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A Note on the SameLsoN Product in the Classical Groups

by Raovur Borr!), Harward University, Cambridge (Mass.)

In a topological group G the correspondance (x,y) = y-x-y~1-2~1 defines
a map

c: G4 - @4

where as usual G # G stands for the identification space G X G/G xevex @,
with e the identity of G. This map ¢ induces a pairing of x,(G) with = (G)
to 7,.,(G@) in the plausible manner: if «x: 8, -G, B:8,, > G are maps
based at the identity, the composition co(x$p8): S, #8,, > G determines
an element of =z, (@) in view of the homeomorphism of S,#8, with
8,+m- That the induced function is actually a bilinear one was shown by
SAMELSON [4]. (See also G. WHITEHEAD [6].)

The commutator ¢ thus induces a ring structure on =, (G). If G is homo-
topy abelian this product, which we will refer to as the SAMELSON product
and denote by <«,f)>, is clearly trivial. Therefore <{x, > can be thought
of as an obstruction to homotopy commutativity.

In [5], SAMELSON used this criterion to show that the unitary group in two
variables, U,, was not homotopy abelian. He showed that if « e 73(U,) was
a generator, then {o, ) % 0.

Recently JAMES and THOMAS [3], considerably extended this result; they
showed, for instance, that among the classical compact groups only the truly
commutative ones were homotopy abelian. Their method is again to find
elements « e, (@) with <{x,«) # 0.

Both authors essentially conduct their search for nontrivial squares <{x, x),
not in G, but in the classifying space, Bg of G. This is possible in view of
another of SAMELSON’s results [4], according to which the natural isomorphism
T: n,.,(Bg) »>n,(G) transforms the WHITEHEAD product on Bg, into the
“commutator”’ product on G :

T[OL, ﬁ] = + <T0"a T:B> .

In this note we study the ring x,(U,), where U, is the unitary group in
t-variables, directly from its definition, and show that with the presently
known information about =,(U,), a quite elementary degree argument
evaluates the first potentially interesting SAMELSON products. Recall that [1],

1) The author holds an A. P. SLoAN fellowship.
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i1 (Uy) Z 0<i<t
7y (Uy) 0 0<i<t
ny(U,) = ZJt\Z .

ll

Hence the first interesting instance occurs when « € 7y, ,(U,), B € 75,1 (U,);

(t=7r+ s+ 1), the product <{«,p> being an element of Z/t!Z. Our result
can be stated as follows:

Theorem 1. The kernel of the homomorphism

Tart1 (Uy) ® p041(Uy) — 705, (U ) t=r+s+1)
which takes o« @ B into {x, ) is divisible by precisely t!/r!s!.

Corollary. If « em,, ,(U,), B emyi(Uy), ¥ €y (U,), are suitable genera-
tors, then {«,p> = r!sly. This element does not vanish unless y = 0, that
18, unless r = s = 1.

We also give an analogous formula for the symplectic group SP,. (Theo-
rem 2 of § 2.)

In the orthogonal groups these methods can also be used to show the non-
triviality of certain SAMELSON products. However here this product vanishes
for stable homotopy classes. We hope to return to this case in the future, and
have, for that reason, described the initial constructions for the whole family
of classical groups.

2. A suspension formula. We will follow the notation of James (2): if K
is one of the three fields over the real numbers, K,, denotes the right K-module
of m-tuples of elements of K :

B == By, 00np L)

An inner product is defined on K, by the formula (x,y) = Zz,y; where
the bar denotes the conjugation in K. The group of automorphisms of K,
which preserve this inner product is denoted by O,,. Hence if K is real field,
0,, is the orthogonal group in m variables, and when K is the complex field
0,, is the unitary group, U,,, in m variables. In the case when K is the field
of quaternions, O,, becomes the symplectic group SP,, in m-variables.

Let e;, (j =1,...,m) be the m-tuple with j*» coordinate 1 and all others
0. If n» <m we distinguish two imbeddings of O, in O,,.

2.1y <¢: 0, - 0,, identifies O, with the subgroup of O, leaving the last
m — n elements of the basis e,,...e, point wise fixed.

(2.2) ¢':0,—0,, identifies O, with the subgroup of O,, which leaves
the first m — n elements of this basis point wise fixed.
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Consider the map:
0,40, 0,40,—0, (2.3)

where ¢ is the commutator map of the introduction. If ¢ > n 4+ m, then
this composition yields the trivial map as then ¢0, and ¢'0,, commute. If
t=mn-+m —k with k> O this is no longer true, but the map (2.3) may
still be factored whenever k is less than both n and m. (We will make this
assumption throughout the rest of this note.)

Indeed the two image groups of the following compositions:

0pr,—> 0, >0,
Opi— 0, >0,
commute with ¢0,, and 40, respectively. Hence if we write O, , for

0,/i0,_, and O,,, for 0,b/i'O,, , and denote the natural projections by x

and n' respectively, the map (2.3) induces a map: O, . # 0,’,”,—7; O, which
makes the following diagram commutative:

0,40, 20,

n#n'l /A
On,k #OZn,k

Consider next the fibering. 0, -> 01 x Oy, x> Where again O, , is equal
to 0,,4/10; in accordance with the JAMES notation.

We assert that the map A, which takes values in the fiber of this fibering,
is suspendable in the total space, and we will construct an explicit suspension
AE: (O #O0m 1) —> Oy for it. That A can be suspended is plausible
enough: It was already remarked earlier that the map

co(t31i’)
On#Om_ : t+k

was trivial because O,,, = 0,,,,.- However co(1#¢') and s0do(zw# ')
are homotopic as maps into O,,,. A deformation between them followed by
the projection on O,,; , should therefore yield the suspension.

Explicitly we proceed as follows. Let X = O,  #0,, ;. For convenience
we represent the suspension of X, that is £ X, as the quotient X X [0, =/2]/
(X x 0vX x m/2). Also, for each 0¢[0,n/2] we determine an element
aq € 0,,, according to this prescription: Let « =n — k, then

@0€yqs = COS O,y + sin fe,y, 0<i <k
olpyy = — sin Oe,.; + cos e, 0<1<k.

All other basis vectors are to be pointwise fixed. We also let Ae: 0,,; — O,,,



262 Raour Borr

be the inner automorphism induced by ae: Aof = as-f-a3*, f € 0,,,. Clearly
a, is the identity whereas a,, maps the plane spanned by the e¢,,;, 0 <i <k,
onto the plane spanned by the e, ,, 0 <t <k. As a result, if ¢, and 7, are
the compositions

i,: 0, 50,50,,

: i’ i’
130 Op—>0,— Oy

the two groups 4,(0,) and A4,,,(0,,) commute.
Further the elements in the image of:

i % i i
On—-k —> On - 0t+k and 0m~—k - Om - 0t+k

commute with ag for all 0 < 6 < =/2.
It is now easily verified that the function

8:0,#0, xX[0,7n/2] > O04s = Opinm
defined by:

8(f:9,9)=[f16°2'29,i1f], feon’geom’ae[():n/z]

induces amapof CX = X x [0, #n/2]/X X [xn/2] into O,,, whose restriction
to X X [0] is precisely 4. This proves that 4 is suspendable, and we may
take for AE the map induced by ros, on EX.

These constructions have the following consequence:

Proposition 2.1. Consider the map co(t$4¢):0,30, —0,. Then the
induced homomorphism in homotopy has the following factorization :

{co(i44)}s = A°Af°E°(n#n')*

where n#a':0,40, > 0,,4%0,, is the natural projection and
E denotes suspension. The homomorphism lf 18 induced by the map
AE: B(O, 1 #0m 1) = Oy i, and A denotes the boundary operator in the
exact sequence of the fibering 0, 0,1, > O, Rk

Consider now the case k= 1. If d is the dimension of K over the real
field, O, , is homeomorphic to a sphere of dimension dn — 1. In this case,
then, AE will be a map from ¥ (8;,_, # Sam—1) t0 Sinim—1. Thus AE is a
map between spheres of equal dimension. In the next section we will prove
the following proposition:

Proposition 2.2. Consider the situation of proposition 2.1, with k = 1. The
map AE is then a map of Sinim—1 0180 8 ginymy—1 With degree 1.

As a corollary to these two propositions we bring the proof of theorem 1.

Let then K be the complex field, whence d = 2. From the homotopy

sequence of the fibering: O,_, S0, S, one concludes that: [1],
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(8) m4_1(0,) is stable. (Use r + 1 for r in the above sequence.)

(b) The section of the sequence =, _,(0,) = 74— (Sar—1) = Tgr_s(0,_;) = 0
is given by 7'y —Z[(r —1)!1Z - 0.

Suppose now that «em,;, ,(0,) and B emng,_,(0,,) are generators. Then
according to the factorization of proposition (2.1),

(o, t'ay = Ao lfoEo(n*oc#n;ﬂ) .

According to (b) 7, multiplies by (n — 1)! while n; multiplies by (m — 1)!.
The suspension E is a bijection in the pertinent dimension, and according to
proposition (2.2) so is lf. Finally A4 projects Z onto Z/(n +m — 1)!Z.
Hence the order of (ix,:'f) is (n +m —1)!/(n —1)!(m —1)!. Finally
because we are in the stable range ¢ and ¢’ are bijections. This proves theorem
1, once » and m are replaced by n + 1 and m + 1 respectively.

The quaternionic case can be treated entirely the same way. In this case

7qq-1(0,) is again stable and isomorphic to Z, and the sequence in question
has the form:

Tar—1(0p) = Tgr_y (S ar—1) > Tgr_3(0r_g) =0

Z8 7 2,7 >0

where k, = (2r — 1)! if ris odd, and k, = (2r — 1)!2 if r is even. The ana-
logue of theorem 1 therefore takes the following form:

Theorem 2. The kernel of the homomorphism
Tan—1 (S-Pn) 029 Tam—1 (SPm) > Ta(nt+m)—2 (SPm-}-n-l)
induced by the Samrrson product is precisely divisible by k,. ,./k,-k, where

_ (2r —1)!12 r even
T (@2r —1)! r odd.

For the real field, this argument fails because x,,_,(0,) is not stable any-
more. As a consequence the SAMELSON product of two stable elements in
n4(0,) vanishes.

k

3. Proof of proposition 2.2. We have to show that our map

AE: E {On,l # O:n,l} = 0n+m,1
has degree one.

For this purpose let K,,,,=A4 4+ a + B + b be the orthogonal decom-
position in which A is spanned by e,,...,e,_,, the plane B is spanned by
€ni1s -+ 5 €nim_1, While a is the line spanned by e, =e, and b is the line
Spanned by e,.,, = ¢€,.

Let O} be the image of O, > Oy ~>Opnim, 8nd let OF_, be the image
of ¢0,_, c 0, under this map. Similarly let O},[O}_,] be the image of O,,
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and ¢ (0,,_,) c O,, under the map Omi Ominr 5 Oin- Clearly these sub-
groups are characterized by the following properties:

O} - leaves B + b pointwise fixed
O)_,leaves a + B + b pointwise fixed
O leaves A + b pointwise fixed

O)._,leaves A + b + B pointwise fixed.
Let 8,,, be the unit sphere of 4 + a. Clearly the map f — fe,, feO}
identifies O:,l with §,, ;. Similarly g —ge,, g € O}, identifies 0,",‘,,1 with
the unit sphere 8,,_, of the plane a + B. Finally the map f — fe,, feO,

identifies O,,,,, ; with the unit sphere S, m-1 in K,,,,. In this realization
our map

A : B{San1 ¥ Sama} > Satnem—1
is described in the following manner:
If 28401, ¥y €Sqm_1, 0€[0,n/2] are given, then
AE(x’ Y, 0) = [Ao(g)’ f]eb
where g and f are any elements of O} and O} respectively subject to:

fea=12; ga=y,
and A is, as in the earlier section, the inner automorphism by a¢ €O, _,,.
(Recall that in the present case age, = cos Oe, + sin Oe,; age, = — sin fe, +
+ cos e, while all other basis elements are held fixed.)
Let us write g for Aeg. Then AE(x,y, 0) = (gofg5 f)e, = gofgs'e,, (the
last step follows from fe, = ¢,).
Consider the orthogonal decompositions:

g5le, = e+ w weB+ b
x=f1le, = a' + e, ' ed,
so that E: (es, g5'e,) = (goe,, e,), whence B = (¢,, goe,) while & = (e,, ).
We have therefore, in order:
fga'e, = (@' + ead)B + w
gofgs e, = o' + (goeq)xp + gow
= x,ﬂ + (gﬁea)“ﬁ + e, — (geea)ﬁ
AE(z,y,0) = {2 + (goes) (@ — 1)} + e . (3.1)
It is clear that 2/, x and § are functions of xz,y and 6 above. On the other
hand, so is gee,. Indeed a straight-forward computation yields:
a;'e, = e,cos  —e,sin O
gagle, =1y cos 6 —e,sinf.
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Let y=e,y + vy with ¥’ ¢ B, be an orthogonal decomposition of y, so that:

gagle, =e,ycos O + gy cos 6 —e,sin
whence

aegagy e, = (e, cos 6 + e, sin 0)y cos 0 + y' cos 6 — (— e, sin 6 + ¢, cos 6) sinf

so that
goe, = e,(y cos?6 + sin?6) + y' cos 0 + e,(y — 1) sin 6 cos 6. (3.2)

The formulae (3.1) and (3.2) completely describe the map AE, and show fur-
thermore, that considered a function on the manifold S,,_, X 8,;,.—, X [0,#/2],
the map AE is smooth. To determine its degree it is therefore sufficient to
examine the inverse image of a regular point.

Lemma 3.7. Let P be the point — e, € Sginim—1- The inverse tmage of P
under AE consists of the single point Q = (—e,, —e,, w/4).

Proof. The condition AE(x,y, 0) = — e, implies that

(€5, goeg)(x —1)f = — 2
as is aparent from (3.1). From our definition of f this is equivalent to

Bl —1)B = —2. Now |B| and |« | are non-negative numbers less than
or equal to 1. Hence this relation holds only if « = —1, and |B8]| =1.
From (3.2) we see that g = (y — 1) sin 0 cos 6. Therefore, as 0 < |y| < 1;
0 < 0 < =/2 the condition |f]| =1, implies y = — 1, and 6 = n/4. Now
«= —1 implies = —e,, and similarly y = —1 implies y= —e,.
The lemma is therefore established.

Lemma 3.2. The differential of AE at Q is an tsomorphism. Thus P is a
regular povnt of AE.

Proof. We may identify the tangent space to P with the real vector space
K, ,./L, where L, denotes the real line e,-r, r a real number. We also write
I, for the real vector space spanned by those e,q, q e K for which ¢ = —gq,
and define I, analogously. Hence K, /L, is spanned by the real vector
space 4 + a + B + I,, mod L,. Similarly, the tangent space at  is identi-
fied with the real vector space A + B + € where A is spanned by 4 + I,,
B is spanned by I, + B and € is spanned by 9/06. If z = (x, ¢, 0) is a
triple in this space, the differential dAF, is seen to take the form:

dAE(z, y, é) = — x + 2goe, + ¢,(x + 2[3—) mod L,

where the dot denotes differentiation in the direction z. (Recall that at Q,
goe, = —e,, wWhile a =f=9y= —1.)
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Using this formula it is clear enough that the image of dAf spans all of the
tangent space at P, except possibly the real multiples of e,. (The space I,
can be obtained by setting # = pe,, (= — ), y = 0, 6 = 0). To obtain
these multiples of e,, consider the variation (0, 0, 3/96). One finds & =0,
B=0, z=0, while gee, = 2¢,. Hence dAE is onto, and therefore an
isomorphism.

The two lemmas clearly imply that A€ is a map of degree one. It was this
that was to be established.

A question. In [2] I. JAMES considers a map of the join of O, , with O, ,
into O,,,, , which is the natural extension of the usual join map of S,* 8,
onto S,,,.,;. If we think of a point of O, , as a k-frame f = (f;,...,f,) in
K, and of O,, ; as a k-frame g = (g,,...,9;) in K,, then the JAMES map,
which we denote by A7, attaches the frame

cos 0f +sinfg in K,+ K,

to the triple (f, 0,9) €0, *O,, . (We have again used the interval [0, 7/2]
to parametrise the join.) In view of the fact that O, ;x0,, , and E {0, . % O,, }
are of the same homotopy type, A7 has the same domain of definition, and
image space, as our map AE. For k = 1, the JAMES map clearly has degree
one. Hence proposition (2.2) can be thought of as showing that the two maps
are equivalent in this case, and the problem of comparing the two maps in
general immediately arises. In view of the beautiful properties which JAmMES
discovered for his map, it would be very encouraging if 1/ and AF turned
out to be homotopic.
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