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Fixed Point Sets and Equivalence
of Differentiable Transformation Groups

by T.E.Stewart1

Montgomery and Samelson hâve shown that given a compact Lie group
G there exista an integer n such that there are a countable number of differentiable

actions of G on Sn, the w-sphere with mutually nonhomeomorphic
fixed point sets. The problem then arises as to what can be said if the fixed
point set is specified in advance. In particular in the case of 8n we might wish
to détermine the actions with fixed point set diffeomorphic to a sphère Sk.

In the first three sections we will be interested in the more gênerai aspects of
the relations between the fixed point set and the differentiable action. In § 1 we
consider the isotropy représentations at points in the fixed point sets and the
normal bundle of the fixed point set. In § 2 we restrict our attention to the
circle group operating differentiably with two types of orbits. In particular,
we show that in order that the action hâve the simplest possible form near
the fixed point set F it is necessary that F be in the zéro cobordism class.

In § 3 we apply récent results of Smale in differential topology to study free
actions of G on M X Dk, Dk a disk.

Finally in § 4 we give a recipe for obtaining ail possible differentiable actions
of the circle group on Sm with two types of orbits and fixed point sets diffeo-
morphic to 8Q, with suitably severe restrictions on q and m (see Theorem 4.2).
We mention hère that the recipe might possibly give the same action (up to
équivalence) several times. One can proceed further then we hâve hère and
actually reduce the classification of such actions to a problem in the extension
of diffeomorphisms. Since at this point nothing precisely calculable cornes
out we did not undertake this hère. It does, however, seem likely to the author
that there are probably at most a finite number of équivalence classes of thèse
actions for suitable dimensions.

§ 1. By a manifold we shall mean a differentiable manifold of class (700 with
or without boundary. A manifold is said to be closed if it is compact and
without boundary. If G is a compact Lie group, M a manifold, then by a

group action of G on M we will mean a differentiable fonction (of class C00)

<p : G X M-> M satisfying the usual composition rules

9(919*; x) <p(g1;<p(92', *)) (î.i)
ç?(e; x) x

x) The author is supported by the National Science Foundation under contract No. G-22126.
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e the identity of 0. We will also write <pg(x) <p(g; x). We dénote by M*
the orbit space MjG. Recall that if the action is free (i.e. g =£ e then q>g(x) ^x)
then M* is a manifold and the natural map p: M -> M* is the projection
of a differentiable, principal <?-bundle. In the gênerai case we can, by averaging
over G a RiEMANNian metric on M, obtain a RiEMANNien metric 0 such that
each <pg is an isometry. We shall suppose that 0 is given and fixed throughout
and shall then use freely the terms and notations of normed vector spaces,

e.g. length, orthogonality etc.
The set of x in M for which q>(g\ x) x for ail g will be denoted F(<p),

the fixed point set. If Mx is the tangent space to M at x c F(cp) we hâve a
linear, orthogonal représentation <xx of G in Mx via the differential i.e.

called the isotropy représentation of cp at x. If (ult..., wTO) are normal coordi-
nates at x and U a sufficiently small disk in thèse coordinates we see that U is
invariant under <p and q? \ U is équivalent to ^ restricted to a disk in Mx, (each

ç?^ sends geodesics to geodesics). In particular, F(cp) is a submanifold of M.

Lemma 1.1. // F (y) is connectée!, and xt, x2 c F(<p), then the isotropy
représentations of <p at xx and x2 are équivalent représentations of 0 in the orthogonal

group 0(m), m dim M.

Proof. Let S (oc) be the set of points of F(<p) at which the isotropy représentation

is équivalent to a fixed représentation <x\G-+O(m). Since at each

x € F(<p) the action cp is locally linear S (oc) is clearly an open and closed set,
and hence the lemma.

Suppose now that G is connected and let T be a maximal torus of G. Let y>

be the restriction of <p to T X M.

Proposition 1.1. If F (\p) is connected and xly x2 € F (y) then the isotropy
représentation of(pat x1andx2are équivalent as représentations of G in Gl(m,C).

Indeed, (dxp)xy and (dtp)x2 are équivalent by lemma 1.1. But thèse are
precisely the restrictions of ocxt and ocx2 to T. Since every complex représentation

of G is determined by its weights, [5], which are linear functionals on
the universal covering space of T, a complex représentation of G is determined
by its restriction to T and the proposition follows.

Corollary. If <p is a differentiable action of a compact, connected Lie group
on a contractible manifoldy the dimension of every componentof F(q>) isthesame.

For such manifolds we know that F(y>) is connected by Smith theory ([6]) and
the dimension ofF (q?) is then the number oftimes the trivial représentation occurs
in an isotropy représentation (considered as a complex représentation of G).
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Remark. One would hope, of course, that on such manifolds F(cp) is connected.
This would seem to be related to the question of whether fixed points exist at
ail on contractible manifolds. For example, in the continuous case, if there
exists a continuous action y of G on euclidean space Rn without fixed points
then there is a continuous action q>x on Rn+1 with F{q>^) the disjoint union
of two half rays. One simply adjoins oo to Rn and extends <p to an action of
G on 8n. Taking the suspension of this action to 8n+1 and deleting oo we
obtain q>x.

We wish to détermine now what the action cp looks like near F (y). We
assume that there exists a fixed orthogonal représentation oc: G->O(k),
m n + k, such that for each x e F (q>) coordinates exist (ul7..., um) so that

(1) (ux,..., un, 0,..., 0) forms a coordinate System at x in F(<p)

(2) -5 -r forms an orthonormal base of the subspace of M.v ; ôun+1 ôum v m

orthogonal to the tangent space of F (<p) at z, for z sufficiently near x, z e F (<p).

(3) ocz restricted to the space spanned by -r -r is the représentation

oc when expressed in this base. n+1 m

It is not difficult to see that this will be the case iï F(cp) is connected. We will
also assume that M is compact.

Let JV be the total space of the normal vector bundle of F (q>) in M. N is the
set of ail pairs (x, y), x e F (9?), y e Mx orthogonal to the tangent space of
F(q>) at a?. Ne will dénote the total space of the associated disk bundle char-
acterized by || jf || < e. Let xp be the action of G on Ne defined by

Lemma 1. 2. There exists a tubular neighborhood V of F(cp) diffeomorphic
to Ne, invariant under q> and q> \ G X V is équivalent to the action ip.

Proof. For each pair (x,y) € N we hâve a unique géodésie y(t) in M such
that y(0) x, yr(0) y. Recall then that the map Exp : Ne-+ M defined

by Exp(#, y) y(l) is a C00 map and that for sufficiently small e it is a
diffeomorphism of NB onto a tubular neighborhood F of F(q>) [3]. Again since

q>ff is an isometry the map Exp is equivariant and hence the lemma.

Theorem 1.1. The structural group of the normal bundle of F(q>) in M is
reducible to the centralizer P of oc (G) in O(k).

Proof. Let F(q>) be covered by coordinate neighborhoods U{ such that for
x € Wi Ui^ F((p), U{ satisfies the hypothèses (1), (2), (3) above. For each

z e Wi3 the last k coordinates then détermine a basis Ai(z) of the fibre over z

of the normal bundle of F(<p). From (3) we see that for z € Wt^ Wjfocz(g)
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restricted to the subspace of Mz normal to F (<p)z, is oc (g) when expressed in
either of the bases A% (z) or A^(z). It foliows that if fH : W^ W{ ->0(k) are
the transition fonctions which assign to z e Wt ^ W^ the transformation
sending Ax (z) to A7(z) we hâve

f»(z)-oc(g)=ot(g)-fjt(z), g*G (1.2)

Thèse transition function values therefore lie in P and hence the theorem.
We remark that in case oc is complex irreducible it follows from Schur's

lemma that the normal bundle is then the Whitney sum of one or two dimen-
sional bundles.

Let Dk dénote the unit disk of euclidean A-space. If oc is as above then we
define an action, also denoted oc, on F X Dk by oc(g; (x,y)) (%,<x(9)(y)) •

Définition. We say an action q> is totally linear at F(q>) if there existe a
tubular neighborhood V of F(<p) invariant under <p and <p\V is équivalent to oc.

A totally hnear action q> at F(cp) has the simplest possible form near its
fixed point set. Now by reasoning completely analogous to the proof of theorem
1.1 we can obtain

Theorem 1.2. cp is totally linear at F(cp) if and only if the P-bundle defined
in Theorem 1.1 is the trivial P bundle.

§ 2. In this section we shall assume that 6? is the circle group S1, which we
represent as the reals modulo 1, acting on a closed orientable manifold M. It
is then easy to see that F (q?) is an orientable manifold. On the action <p we
make the rather severe restriction

(A) If xîF{cp) and <pt(x) x then t 0 (mod 1).

If xeF(cp) and Nx is the subspace of Mx orthogonal to F(cp)x we see

that k dim Nx is even, k 28. Let B2S be given a décomposition as
the direct sum of 8 orthogonal planes R2S Lx -\ f- Ls> We define an

orthogonal représentation oc of G in R2S by

y r / cos nt sin nt \
\— sin nt cos nt I

It follows easily from the hypothesis (A) that ocx is équivalent to the représentation

oc for each x eF(<p). The centralizer of a (G) in 0(28) is clearly just
the unitary group U(8). Thus the action ç> on M assigns a complex vector
bundle over F(<p).

Example. Let ^(C) dénote the complex projective space of complex



10 T.E. Stbwabt

dimension n, (zOf..., zn) homogeneous coordinates in Pn(C). Define the
action ç^ of G on 1^(0) by

9(n\t; &,..., zn)) (z0,..., zk, e2*" • «w,..., e2*" • zn) (2.1)
ç>(n*} satisfies (Jl) and F(<p(^) is just P*(<7). Note that for every h the com-
plex vector bundle over Pk(C) induced by ç?Jf) is non-trivial (its first Chern
class is non-zero), and consequently the action is not totally linear at Fiqfjp).
We shall show that in half the cases this last fact is due to the character of the
fixed point set rather than the ambient space.

Theorem 2.1. // q> is totally linear at F(<p) then F{q>) bounds a compact,
orientable manifold. Conversely if F is a manifold in the zéro cobordism class
there exists a closed orientable manifold M and an action cp of G on M satis-

fying (A) with F(q>) diffeomorphicto F and cp is totally linear at F(<p).

Proof. Suppose that <p is totally linear at F(q>) and let F be chosen as
in the définition of total linearity. The boundary dV of F is then clearly
B F(<p) X /S25"1. Denoting by W the complément of the interior of F
in M we see that W is an orientable, compact manifold with boundary B and
ç? is a free action af 0 on W. Thus TF* is a compact manifold with ôW*

JS* F(<p) X P^-MC). The remainder of the proof is divided into two
cases, (a) If 8 is odd it foliows that F(<p) x Ps~l(C) bounds a compact, orientable

manifold TF*. Now according to Wall ([8]) it follows that both the
Stiefel-Whitney and the Pontbjagin numbers of F(<p) x P5"1^) vanish.
Since PS"-1(G) for 8—1 even has both non-zero Stiefel-Whitkey numbers
and non-zero Pontbjagin numbers [2] it follows that thèse numbers vanish
for F((p) which, again according to Wall, shows that F(<p) bounds. (b) We
consider now the case 8 even. Let r > 2 • dim TF* + 1. Let / : B* -> Pr(C)
be a characteristic map for the bundle B -> J5*. It is clear that / can be
chosen transverse regular on

Pr~1(C) (see [2]) and f'1(Pr~1(C)) =F(<p) X PS-*(C)

Since B-> jB* is a sub-bundle of JF-> IF* and Pr(G) is an (r — 1) uni-
versal base space we see that / can be extended to a map g: ïF*^>-Pr(C)
which is characteristic for W -> TF*. Further ([2, page 101]) g can be supposed
transverse regular on Pr-1(C). Then ô'""1(Pr~1((7)) is a compact, orientable
manifold with boundary F(<p) X PS~2(C), We proceed then just as in (a) to
show that F(<p) détermines the zéro cobordism class.

For the converse statement we suppose Q is a compact, orientable manifold
with dQ F. Then we hâve a free action of G on Q x /S25*"1 simply by
taking the action oc on the second factor. Taking the union of Q X /S25"1 with
F X D25 and identifying boundaries we obtain M and the asserted action <p.
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§ 3. In this section we apply the results of Smale in differential topology
to the study of transformation groups. Again M will dénote a closed manifold.
I will be the closed interval [0, 1]. If 9? is an action on Jf X J we shall dénote
by <p0 the action <p\G X (M X {0}).

Lemraa 3.1. If (pis a free action of a compact, connected group G on W=M x I
dim W — dim G > 6 and II^M) 0 then <p is differentiably équivalent to
the action xp(g\ (m, t)) ((po(g; m),t).

Proof. Set Mo M x {0}. First we see that Mq is a déformation retract
of W*. For Mq c W* and for their homotopy séquences we hâve the com-
mutative diagram :

- nt(w*) -> n^G) - —
t t t

the vertical maps being induced by inclusions. Since IT^Mq)->II^W) is

bijective we see by the five lemma that II^Mq)->TIi(W*) is bijective. It
follows (for example, by obstruction theory) that MJ is a déformation retract
of TF*. Further, since G is connected Mq is simply connected. Then ([7])
there exists a C00 real valued function / on TF* without critical points such
that

f{Ml) 0, f((M x {1})*) 1. If n: W->W*

is the natural map, we set h / • n. h therefore has no critical points and
further h is invariant under the action (p. Let 0 be an invariant. RiEMANNian
metric on W and let q(t; m) m € M be the intégral curve of gradient h such
that q(0; m) m. In the usual way (see [7]) q is a diffeomorphism of W onto
itself. Let 9/ be the action q • <p • g"1. 9/ is then an action of the type described
in [4]. It follows that y1 is differentiably équivalent to \p.

Now suppose q? is a free action of a connected, compact group G on W
Jfefw X Dfc, &> 2, dim TT - dim#> 6, nx(Mn) 0. Further assume that

MQ M x {0} is invariant under <p Mq has trivial normal bundle in W*.

Lemma 3. 2, Under the above conditions the action 9? is differentiably équivalent
y) (^(^),2/), (z5s/)€.M* x Dk.

Proof. Let J* be a tubular neighborhood of M* in W* diffeomorphic to
Jf* x Dk and let F* be the complément in W* of the interior of N*. We
hâve âi\f* diffeomorphic to Mq X /S*""4, which is simply connected since
Je > 2. We establish just as in the previous lemma that 6N* is a déformation
retract of F*. Proceeding then just as before we conclude that F* is
diffeomorphic to ôN* X /. Since the intégral curves which produce this diffeo-
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morphism could be chosen to be differentiable continuations of the "radial
Unes" in N* we see easily that TF* is diffeomorphic to Ml x Dk.

Now let EQ -> Bo be a universal 6r-bundle, / : W* -> BQ a characteristic
map inducing W-+W*, and h f | Jf*. On W* M* x Dk define h'
by h' (z, y) h(x). Then / is homotopic to h' by the homotopy

H(x,y,s) f(x,sy)
But clearly h1 induces the bundle n:MQ x Dk-+Ml x D* ?* (#,£/) (n(x),y)
and the lemma follows easily.

§ 4. We consider now the case of the circle group 0 acting on the sphère
Sm with fixed point set diffeomorphic to 8q and satisfying (A). In this case we
see that m has the form q + 2$. We will assume throughout that m > 6.
We first consider the case q 0.

Theorem 4.1. // <p is an action of G on the cell Dm satisfying (A) and
with exactly one fixed point then q> is differentiably équivalent to the linear
action with thèse properties.

Proof. We may suppose the fixed point is the origin 0. Let U be a neigh-
borhood of 0 diffeomorphic to a cell on which the action ç? is équivalent to
the linear action of the isotropy représentation. Then Dm — U is
diffeomorphic to S771"1 X /. By lemma 3.1 the action <p restricted to Dm — U
is équivalent to the action (<p \ SU) X /. By an argument similar to the one
used in the proof of lemma 3.2 we see the équivalence can be extended over U
and obtain the theorem.

Corollary. If q> acts on Sm with exactly two fixed points then cp is topologically
équivalent to a linear action.

If x1 c F(<p) then we let Ux be a cell about xx on which q> is linear. tp\8m — U1

is an action as in the theorem and hence équivalent to a linear action. The
équivalence can be extended to a topological équivalence over £7X simply by
regarding U1 as the cône over ô^.

We turn now to the case q > 1. We will assume m q + n + 1 with
q < n. In this case we hâve F(<p) isotopic to the standard imbedding of SQ

in 8m. In particular, F(<p) has trivial normal bundle in 8m. Further, if N is a
tubular neighborhood of F(cp), we hâve 8m — N diffeomorphic to I^^xS71,
N diffeomorphic to 8Q x D*1*1.

The first problem we encounter is whether <p is totally linear at F(<p). It is

easily seen to be équivalent to whether or not there is a nontrivial complex
vector bundle whose underlying real vector bundle is trivial and such that the
associated fibre bundle with fibre Pr,(2r 1 +n), is diffeomorphic to
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8q X P*. As far as I know this is quite possible even in the stable range.
However, by simply examining Bott's periodicity theorems [1] we see that:

Lemma 4.1. For q ^ 4& + 2, cp is totally linear at F{<p).
Let Nx be a tubular neighborhood of Sq and K a diffeomorphism of Nx onto

8q X D™+1 carrying <p\Nx onto oc (as defined in § 2). Let N be the tubular
neighborhood whose image under K has second coordinate of length < £.
The closure of 8m — N then is diffeomorphic to D«+1 X 8n. Further if
xoe8q and S? {y\ \\y\\ f} we hâve ^^(WxSJ) invariant
under ç? and ç? is équivalent to oc in a tubular neighborhood of Q. Applying
lemma 3.2 we find a diffeomorphism H : W -> D^1 X #n which carries
<p\ W to a. Let h, k dénote the restriction of H and K to boundaries. We
hâve then

h.fr-i-.S* x S"->Sq X fl* (4.1)

(A.Jk-1)-a ^-(A-ifc-1) (4.2)

Conversely if P is a difïeomorphism of /S3 X Sn satisfying (4.2) we can
define a differentiable action cp on Sm satisfying (^4) and having Sq for fixed
point set. Thus:

Theorem 4. 2. For m>6,q=fi4:k + 2, 1, 2g < m we caw obtain every
differentiable action q> of G on 8m having 8q diffeomorphic to F (y) and

satisfying (A) by identifying the boundary of D1*1 X 8n with the boundary of
8q X J^"1"1 by a diffeomorphism which commutes with oc.

We mention that it is possible that 8m is given an exotic differentiable
structure by such a diffeomorphism. In order that the action be differentiable
in the ordinary structure on Sm we hâve only to restrict the diffeomorphism
to lie in the proper class.

University of Notre Dame
Notre Dame, Indiana
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