)°Ek+ln(B9 A)e[Ek+l(A a B), ylm+"X] (4.5)

It is defined if fc + />0, and is bilinear. This commutator extends by linearity to
formai sums.

Theorem 4.6. Suppose ae\_EA9 EX] and Pe[EB, EX], where A and B are
suspensions. Then we hâve, for the exponential Hopf invariants 2.4,

Explicitly, for n>2,

kl*>P\ £ Xtoc a ^.J -(X.p a An.ioc

Proof Write as before a'=p*ot and P'=p*2P in [E(AxB),EX~\. Then by
définition s*[a, P^oi' + P'-ol'-P'. Naturality and the Cartan formula 2.5 yield

We see that the cup product (e*f -1) • (e*' -1) can be written 5* {(ea -1) a (ep - 1)}, and

similarly for (epf — l)*(ea/ — 1). Hence we hâve

5Va'*] s* {<««, /> + [a, /»]}•*-'•*->' + 1.

The hypothesis that ^4 and B are suspensions implies that ail the cup products except

s*{(e*, e^> + [a, /?]}-l-l vanish, since they involve the diagonal in A or in B. The

remaining terms are those we need.

The Hilton-Milnor theorem. To state the Hilton-Milnor theorem precisely, we
need a certain amount of formai algebra. We shall consider from now on the wedge
B BxwB2y ••• vBk of connected CW-complexes, and a finite CW-complex A. We

shall eventually assume that each Br is a suspension, in order to simplify the theorems
and the proofs.

Take abstract symbols zl9z29 zk9 and let
L be the free Lie algebra (over Z) generated by the letters zl9 z2, ...,zk;
U be the free associative algebra on zu z2, ...9zk;
Mbe the set of monomials in U, which is the free monoid on the letters zl9z29

...,zk; and

Fbe the free non-associative algebraic object generated by zl9 z2, zk> with one

binary opération. The weight wt(a) of an élément a in M or Fis the number of factors
in it. F is often called the set offormai commutators in the letters zi9 zl9..., zk. There
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are obvious homomorphisms F-+L and F-*Mcz U, which we suppress from our
notation, obtained by taking the binary opération in F as [, ] or as multiplication.

It is customary to make U into a Lie algebra by setting [x, y\ xy — yx; then
there is a homomorphism k : L-> U of Lie algebras sending each Zj to Zj. The Poincaré-
Birkhoff-Witt theorem asserts in this case that t/is the universal enveloping algebra of
L, and that k embeds L as a direct summand (considered as additive groups) of U.

Hence L is free abelian, and recipes for a base are available (e.g. [12]).
By induction on weight, we define for each aeM

[AaBAAbB if c ab;

and iterated Whitehead products ice[EAcB, EB], for each ce F, by

the class of the inclusion EBr c EB, if c zr,
if c ab.

J1"
\[}a> h

Given any family (Pa) of spaces with basepoint, we dénote by fja Pa the restricted
product of the Pa, which is the union of ail the finite subproducts of the cartesian

product. We give this space the direct limit topology (rather than the cartesian product
topology), in which a function in \\aPa is continuous if and only if it is continuous on

every finite subproduct. We can at last state the Hilton-Milnor theorem in a suitable
form (compare [12], [20], [5], [28]). (The methods of [21] show that each space in-
volved has the homotopy type of a CW-complex; so that a singular homotopy
équivalence is a homotopy équivalence.)

Theorem 4.7. (Hilton-Milnor). Suppose the subset Q of F yields a base of L,
and give Q any total ordering. Then the map

[] Oic'II QEACB-+QEB, (îceic)
ceQ ceQ

defined by using the multiplication in QEB in the order indicated by Q, is a homotopy
équivalence.

If c has weight n, the space EACB is /z-connected, because B is connected. It is

possible to deduce for any CW-complex Y an isomorphism of sets

ceQ

which becomes an isomorphism of groups when F is a suspension. We hâve the

projection to the c-th factor

hc: [E Y,EB]-+ [E Y, EACB] (4.8)

which is a homomorphism when F is a suspension. Suppose now that A is a finite
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CW-complex (or even finite-dimensional). Then the opérations hc can be described

more simply. Take (ïe[EA, EB]\ then

P= Zic°hJ. (4.9)
ceQ

The ternis must remain in the correct order, that given by the ordering on Q. Once Q
has been chosen, the particular Whitehead products ic for which ceQ are called the
basic Whitehead products.

Now suppose that Bi B2 ' -=Bk C. Then B=Cv Cv •-- vC.

Définition 4.10. Given ae[EA, EC], the Hilton-Hopf invariants Hcae\_EA,
EAmC\ (ra wt(c)) are defined by Hc(x hc(pkoa), where

pk i1 + i2 +...+ ike[EC, E(C v C v---v C)]

is the class of the pinch map 1.1.

For thèse opérations we hâve the defining relation

01 + ï2+---+ïft)°a= HHc*oh' (4.H)
ceQ

Of course, the élément Hccc dépends in gênerai on the choice of the ordered base Q,
and not merely on c.

We propose to apply kn to each side of 4.11, with the help of 3.16 and 4.6. For the

rest ofthis section we assume that A and C are suspensions.
We first compute Xn ic. Define, by induction on weight, iterated smash commutators

4.5 coce[EnAcB, AnEB~\, where ceFand /i wt(c), by

if c zr,

{{} if c ab.

We shall also write Xa rather than ea for the exponential Hopf invariant 2.4 of a.

Lemma 4.12. Ifc zr, then Aic=l + ic. //rwt(c)>2, then Aic=l +
Proof. We proceed by induction on weight. We hâve Àic= 1 + ic if c has weight 1,

by 2.5. Assume the resuit for ia and ib. Then by 4.6 Xiah is given by one of the four
formulae,

iab + <1 + ia> 1 + h> (ifwt(a) wt(6) 1)

hb + <1 + *a, l + h + O)b} (if Wt(fl) 1, Wt(b) > 1)

1 + iab + <1 + h + û)fl, 1 + ib> (if wt(û) > 1, wt(fe) 1)

(if wt(a) > 1, wt(è) > 1).

Any smash commutator of the form <l,<x> or <a, [j8, y]>, where ae[£X, EY\
vanishes (since E[p, y]=0); hence in ail cases the third term reduces to a>ab9 which
proves the lemma.
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We need to rewrite coc in a more algebraic form. Grade the algebra U by writing
Un for the subgroup of homogeneous éléments of weight n. Let <9?n be the permutation
group on n symbols, with o as multiplication, which will act on AnEB by permuting
the factors, and Gn Z[^w] its intégral group-ring. Then the identity Am+nEB^
AmEBAÂnEB induces a homomorphism of groups ^mx ^?n->,9?m+n, and hence

Gm®Gn-+Gm+n. Thèse maps make the additive groups Gn into a graded ring G*, quite
apart from the composition products o in each Gn. Construct a new graded ringF* by
defining Vn=Un ®Gn for each n>0; Vn is also a ((/„, o)-module. If a, 6eFhave weights
m and n respectively, define rj(a9 b)e,9?m+n as the permutation sending j to j+ n (if
j<m) orj—m (iîj>m). Then we define, by induction on weight, éléments uce U and

vce V for each ceF, by

zr9 vc zr, if c zr,
uc uaub-ubua9 vc vavb-rj(b,a)°vbva if c ab.

The augmentations £M:Gn Z[^n]-»Z induce the augmentation e: V+->U+ of graded
rings. Clearly svc uc for ail ce F, by induction on weight.

Dénote by vc(i) the élément of \_EnAcB, AnEB'] obtained by replacing zr by ir
for each r, and multiplication by smash product, where « wt(c). Then our
observation is that by induction on weight we hâve

coc vc(i),
for ail ce F.

The map sending c to uc extends to the additive map k : L-> U that embeds L in its
universal enveloping algebra U. The Poincaré-Birkhoff-Witt theorem asserts that if
the ordered subset Q of Fyields a Z-base of L, then the éléments uqiuq2...uqm, where

qi<q2<-'<<lm in Q an<3 m>0, form a base of U. An analogous proof (formally
similar to that of Theorem 3.2 of [12]) shows that a corresponding resuit holds for F,

as follows.

Lemma 4.13. Suppose the ordered subset QczFyields a base ofL. Then the éléments

vqivq2...vqm of weight n, such that qi<q2^'"<<lm in Q> form a 7j\Jf^[-base of the

(Zl^nl:)-module Vn.

We are assuming that Bl=B2 ~-=Bk C, so that B=CvCv-~vC. By 2.3,

since A is a suspension, An:\_EA, EB]-*[EnA, AnEB'] is a homomorphism. Also,
since Cis a suspension, the pinch class pke[EC, Eff] is a suspension. Thus Àn9 applied
to 4.11, gives

For each monomial aeM oî weight «, we hâve the obvious projection map

pa:AnEB-^AaEB^AnEC,
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where AaEB is defined in a similar way to Aa B. Then composition with na9 the class of
pa9 yields vV L Tta^^i^i^a). (4.14)

Assuming that «>2, we see from 4.12 and the composition formula 3.16 that
Xn(ic°Hca) 0 unless the weight of c divides n. If wt(c) ra and n rm9 we find

where e $(r— 1) {n — r\ and the sign cornes from 3.16. (We hâve concealed a shuffle.)
Now for each ce g of weight n, let vc: F/J->Z[^II] be the (Z[^n] °,)-module homo-
morphism that picks out the coefficient of vc in the Z[^n]-base of Vn given by 4.13.

We deduce rn_1 TT ^ „£ i/ca 2uvc(a ® l)°^a, (4.16)
a

where ^n also acts on /TisC by permuting the factors, and we sum over the monomials
aeM of weight n.

In [3], Barcus and Barrait pick out the particular commutators an [[...
[[z2, zt], zx], ...], zx] of weight n> 1, with «— 1 entries zt. They suppose that k 29

and that the ordered base Q contains ail the an. Write Hn for the corresponding
Hilton-Hopf invariant J/ffn, which still dépends on Q. (To some extent the éléments

on are canonical: if one orders F arbitrarily subject only to the conditions (i) wt(#)<
wt(fr) implies a<b, and (ii) zl<z2, and picks out the corresponding set of basic

commutators as in [12] or [28], then each an will be contained in every such set.) In
4.14 take a z2z\~x. Since Q can obtain only one élément with n—\ factors zt and

one factor z2, only one term of 4.15 survives substitution into 4.14, and we find

Let us summarize.

Theorem 4.17. IfA and C are suspensions, and cig[EA, EC~], then

(a) Àncc En~1Hnocfor n>29 where Hn is the Hilton invariant corresponding to on

as above.

(b) For every basic commutator c of weight n, En~1Hcoc is expressed in terms of
Xn<x and permutations by the formula 4.16.

Now we know from 3.15 that Àn(x En~1yna, where yn is the James-Hopf invariant.
Thus we can relate the James-Hopf invariants yn to the Hilton-Hopf invariants Hc.

Theorem 4.18. IfA and C are suspensions, and ote\_EA, EC\ then

(a) If the ordered base Q contains the commutators an9 then

En~xyn<x En~lHna for n>2,
(b) For every basic commutator c of weight n, En~iHccc can be expressed in terms

of En~1yn(x and permutations, by the formula 4.16.
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This theorem is well known, and can be desuspended, as the assertion that the

Hilton-Hopf invariants and the James-Hopf invariants détermine each other. The
first proof, of the desuspended theorem, was given by Barrait [6]. The desuspension
of (a) is Lemma 3.12 of [29].

When A and C are not suspensions, a similar resuit, with numerous extra terms

involving cup products of terms of lower weight, can be proved in exactly the same

way. The cup products vanish in the case of 4.18, by 1.4.

5. A géométrie invariant

In this section we construct a séquence of homotopy opérations by writing down
explicit maps. We prove that they form a Hopf ladder, and hence provide a géométrie
interprétation of the suspended James-Hopf invariants. The second, X2, is closely
related to the generalized Hopf invariant H* given by Hilton [11]. We show that X2

also includes the functional cup products, and is therefore related to Steenrod's
cohomology définition of the classical Hopf invariant [27].

Before we construct the opérations An, we construct a séquence of opérations nn,
which is slightly more gênerai, and is technically more convenient in certain proofs,
but seems to lack independent interest.

We consider n spaces Bi9 B2, Bn9 instead of a single space B. We recall from § 1

the identification maps s: A x Rm-+EmA.

Définition 5.1. Given any map (based, of course)

f:EA-*Bxv B2v — v Bn (n>0)
we define a new map

fiHf:B'A^BiAB2A-ABn
as follows. Put fj=Pj°f°s:A xR->Bj. Define

q:A xRn->Bi a B2 a • • • a Bn

by the formula

q(a,tl9t29...,tn) if tl<t2<-.<tn, (5.2)
o otherwise.

Then q is continuous, for if tj tJ+l, one at least of/} and/J + 1 is zéro at (a, tj)9 and

hence q is zéro there. We also observe that q vanishes whenever any tj<0 or tj>l;
therefore q factors through the identification map s:AxRn-+EnA, to yield the re-

quired map \inf.

Lemma 5.3. The homotopy class of/infdépends only on the homotopy class off, and

we therefore hâve a homotopy opération
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/!„: [EA9 B,v B2v ••• v J5J -> [£M, B, a B2 a ••• a J?J,

natural in A, B%, B2, #„.
/. We hâve merely to apply the formula 5.2 to a homotopy/, of/to obtain a

homotopy iinft of finf. Naturality is clear.

Définition 5.4. Given a map f:EA-+EB and n>0, define the map XJ\En A-+
AnEB by Ànf=fin(rn°f), where rn:EB-+EBvEBv -vEB is the backward pinch
map 1.2. Hence we hâve the opération

EB~\ -+ [EnA, AnEB]

on homotopy classes, which may be regarded as the composite opération

[EA, ES]-^>lEA9 EBv EBv ••• v EB~]—^lEnA, AnEB]

Remark 5.5. We note that from Xn we can recover a particular case of the opération

\in, namely

\in\ [JE A, EBt v EB2 v • • v EBn~\ -> [EnA, EB1 a EB2 a ••• a EBn~\

For put B=BtvB2v vBn9 and take cce\_EA9 EB~\. Then by naturality

lina iin{{Enl v En2 v ••• v Enn)°pn°a}
(£71! a £tt2 a---a Enn)°nn(pn°a)
(Eni a En2 a • • • a E nn) ° Àn a,

where rc, is the class of the projection Pj\B-+By

Theorem 5.6. Thèse opérations Xnform a Hopfladder.
Hence by 2.2 and 3.15 we hâve an interprétation of the suspended James-Hopf

invariant En~lyn, when A is a fînite-dimensional CW-complex. (Actually, the di-
mensional restriction is unnecessary, but we shall not prove this hère.)

The main work in proving 5.6 is in establishing the Cartan formula. We shall
deduce it from Cartan formula for pn.

We need a well-known lemma for adding homotopy classes, which we state

without proof.

Lemma 5.7. Suppose the classes ol1e[E11A, X~\ are represented by maps gl\EnA-*
X, for \<i<k, where n>\. Suppose the support (see § 1 ofgt° s:AxRn-*Xis contained
in AxDlf where the sets Dx (\<i<k) are convex subsets ofW whose interiors are
disjoint. The the track sum a1 + a2H hafc is represented by the map g:EnA-*X
definedasfollows: ga=gta ifgta^o, andga — o ifgta ofor ail i (oceEnA). The resuit
holds evenforn \, provided the sets Z^crR occur in the correct increasing order.

This lemma is quite false if Dx is not required to be convex, for then linking can
occur (see § 6).
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There are obvious projection maps (1 </<«— 1)

Bx v B2 v — vBH->Bx v JB2 v-v Bj9Bl v B2v-v Bn-+Bj+i v BJ+2 v ••• v Bn,

which induce homomorphisms of track groups

Lji [EA, Bxv B2v — v £„] -? [EA, Bt v B2 v ••• v Bj]
and

£„_,.: \EA9 B,v B2v - v £„] -> \EA9 BJ+1 v Bi+2 v v £„]

Lemma 5.8. Suppose a, /?e[£,4, Bxv B2v ---v J5n].

//n(a + JS) iurta + /!„_! Ln_1 a-^ Rx ]8 + fin-2Ln-2

/. We may choose/ea and ge/? such that/°^ has support in ^4 x [0, £] and

^5 has support in A x [^, 1]. Then by 5.7 we may represent a + /? by the map A:,

where /:°^ agrées withf°s on >4 x [0, ^] and with g°s on Ax[i,l~\.
We hâve to consider the map q : A x Rn->2^ a B2 a • • • a Bn defined by

kx(a, tt) Ak2(a9t2)A-"Akn(a, tn)

when ti<t2<"-<tn (5.9)
o otherwise,

q(a9tl9t2,...,tH)

where k^p^k0 s. This map represents /in(a + j8) apart from identification. We see

that q is zéro on each of the hyperplanes t}=\. Thèse hyperplanes divide the région
in R" satisfying 5.9 into various convex subsets. Consider that on which

Let Çj agrée with q on this set, and be zéro outside. Then

qj(a9 tl912, ...9tH) ft(a9 tx) a f2(a, t2) a ••• a fj(a, tj)
Agj+1(a,tj+1)A>--Agn(a,tn),

in which fi=pi°f°s and gi=pi°g°s, subject to certain inequalities which, owing to
the spécial form of/and g, we may write as

tx < t2 <-"<tj and tJ+1 < tj+2 <•••<*„.
Thus qj9 after identification, represents

The lemma now follows by applying 5.7 to the maps qj9 for 0<j<n.
The case n 2 is illustrated in the figure overleaf.

Proofof 5.6. We must verify the axioms 2.1 for the opérations Xn.

The identity axiom (a) holds, trivially.
The Cartan formula (c) follows from 5.8, when we observe that Ljpn=pj and
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We verify the normalization axiom (b) by showing that we actually hâve Àn(Ef) 0
for any map f:A-+B when n>2. For Àn(Ef) is obtained by identification from the

map q:Ax Rn-+AnEB given by 5.2, namely

q(a9tl9t2,...,tn)
/i (a, tt) a f2(a, t2) a a fH(a, tn)

when tx < t2 <-"<tn,
o otherwise,

where fj=Pj°rn°Efos:AxR-+EB. In this case the support of fj is contained in
Ax[(n-j)ln9 (n-j+l)ln]9 by 1.2. Hence q(a, tut2, ...,tn)^o only if n-j<ntj<
n—j+l for ail j, which contradicts ti<t2<-"<tnif n>2. Therefore q, and Xn{Ef)9
are zéro if n > 2.

This complètes the proof of Theorem 5.6.

Remark. The normalization axiom would not hold if we had used the ordinary
pinch map instead of the backward pinch map in 5.4.

We next recall another generalized Hopf invariant, and show that it is included
in X2.

Take a CW-complex B. For k>\ the homotopy exact séquence of the pair
(EB x EB, EB v EB) splits, to yield the short exact séquence

xEB,EBv EB)-+7tk(EBv EB)jî~nk(EB x£B)->0. (5.10)

Given an élément <xenk(EB), we can form

p2o(x — il °a — i20aenk(EB v EB),

which evidently lies in the kernel ofy*, since nk(EBxEB)^nk(EB)®nk(EB). It
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therefore lifts uniquely to nk+1(EBxEB, EBv EB). Wehavealso, byidentification,
a map nk+1(EBxEB, EBvEB)-+nk+1(EBa EB). Thèse yield the opération

H*:nk(EB)-+nk+1(EB a EB). (5.11)

This map is called a generalized Hopf invariant by Hilton [11] in the case when B is

a sphère. (When B is a suspension, it does not matter whether we use the usual pinch
class p2 or the backward pinch class p2, because they coincide.)

Theorem 5.12. We hâve

À2 - H*:nk{EB) -» nk+1 (EB a EB).

Proof. We put A^I1"'1 =Dk~1ISk-2 in the définition 5.4 of A2. Given f:EA->
EB, we constructed X2fby means of a map

q:(A xT,A xdT)^(EB xEB.EBv EB),

followed by identification, where Tis the triangle in R2 given by 0<tl<t2<\, dTis
its boundary, and

q(a,t1,t2) (fi(a,tl),f2(a,t2)).

The three sides of the triangle yield r2of, it°fu and i2of2. Hence we hâve hère the

construction for H*9 and the theorem is established, apart from the sign.

If we use the homotopy boundary convention (see Appendix), the three sides of
Zk~1 xdT become oriented so as to represent i^a, i2°oc, and —p2oct, where fe a e

[EA, EB~\. We therefore hâve À2= —if*. (Use of a différent boundary convention
would resuit in a différent sign.)

Finally we show that the Hopf invariant À2 induces important cases of the

functional cup product described by Steenrod [27]. Take any map f:EA->EB of
spaces with basepoint. We can form the reduced mapping cône X=EB {Jf TEA of/,
where TEA dénotes the reduced cône obtained from EA x [0, 1] by identifying
EA x 1 and o x [0, 1] to the basepoint o, and we attach TEA to EB along EA x 0

by/
We know that the reduced diagonal of a suspension is nullhomotopic. This fact

enables us to simplify the reduced diagonal A : X->Xa X of X by a homotopy.
More specifically, let us define explicit homotopies gu:EC^EC and ku:EC^EC

by the formulae

hus(c> 0 s(c, t + tu)
(o < M < 1; ceC) (5.13)

(kus(c, t)= s(c, t + tu -u)
where s: Cx R-+EC stands for the usual identification map. Then (gu aku)° A :EC~*
EC a EC is a nullhomotopy of A.
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From thèse, we construct a homotopy Fu: J-^IaX in three stages, starting from

First stage: 0<u< 1.

On EB we take the constant homotopy,

FU AEB:EB^EB aEBœX aX.
On s(EAx[0,{]) we take

Fus(z, t) s(k2tuz, t) a s(g2tuz, t)eX a X (zeEA).

On s(EA x [i, 1]) we take

Fus(z91) s(kuz, t) a s(guz, i)eX a X (zeEA).

Thèse fit together at t 0 and f | to define Fb:J-^Ja X for 0<w< 1. We see from
5.13 that Ft is zéro on s (£,4 x [£, 1]).
Second stage: l<u<2.

We note that the image of Ft lies in M a M, where M=EBus(EA x [0, £]). We

may regard M as the mapping cylinder of/. It contains £i? as a canonical déformation
retract. For FM(l<w<2) we compose F1:X^MaM with a homotopy which starts
with the identity map of M a M and ends with the canonical projection M a M->
EBaEB. We shall therefore find:
On EB,F2 AEB, still.

F2s(z, t) fk2tz a f g2tzeEB a EBcX a X (zeEA).

On s(EA x [^, 1]), F2 is zéro.

Thirdstage: 2<u<3.
We compose the factored map F2:X^EBaEB with the homotopy ku_2Agu_2:

EBaEB-^EBaEB, Thus F3 is zéro except on s(EA x [0, i]), on which we hâve

F3(z, 0 kjk2tz a glfg2tz (zeEA).

If we now compare F3 with A2/by 5.2 and 5.4, we see that F3 factors as F3

^if°U where j:E2 A-+E2 A\ Y is the map given by

js(a, v, t) s(a, v + 2tv - 2t, v + 2tv), (aeA,t>0)

and Fis the subset of E1 A given by ti>t2 (on which A2/vanishes by 5.2). But it is

easily seen that j is homotopic to the identification map E2A-+E2AjY. It follows
that F3 and A2/are homotopic. Let us state what this proves.

Theorem 5.14. Let X=EB[JfTEA be the reduced mapping cône of a map

f:EA-+EB. Then the reduced diagonal À : X-*Xa X is homotopic to the composite map
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X->X/EB^E2Aj-j>EB aEBcX aX,
where X-+XJEB is the identification map.

Corollary 5.15. The map X2f induces the functional cup product in cohomology
(up to sign)

HP(EB) ® Hq(EB) -> Hf+i-^EA),
with zéro indeterminacyl

Proof. We hâve essentially the définition in § 5 of [27] of the functional cup
product, apart from the lack of indeterminacy.

We do not yet hâve a corresponding interprétation of Xn for n > 2.

Example. LetustakeA S2n-2,andB==Sn~1,!indf:S2n-1-+Sn. Then A2f:S2n-+
S2n is a map, of degree k, say. A and B give rise to cohomology classes xeH2n(X;Z)
and yeHn(X;Z). By 5.15 we hâve x2= ±ky9 which is one of the well-known
définitions [27] of the Hopf invariant k of/.

6. À géométrie construction in framed cobordism

We know after Pontrjagin [23], Kervaire [18], etc. how to interpret the homotopy
groups of sphères as framed-cobordism classes of framed smooth manifolds.
Kervaire [18] and Haefliger and Steer [10] gave géométrie interprétations of the

generalized Hopf invariant in this language. We show in this section that the geo-
metric Hopf invariant Àn described in § 5 gives rise to a construction on framed
submanifolds. In particular, for n 2, we find the construction of [10]. Again just as

in [18], we can easily evaluate Xn on the image of the /-homomorphism. Finally we
show how the géométrie construction has already arisen in differential topology,
together with several of its elementary properties.

AU manifolds in this section will be smooth (in the sensé C00) and paracompact.
Given a m-manifold M, and a u-submanifold F of M having codimension k m — v, a

framing of F in M is a séquence !F (xx, x2, xk) of sections of the normal bundle
of Fin M which are everywhere linearly independent. We then say that Fis & framed
submanifold of M.

Now suppose that Fis compact, that its boundary 5F (if any) is VndM, and that
F meets dM transversely (see e.g. [30]). A suitable chosen tubular neighbourhood N
of F in M is diffeomorphic to VxDk (Dk being the standard closed /r-disk) by means

of the framing sections. The Pontrjagin-Thom construction [23], [30], associâtes to
this tubular neighbourhood of F the Thom map M-+Zk DkjdDk as follows: on N we

use the composite NaVx*^*^2*t
which maps ôN to the basepoint o, and outside N we take the zéro map. This map has

compact support, and therefore extends to a based mapMc-+£*, whereMc dénotes the
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one-point compactification of M. The extra point inMc, which we call oo, is taken as

the basepoint o(Mc. (If M is already compact,Mc must be taken as the disjoint union
of M and a point oo, for consistency.)

Suppose M is without boundary. Two compact framed submanifolds Vo and Vt

of M are said to be framed-cobordant if there exists a compact framed submanifold W
of Mx[0, 1] such that Fj=ffn(Mx/)(/=0, 1), and the framing of Vt in M is

obtained by restriction from the framing of W in Mx [0, 1]. This is an équivalence
relation. The équivalence classes are called framed-cobordism classes. The fundamental
resuit of Thom [30] implies the following as a spécial case.

Theorem 6.1. Let M be a smooth manifold without boundary. The Pontrjagin-Thom
construction induces an isomorphism between the set of framed-cobordism classes of
compact framed submanifolds of M with codimension k, and [Mc, Z*].

As an alternative notation to [Mc, Z*], we write nk(M, oo), and call it the k-th
compact cohomotopy set of M. More generally, if M has a boundary ôM, we define

nk(M, dM,oo)=[Mcl(dM)c, Zk], and the theorem extends in a suitable sensé to
71*(M, oo) and nk(M, dM, oo) (see below).

As observed above, this theorem enables us to translate results about framed
submanifolds of a given manifold M into results about the compact cohomotopy sets

of M, and vice versa. We give a glossary of the commonest terms.

Suspension. Since (A xB)c^AcaBc, and we can identify Rc with I1 canonically
up to homotopy, we hâve the Freudenthal suspension map

£:7ck(M,oo)->7ifc+1(M xR,oo).

If ocenk(M, oo) is represented by the framed submanifold V of M, Eot is represented
by the submanifold VœMczMx R. To frame Vin MxR, we take the framing of V
in M,followed by the positive unit section of the normal bundle of M in M x R (as in
[18]).

Isotopy. If the framed compact submanifolds V1 and V2 of M, together with their
framings, are isotopic, they represent the same élément of nk(M, oo), since isotopy
may be regarded as a spécial kind of cobordism. Hence we may move submanifolds
around in M to suit our purposes.

Track addition. Now 7tfc(MxR, oo) is a group, by track addition. Suppose

a, /3enk(MxR9 oo) are represented by the framed submanifolds V and W of Mx R.
Since V and W are compact, we can move them by isotopies until VczMx (— oo, 0)
and WczM x (0, oo). Then Vu W is another compact framed submanifold of Mx R
and represents a + /? (compare 5.7). (It is easy to see geometrically that nk(Mx R2, oo)
is abelian.)

Induced homomorphisms. Let/:7V->M be a proper map (i.e. f-1{K) is compact
whenever the subset K of M is compact), so that/extends tofc:Nc^Mc. Suppose V
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represents ccenk(M,oo). If/is transverse to F (which can be arrangée without
changing its homotopy class),/"1(F) is a compact submanifold of N, with framing
induced from that of F in M, and represents/*a.

Reftection of the framing. Suppose the framed submanifold F of M represents
ocenk(M, oo). If we change the framing & of F in M at each point ve V by a linear
transformation a independent of v, then F, with the altered framing cJ^, represents a if
the déterminant of a is positive, or Ua if the déterminant of a is négative. (Hère, U is

the opération on nk(M, oo) obtained by composing with a map from Ik to itself of
degree — 1; see § 1.)

Products. If the framed submanifolds VcM and WcN, with framings J^
(xls x2, xk) and ^ (yi, y2, ••> ïx) respectively, represent ccenk(M, oo) and
pen1 (N,oo), their product Fx WaMxN represents a APenk+1 (MxN,oo), if we
endow Fx JF with the product framing

&® & (jpîxi, pjx2, ...,pî xfc, p* yl9..., pi j±).

Manifolds with boundary. Suppose M has boundary dM. An élément of nk(M, oo)

is represented by a framed submanifold F with boundary dV= Vn dM. An élément of
nk(M, dM9 oo) is represented by a compact framed submanifold F without boundary.
(We can always move F away from dM if desired.)

Exact séquences ofapair. We hâve the exact séquence of the pair (M, dM) (see [4]

or [24])
Je k i* k k

>n (ÔM x R, oo)-^7r (M, dM, oo)-^ n (M,oo)~jtn (dM,co).

The interprétation of /* is obvious. For j*, we take the boundary 3F of a framed
submanifold F of M; by restriction dV is framed in dM. Now dM is collared in M,
i.e. has a tubular neighbourhood dMx[0, 1], with dM=dMx0. Then dMxR^
SMx(0, l)c^Mx[0, l]cM, by means of an order-preserving diffeomorphism
R=(0, 1). Hence a compact framed submanifold of dMxR yields by inclusion a

framed submanifold of M, not meeting dM. This interprets d.

Cup product. Let VfCiMxW1, with framing ^b represent aie7i*i(MxRl\oo),
for l</<«. In 1.3 we defined the cup product OLx'a2 an67ck(MxRr,oo), where

r ri + r2-\ \-rn and k kï+k2H Vkn. We seek a framed compact submanifold
that represents it.

Letf :MxRrt->Iki DkijdDki be the Thom map of Vt. Let ut eRri be a parameter.
Then the map defining the cup product may be written as

M xRr-fIkl xlkl x-xZkn-?Zkl Alk2 A--AZknç*Zk,
where

l(m,uuu2,...9un) (/i(m, ux), f2(m, u2), ...,/„ (m, wM)). (6.2)
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Let btelki be the image of the centre of Dhi, so that V^f'1^). Then //the map / is

transverse to (bu b29 bn), the theory of Thom [30] shows that V=l~1(bu b2,

bn), with the framing induced from that of (bu b2, bn) in Ikl x Ikl x ••• xIkn, will
be a framed submanifold of MxRr representing ol1'Ol2 an. Hence we need a

condition to ensure the transversality of /.

Définition 6.3. Let gt: Wt->N be a smooth map of manifolds (1 <i<n). We say
thèse maps are mutually transverse if

gi x #2 x'" x Zn'-Wi x W2 x-- x Wn-+ N x N x-~ x N

is transverse to the diagonal AN oï NxNx-- xN, where AN is the set of ail points
(x, x, x) for xeN.

Let us write ql:MxWl-*M for the projection.

Lemma 6.4. Suppose the maps qt\Vv: V^MiX <i<n) are mutually transverse. Then

the map l (see 6.2) is transverse to (bi9 b2, bn), and Z"1^, b2, bn) is a smooth

compact framed submanifold of MxW representing the cup product olx• a2 oen.

Proof We may express the définition of / as a commutative diagram

M x Rn x R1*2 x •?• x Rrn j >Ikl x Ikl x ••• x Ikn
j J X 1 X 1 X Xl A/lX/2x x/n
Y I

M x M x ••• x M x Rri x R1"2 x ••• x Rr" ^ (M x Rri) x (M x R1"2) x ••• x (M x Rr").

By construction,^ x/2 x ••• xfn is transverse to (bi9 b2, Z?w), and

VlxV2x -xK^l/i x^x-x/J"1^,^,...,^).
In M x M x - • • x M x Rr, we need to hâve AMxW transverse to V1xV2x--xVm or
equivalently, Vt x V2 x ••• x Vn transverse to AMxW. This in turn is équivalent to
having the projection map Vt x V2x ••• x Vn-+MxMx ••• xM transverse to AM,
which is precisely what we hâve assumed. Thus we hâve the required framed
submanifold.

It is also necessary to know that there are enough sets of maps realizing the
condition of 6.4.

Lemma 6.5. Given any smooth maps gx\Wl-+'N{y<i<n)i there exist new maps
gft:Wt-*N which are arbitrarily close {in the Cp sensé, for any integer p) to glt and

mutually transverse.

Proof This is an easy conséquence of work of Thom [31].

It follows that we can always move the manifolds Vt by small isotopies so as to
make the projections q\Vx\ Vt->M mutually transverse. In this case we can construct
the submanifold ^ofMxRr representing at-a2 ocn directly, by the condition:
(m, uuu2, un)e W if and only if
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(m,ul)eVl for ail i 1, 2, ...,n.
We can frame W canonically, by referring back to /. This framing is the restriction
to W of the product framing &x®3r2®'~®^n of Ft x F2 x • • • x Fn in

(M x Rri) x (M x Rr2) x... x (M x Rr").

Hopf invariants. Our main object in this section is to interpret the Hopf invariant

Àn:nk(M xR,oo)->7rlt*(M xR",oo),

in the géométrie form given in § 5. To do this, we shall first interpret the opération

Hn\ [(M x R)c, Iki v Ikl v ••• v I*"] -> nk(M x R", oo)

defined in 5.1, where k ki + k2-\ \-kn. Let btelki be the image of the centre of
Dki. Without loss of generality take a map/:¥xR->IklvIk2v • • vlkn transverse
to ail the points bl9 representing a. Then V^f1^) is a framed submanifold of
MxR, and thèse submanifolds are disjoint. We may suppose, from 6.5, that the

projections VV-~*M are mutually transverse. Then as above we define a compact
framed submanifold W ofMxR" representing fina by: (m, ti,t29...9tn)eW'if and

only if
(m, t)sV% for ail i 1, 2,...,n,(meM, tteR) (6.6)

and

ti<t2<"'<tni (f,eR) (6.7)

For the same reasons as in the discussion of the cup product, we would find a compact
framed submanifold Wif we had omitted the condition 6.7. Now fFavoids the hyper-
planes tt tj; therefore W is the union of certain components of W. It foliows that
W is a framed compact submanifold of MxR" representing /ina. Its framing is

obtained from the product framing of Vt x V2 x ••• x Vn.

In order to deduce the interprétation of An, it remains to evaluate the effect of the
backward pinch map fn. Take a framed submanifold F of MxR representing
aenk(Mx R, oo), with Thom map/:Mx R-+Zk. Then we see that we hâve to choose

points bv{\ <i<n) in Ik, distinct from each other and from the basepoint o. lîk>2, it
does not matter how we choose the points, since ail choices are isotopic; if k= 1, we

must choose them in reverse order round the circle I1, to comply with the définition
1.2 of fn. Set Vl =/ ~1 (bt) ; thus each Vx is obtained from V by 'pushing V off itself along
one of its framing sections'. We obtain a framed submanifold W representing Àncc

by applying the géométrie construction for \in just described to the disjoint framed
submanifolds Vl9 F2, Vn9 from the définition 5.4 of kn. The framing of W is again
obtained from the product framing of V± x V2 x ••• x Vn.

For n=29 this is the construction of [10]. When M=Rm~1, k2 gives a homo-

morphism, which we may write as
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There it was shown that this is the usual Hopf invariant of [12], followed by suspension
(apart from sign). This fact also follows from 5.12 and previously known results.

Let us summarize.

Theorem 6.8. The Hopf invariant

Àn:nk(M xR,ao)->nnk(M xRn,oo) (n> l;/c> 1)

can be interpreted geometrically when M is a smooth manifold, by the preceding
discussion and conditions 6.6 and 6.7, in terms offramed submanifolds.

In particular we may make use of ail the properties of the Hopf invariants Xn

developed in § 2, § 3, and § 4. It is quite possible to prove ail thèse results directly, for
the case of framed submanifolds, by using transversality and framed-cobordism
methods. Thèse properties produce some interesting interaction between homotopy
theory and differential topology.

The transfer homomorphism. In cohomotopy theory we can define Gysin-type
transfer homomorphisms having the usual properties.

Let g:MczN be an embedding of smooth manifolds, and suppose this embedding
is framed. (We do not require M to be compact.) Then any framed submanifold V of
M gives rise to a framed submanifold V of N, where we frame V in N by taking the
restriction to V of the given framing of M in N, followed by the framing of V in M.

Lemma 6.9. Let g:MczN be a framed embedding of manifolds. Then g induces

gx\np{M xRn,oo)-+np+k(N xRrt,oo),

where k is the codimension of M in N. It satisfies

(a) g{ is a homomorphism (ifn>\);
(b) If M is compact, and represents ctenk(N9co), thengd=cc, where len°(M,co)

is the obvions identity class;

(c) Suppose ae7ip(MxR",oo) and penq(NxRm,co), then gi(<Z'g*P)=gi(Z'P, the

usual formula for products ;

(d) Ifalso l: NcP is a framed embedding, then {lg)x hg{ ;

(e) g, commutes with suspension.

Proof The proof is entirely trivial. Properties such as (c), and many others,
become obvious once it is noted that g] may be induced by a suitably defined Thom

map g' : Nc-+Zk aMc of the framed embedding g, even when g is not proper.

Remark. Take the unit sphères SpcRp+1 and SqaRq+l; then in Rp+€+2

Rp+i xR«+i we find the framed embedding i:SpxSqcSp+q+\ where Sp+q+1 is the

sphère radius yjl in R?+q+2. It induces the transfer homomorphism



210 J. M. BOARDMAN AND B. STEER

if we take a basepoint in Sp x Sq, or, in more familiar notation,

h:[Sp x S«, S*] -> [Sp+«+\ Sk+1J s np+q+1(Sk+l).

As such, it is simply the Hopf construction (apart from sign), as given in 1.5 of [18].
The self-linking class. Consider again the construction of Àn. We start with a

framed submanifold F of Mx R representing aenk{Mx R, oo). We construct copies
Ff of F in M x R, and from Vt we construct a submanifold W^VxW1 of MxRnby
the condition: (x,tl,t2, ...,tn)eWi if and only if (x, t^eVt. The submanifold W{

inherits a framing from Ff. Under a suitable transversality condition, the intersection
W of the submanifolds Wt is again a framed submanifold, framed by taking the

framings of the Wt in order of increasing /. Dénote by Wl2..M that part of W on which

ti<t2<~'<tn; then W12%n represents kn(x.

If n 2, we hâve a framed submanifold Wi2 of Mx R2, which we may also regard
as a framed submanifold of Wx ^ Vx R.

Définition 6.10. We define the self-linking class yenk(VxR,oo) as represented
by the framed submanifold W12czW1^Vx'R.

It measures, to some extent, the linking of F in M x R with another copy of V
pushed along a framing section. The submanifold Wl2 also defines a cohomology
linking class, as a function on the cycles of F, which has been used by Haefliger [9].
However, y is defined directly, and contains more information, as we shall see.

Let us return to the gênerai case. Dénote by Wx t the submanifold of Wl n Wt on
which tt < tt. If we work in Wx ^ F x Rn~ *, we find that if the pushed-off submanifolds
Vt for i>2 are chosen sufficiently close to F2, then the framed submanifolds Wxi

(2<i<n) are ail diffeomorphic to W12, and moreover, are precisely those needed for
constructing An_iy. Hence Àn^1y is the class in 7iin~1)k(Wl9co) of that part of the

intersection Wl2n Wt3n• • • n Wxn on which t2<t3<-~<tn. Inclusion of this framed
submanifold in AfxR", by the embedding JFiCzMxR", gives us back W12...n, with
the same framing as before. Finally, we may write the embedding Wt cz M x R" in the

formgxl:FxRw-1czMxRxRw-1-MxRM, where#: FcMxR.
Let us summarize this resuit.

Theorem 6.11. Suppose the framed submanifold g.VcMxR represents ocenk

(MxR,oo). Then Us self-linking class yenk(VxR,co) can be defined canonically, and

it satisfies

giK-iy K* M n>l
or,formally,

This resuit is reminiscent fo the Riemann-Roch theorems [2] due to Atiyah and
HlRZEBRUCH.
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We can describe the self-linking class y in a simpler way. We observe that it is the
class of the composite Thom map

where the last map is the Thom map of V2. The composite VxR-+MxR sends

((*> h), h) to (x, t2\ if ti<t2. Therefore put t t2 — tl9 which is to be positive. Then
we hâve the map u: Vx R+ -»Mx R, where R+ [0, oo], given by

«((*,*!), 0 (*,*!+*). (6*12)
We hâve therefore proved

Lemma 6.13. The self-linking class y is the class of the composite

where u is given by 6.12 and the second map is the Thom map ofV2czMxR.
Orientation. In order to discuss sphères, we need a convention for identifying the

two kinds Sn and In^DnjSn~l of «-sphère (see [37]).

Définition 6.14. A boundary convention consists of the choice of one of the two
classes of homotopy équivalences Sn~Zn, one for each n.

In view of 6.1, such a homotopy équivalence is the class of some framed point in
Sn. It is useful to be more gênerai.

Définition 6.15. Let M be a smooth connected «-manifold. An orientation (9(M)
of M is the class in nn(M, ÔM, oo) of some framed point in M.

(This terminology is convenient hère but unfortunate; an orientable manifold
has two possible orientations, whereas a 'non-orientable' manifold has only one.)

Now Sn dDn+1, and Dn+1 has a canonical orientation. Therefore what we need

for a boundary convention is some systematic method of relating the orientations of a

manifold M and its boundary dM. For our présent purposes the most convenient
convention is the 'homotopy' convention, as follows :

0(M)=0(dM)en, (6.16)

where n is an outward normal. This means that to frame a point of dM in M, we take

a framing in O(dM),followedby n. (For other conventions, we refer to the Appendix.)
The J-homomorphism. We need the preceding conventions in order to define the

/-homomorphism precisely.
Take the standard embedding ^cR"+1cRn+k (with fc>l), and give it the

'standard' framing J^o, consisting of the outward normal to Sn in RB+1, followed by
the canonical framing of R"+1 in R"+fc. Given aenn(SO(k)), choose f:Sn-+SO(k)
representing a, so that we may let / act on the framing J^, to give a new framing

f'^0 of S". Then we define
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J*:nn(SO(k))->nn+k(Sk) (6.17)

by taking /*<x as the class in nk(Rn+k9oo) of Sn with the twisted framing/- J*"o. This
agrées with the homomorphism /' defined by Kervaire in 1.8 of [18], except that we
are orienting sphères differently, and twisting the framing differently. The question
of signs is discussed in the Appendix.

It is easy to détermine from 6.13 the self-linking class of Sn with the framing/- «^"0.

As in 6.12 we map Sn x R+ into Rn+* using the direction of the last coordinate vector.
The Thom map of Sn is obtained from the map N^SnxDk->Dk taking (x,y) to
f(x)~1y, where N is a tubular neighbourhood of Sn constructed using ^"0. Let
zeôDk Sk~1 be the point such that 5"xR+ cuts SnxSk~1 in Snxz. We consider
the composite

l:Sn^Sn x zczSn x Sk~1-^Sk~1,

where the last map sends (x, y) tof(x)~1y. To obtain V29 we push V1 Sn out along
a framing section until it lies in 3N^SnxSk~1. We then see that the self-linking
class y is the class of the suspension

Sn xR

Now / may be expressed simply as the composite

where cp is the évaluation map at z, and the map/j is the inverse in S O (k) of/, which
therefore represents — a.

Lemma 6.18. Given feoienn(SO(k)), let yenk(SnxR,oo) be the self-linking class

of the sphère Sn with the twisted framing/• &\. Then y= —Ecp^a, where q>:SO(k)-*
S*"1 is the évaluation map at a point.

Theorem 6.19. Given aenn(SO(k)), we hâve

a 0 for n>2.
Proof We apply 6.11 to the embedding g:SnczRn+k with the twisted framing

f'^0. Then A2/*a=gîy, where y is given by 6.18; and if n>2, XnJ*ot,=glÀn_ly 0,
since y is a suspension.

To find gh letjiTTcS" be an orientation-preserving embedding. In the required
dimension, we hâve the diagram

n'-'iR^oo)^ ^(S-.oo) -+n2h-l(W+k9cx>)

nk(Rn x R, oo) s nk(Sn x R, oo)-^7r2k(Rn+fc x R, oo)
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which commutes by 6.9. This shows that the composite

fl*-1^", oo)-> 7c2fc(Rn+k xR,oo) n2k(Rn+k+1, oo)

agrées with (-l)***""1* Ek+1 Ek + 1, in view of our conventions. It follows that

This resuit is a slight desuspension of Lemma 6.5 of [18].
An illustration. We show how the géométrie Hopf invariant A2 occurs in differential

topology.
Consider a smooth (n — l)-connected 2«-manifold Vwith boundary d Fa homotopy

(2n— l)-sphere, and suppose we hâve a framed embedding

where R2+n+k dénotes the positive half-space with the last coordinate positive.
This situation has been extensively studied, e.g. by Wall [33]. Certain facts émerge
from this investigation: Smale theory [26] shows that if n>2 V contains a wedge
K of «-sphères as déformation retract, and that because F is framed in R2++h,

the first suspension of the map dV<=.V-*K is nullhomotopic. This implies that the
Puppe exact séquence in cohomotopy of (F, dV) breaks up to yield the short exact

séquence

0-+nn+1(dV xR2,oo)->7rn+1(F x R, dV x R, oo)->7in+1(F xR,oo)->0.
Naturality of the transfer homomorphisms, naturality of À2, Hopf isomorphisms

(from the Hopf classification theorem [14]), and various elementary observations,
yield the commutative diagram, which contains the short exact séquence,

r r 1

nn+1(dV xR2,oo)->7in+1(F xR,ÔV xR,oo)->nn+1(V x R, oo)

Hn(V,ôV;Z)
7i2n+2(dV x R3, oo) -> 7T2n+2(K x R2, dV x R2, oo)

II? Il*

H2n~l{dV,Z) s H2n(V,dV;Z)^Z.
The left side may be identified with

^ /c"*^ v.-rr /ç>2n + 2\ ^ rjn{S )^^ (S Z

We know ail about A2 hère, since it is the suspended Hopf invariant, in fact the original
Hopf invariant [13]. From the work of Adams [1] its image is

zéro if n is even,
Zif n 1, 3, or 7,
the even integers, for other odd n.
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Let us write G for the group Hn(V, dV; Z), which is free abelian. We may use the

diagram to define a function
(p:G-+Coker(EH),

by lifting an élément of G to nn+1(VxR, dV, oo) and taking its image under À2 in
H2n(V,ôV;Z); the indeterminacy is in Im (EH).

We can do slightly better, if we insist on choosing only those éléments of nn+l

(FxR, aFxR,oo) that give zéro in 71»+* + 1(r2*+*+i> r2»+*j00). The kernel of Ek is

generated by the Whitehead product [/, /], where / dénotes the identity class of
Sn+i ; it has Hopf invariant ±2 if n is odd, 0 if n is even. We therefore find a function

f Z if n i
<p: G —» <

[Z2 if n i

is even,
is odd.

From the Cartan formula 2.1 (c), <p is not linear, but instead satisfies

<p(<x + fi) qxx + cpp + a-j8,
and also, from 3.17,

a • a 2(pa if n is even.

Hence ç is a quadratic form on G.

This function appears in many différent disguises. If we attempt to do framed

surgery on F, by killing the cohomology class a, <pa is the obstruction (see [33]).
When n is odd, it gives the Arf invariant of F. (Indeed, we hâve hère essentially the

original approach, through cohomotopy groups, used by Kervaire in [19].) Aneasy
géométrie argument shows that if an embedded sphère SnaV represents the
cohomology class a, its normal bundle in F is determined by cp a (for the sphère can

certainly be framed in FxR).

Remark. It is évident that everything we hâve said about cohomotopy sets can be

generalized. We may consider submanifolds F of a manifold M whose normal bundle
need not be framed, but has a more gênerai structure group, and replace the sphère Ik
by the universal Thom complex of this group. This is still a spécial case of the gênerai
géométrie theory of § 5.

7. Appendix on signs

The purpose of this Appendix is to compare the signs of the various définitions of
Hopf invariant, on homotopy groups of sphères, as promised. We also consider the

/-homomorphism. The situation is further confused by the use in the literature of two
différent boundary conventions.

There is usually no difficulty with signs when working in a sufficiently gênerai

context as in § 2 to § 5, when shuffles may safely be omitted from the notation. When

one specializes to sphères, however, it is not always clear what signs hâve been
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introduced; the shuffle Em A AEnB^Em+n(A aB) is apt to be overlooked when A is
a sphère Sp, because both sides are already identified with Em+n+pB, in a way de-

pending on the convention used. For the gênerai philosophy on management of signs,
we cannot do better than refer to J. H. C. Whitehead [37].

Sphères appearing in homotopy theory tend to be identified canonically (up to
homotopy) with either the unit sphère Sn in Rw+1, or the sphère Zn Dn/Sn~1. As
explained in § 6, a boundary convention (compare [37]) consists of a choice for each n
of one of the two classes of homotopy équivalences Sn~Zn, or equivalently, an
orientation of Sn, in the sensé of 6.15. The homotopy groups nn(X) are always defined
as [I71, X], so that one needs a boundary convention even to define the composition

Let M be a manifold with boundary dM (in particular M=Dn, which is canonically
oriented, and dM=Sn~1), with outward normal n at a point of dM. The homotopy
convention is determined by taking, as in 6.16,

(9(M)=<9(dM)®n9 (7.1)

whereas the homology convention is determined by taking

6{M) n@(9{dM) (7.2)

(see 2.6 of [10]). The resulting maps Sn-+Zn differ by the sign (-1)".
When comparing formulae proved according to différent conventions, it is clearly

necessary to be précise as to which kinds of sphère are involved. If the formulae need

to hâve functors applied to them before being compared, one must also state the
convention used in defining the functors. In this Appendix we work in the homotopy
convention.

Smash products and suspension. The smash products of maps of sphères corne from
the canonical homotopy équivalences Zm Aln~Zm+n, or equivalently, Zn~Zi aI1
a • • • a Z1. In this paper we defined the suspension functor (in effect) by EA A a Z1,

which is found to work well with the homotopy convention. The alternative définition,
EA — Z1 a A, works well with the homology convention.

It should be noted that the Freudenthal suspension homomorphism E:nr(Sn)->
nr+1(Sn + 1) dépends on the boundary convention, because it uses

ES" Sn a Z1 <x Zn a Z1 £ Zn+1 ûf Sn+l.

The Barratt-Hilton formula, which merely expresses the naturality of the smash

product, is unaffected by the choice of boundary convention, and is disturbed only
by changing the définition of the suspension E; it reads, as in Theorem 3.2 of [7],

a a fi (- l)p(q+j)EjaoEpP (- îy^FjS^a, (7.3)

where aen^S*) and penq(Sj).
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Whiteheadproducts. There are at least three différent conventions in the literature
concerning the Whitehead product. Suppose (xenp(X), and Penq(X).

The original définition [36] by J. H. C. Whitehead was by means of a canonical

map Sp+q+1-+ZpvZq, and used the homology convention; we dénote the Whitehead
product of a and /? formed according to this convention by [a, /?]".

Instead, one can use the homotopy convention; we dénote this product by [a, /?]'.
This convention was used explicitly by Barcus and Barratt [3], and earlier by
G. W. Whitehead [35].

A third convention (which could be called the transgression convention) was used

by Barratt [5]. We dénote the product so defined by [a, /?]. This is the product we
used in § 4 of this paper. It is the définition amenable to generalization. The idea of
defining the product this way and the feasibility of doing so are due to Fox [8] and
Samelson [25].

The three products are related as follows:

[a, /?] (- if [a, /?]' (- l)p+ ' [a, /?]". (7.4)

Take also yenr(X). The commutation and Jacobi identities 4.3 and 4.4 yield

and

(- iy+* [[a, 0], y] + (- ir+' [[/?, y], a] + (- 1)«'+' [[y, a], /?] 0.

If we substitute from 7.4, thèse take the more familiar forms

and

(- i)rp [[«, /*]", ?]" + (- i)p* [[/», y]", «]" + (- i)<r [[y, «]", PY 0, (7.6)

as in Theorem B of [12]. The Jacobi identity in the products [a, j8]' is more compli-
cated.

Hopf invariants. For Hopf invariants the situation is less simple. We hâve traced
seven fundamentally différent homotopy définitions of the generalized Hopf invariant.
Initially they were homomorphisms W\nr{Sn)^>nr(S2n~l) (or nr+1(S2n)). Later they
appeared as homomorphisms

* : nr(Sl v SJ) - nr(Sl+J~ *) (or nr+1

from which homomorphisms W were recovered by putting i=j=n and composing
with the pinch map p2 : Sn-+Sn v Sn. We compare the various définitions by evaluating
them on fixed éléments <xenr(Sn) and Pen^SW SJ).

In this paper we introduced the homomorphisms

nr+1(S2»)9 and n2:nr(SîvS
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(Note that we hâve already used the homotopy boundary convention to write them
in this form.) The latter may be obtained from

by projection (see 5.5). As the définition 2.1 of À2 is axiomatic, it is particularly
convenient for comparing with the other Hopf invariants. We take the opportunity of
simplifying some of the signs by observing that by 3.18

2A2a 0 ifnisodd. (7.7)

(1). G. W. Whitehead [35] defined a homomorphism

only for r < 3n — 3. It uses the homotopy convention for the boundary homomorphism
and the Whitehead product.

(2). Hilton [11] defined a homomorphism

/i*:7rr(Sfv50->7Tr+1(Si+Ô,
and hence

H*:nr(Sn)^nr+l(S2"),

for ail r. We defined H* in 5.11, and can obtain h* also from 5.11 by taking B=
Sl~~1vSJ~1 and projecting. The définitions use the homotopy convention. Hilton
observes [11] that

H ce E Htyr ce

whenever Hw is defined. From 5.12 we find that

(3). Hilton defined [12] a homomorphism

and hence

The définition (compare 4.8) uses the décomposition theorem for the homotopy
groups of a wedge of sphères. It dépends on the convention for Whitehead products,
and on a choice between [iu z2] and [*2> *i]- We suppose it defined by the product
[iu j2]". From 4.17 we find (remembering that it conceals a shuffle)

A2a £HHa, ^ (- l)i+JEhH(l.

(Barcus and Barratt used [f2, i^' in [3]. Any two définitions, corresponding to
différent conventions, differ by an appropriate power of U - the class of a map of



218 J. M. BOARDMAN AND B. STEER

degree — 1 on Sl+j~l - easily determined by the relation 7.4 between the Whitehead

products.)
(4). James defined in [16] a very gênerai homomorphism, applying to maps of

suspensions of connected CW-complexes, which we gave in 3.10. The définition uses

the reduced product spaces introduced by him in [15], and dépends on the choice of
one of the 8 possible conventions regarding the order of the terms in 3.9. James uses

lexicographie ordering from the right. We, and Toda [32], use lexicographie ordering
from the left. According to 3.12, ail choices coïncide after one suspension. Let us call
the resulting homomorphisms for sphères

HJ:nr(SK)^nr(S2H'1)9 and hy.n^S1 v S^^
Then from 3.15 we hâve (noting the shuffle involved in 3.13),

Â2z (-iy+1EHj«, H2p (-l)J+lE
(5). Kervaire defined [18] a homomorphism

by a géométrie construction, and used the homology convention. If we compare HK
with the géométrie form of k2 given in § 6, we find that in either case we start from
the same two framed submanifolds Vx and V2 of in Rr, and construct the same

manifold W, embedded in R2r or Rr+1. It remains to compute the framings, having
regard to the differing conventions. We find

(6). Haefliger and Steer defined [10] a géométrie Hopf invariant

hHS:nr(S'vS')-+nr+l(Sl+'),
and hence

HHS:nr(Sn)^nr+1(S2n).

It differs from the géométrie form of X2 given in § 6 only to the extent that IxSn was
used in § 2 of [10] rather than Sn x /, which results in a différent orientation. Thus

Let us combine thèse formulae. On ocenr(Sn) we hâve

X2a — H oc — EHHa — EHjCc (— l)rHHSoc — EHwcc^\

H a (- l)r+iEr~1À2(x \

and on fien^S*lv SJ) we hâve

(7.9)
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Of course many of thèse relations were already known. Further, it follows from 3.2

of [28] and 3.12 of [29] that hjP Ul + 1 hHp, and hence #,a= Un+1HHoc. Formulae
with différent signs appearing in the literature (such as Theorem 6.2 of [12] and
Theorem 7.1 of [18]) are often proved, we believe, by combining formulae valid only
under différent conventions: not ail of thèse are excused by 7.7. We claim that [18]
also contains three other sign errors (see below).

Let us note that on sphères the composition formula 3.16 takes the simple form

(7.10)

where yenp(Sr), aenr(Sn), fienr(Sl vSJ)9 and pi ni° Penr(Sl% p2 n2° pEnr(SJ).
Also that if aenp(EX) and Penq(EX), 4.6 gives

l2[a, pj (- {)p+q(oL a p + (- l)pqp a <x)enp+q(EX a EX). (7.11)

The J-homomorphism. G. W. Whitehead defîned the homomorphism /: nn(SO(k))
-+nn+k(Sk) in [34] by using the Hopf construction (slightly generalized from [13])

We use the explicit form given in [35], which adopts the homotopy boundary
convention.

Kervaire defîned [18] a géométrie Hopf construction G' and a géométrie
homomorphism Jk, using the homology convention. In the définition 6.17 of our
homomorphism /*, we started with the same framed embedding SncRn+k, but we used

the homotopy convention, and also twisted the framing differently. In comparing G'
and /' with G and /, Kervaire overlooks the fact that différent conventions are used

(see below). Let Gg and Jg be the homomorphisms defîned as by G. W. Whitehead
in [35], but using the homology convention. We find that on ye[Sp xSq, Sm],

Gy (- 1)«+1 C'y (- l)p+q+l Ggy, (7.12)

and on aenn(SO(k))

Ja (_ i)»+* uk+1f<* (- If Jgoc (- l)k + l UJ*ot. (7.13)

From this and 6.19 we hâve

A2Ja £fc+1 (p^a EHHJot, (7.14)

where q>:SO(k)-^Sk~1 is the map in 6.19 or in Lemma 6.5 of [18]. We hâve used hère
7.7 and the fact that X2 ^P~^iP (from 3.16), to simplify the sign.

Discussion of the signs in [18]. The trouble taken over signs in [18] justifies a
detailed examination. First of ail, Kervaire uses the homology convention, but fails
to note that G. W. Whitehead in [35] uses the homotopy convention. Let Eg:nr(Sn)->
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nr+1(Sn+1) and *g be the suspension and join opérations defined using the homology
convention; then Eg(x=—E(x and <x*g/?= — a*/?. (The smash product is unaltered.)
Given <xe7rp(Sm) and penq(Sn% we claim that Eg((XAp) (-l)q+n <x*gP, not with
sign — \y+m as asserted in 1.11 of [18]. (The sign given in [18] is not explained.)

Next take a map t : Sp x Sq-+Sm as in Lemma 6.7 of [18], of type (a, p) according
to the homotopy convention. Then t has type (ag, Pg), say, according to the homology
convention, where (xg (-l)paenp(Sm) and pg (-l)qpenq(Sm). Let t be the class

of /. Then Kervaire proves correctly (p. 363) that Gfx (-\)pm+q+pP' a a', where

0' (-l)*+*+*«£*+1£ and a' (-l)p+qEq+1 a, but goes on to use the incorrect
version of 1.11, which introduces a sign wrong by (— l)p+q. Thus Lemma 6.7 should
read

ggggor, by 7.12,

HKGT (-l)p+qEp+q+1(oc*P).

In the proof of Theorem 7.1, Kervaire compares Lemma 6.7 with the formula
HGt== -a*p of [35] (with sign corrected by J. H. C. Whitehead [37]), but omits to
note that 6.7 is proved for G', not G. This fully accounts for the discrepancy from 7.8.

In Lemma 6.5 of [18]. Kervaire actually proves HKJ'a (-l)n+iEng+2k(p*a,
where <xenn(SO(k)). Now substitution of J'a (-\)n Uk+1 Jg<x from 7.13 yields

HKJgoc= — Eg+2kq>:¥(x, not with sign (— l)fc as asserted, because 3.16 gives HKUP
HKp, not -HKp. Thus HKJ(x (-l)n+1 En + 2k<p*(x, which suspends 7.14 (thanks to
7.7).

University of Warwick,
Hertford Collège, Oxford.
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