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§1. Introduction

This paper contains a proof of the following theorem in homotopy-theory.

Theoreml.l. If n2n^x{8n) and Il^^iS271) both contain éléments of Hopf
invariant one, then n ^ 4.

This theorem, of course, is only significant if n is of the form 2m. We note
that it yields an independent proof of the following theorem of H. Toda [5] ;

there is no élément of Hopf invariant one in 7731 (8U).
The author conjectures that this theorem can be improved ; it is included

mainly to motivate and illustrate the methods hère introduced.
Thèse methods dépend on a certain spectral séquence. It leads, roughly

speaking, from the cohomology of the {mod p) Steenbod algebra1) to the p-
components of the stable homotopy groups of sphères. This spectral séquence
may by regarded, on the one hand, as an extension of Adem's method of
studying homotopy groups by considering cohomology opérations of the
second and higher kinds. On the other hand, it may be regarded as a reformulation

of the method of killing homotopy groups.
Theorem 1.1 follows from a superficia] study of this spectral séquence. It

requires, however, some knowtedge î(though very little) of the cohomology of
the Steenbod algebra. Our methods for studying the cohomology of the Steenbod

algebra dépend on a, thorough knowledge of the structure of the Steenbod
algebra. This is obtained by classical methods (cf. [2])la).

*) The (mod p) Steenrod algebra, where p is a prime, has as generators the symbols f}p, P*
if p > 2, JSq* if p a* 2. The relations are those which are universally satisfied by theBooKSTEiN
boundary 8 And the Steeneod opérations P* or Sq* m the cohomology of topological spaces.
See [2].

The cohomology of the Stbenboe» algebra is defined below.
la) Note added in proof. I learn that J. W. MrLNOR has made an élégant study of the structure

of the Steenbod algebra, which overietps in content with § 5.
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§2. Suraniary of Besults and Methods

We will next summarise thèse methods in more détail. We will consider the
spectral séquence, and its multiplicative structure ; we will give some data on
the cohomology of the Steenbod algebra, and show how to deduce Theorem 1.1.
We begin with the spectral séquence.

Let X be a space, let SnX be the iterated suspension of X, and let II^(X)
be the stable or $-homotopy group DirLimIIm+n(8nX). Let pbea prime,
and let Km be the subgroup of n^(X) which consisté of éléments whose order
is finite and prime to p. Let H^ (X) be the (augmented) singular homology
group of X ; we suppose Ht{X) finitely generated for each t. We make the
convention that when we write ''cohomology", it means "cohomology with
Z9 coefficients", and when we write "H*(X)" it means "#*(X ;£-)", the
(augmented) singular cohomology group of X with Zp coefficients. The group
H* (X), then, has the structure of a left module over A, the (mod p) Steenbod
algebra. We give Zp the trivial A -module structure. That is, the unit in A acts
as a unit, while a(Zv) 0 if a c Aq with q>0. (Hère the grading q of the
Steenbod algebra A SAq is defined by deg/?_ 1, degP* 2k(p — 1),

deg8qk k.) The group Ext^(H*(X)9Z9) is now defined2). It is bigraded;
the grading s is the grading of Ext^, while the grading t arises from the
grading of H* (X) and that of the Steenbod algebra A3). With thèse notations,
we hâve the following theorem.

Theorem 2.1. There is a spectral séquence, with terms E'r't E*r>t (X) which

are zéro if s<0 or if t<s, and with différenciais

dr: E9r>t->E°r+r>t+r-1

satisfying the following conditions.

(i) There is a canonical isomorphism

El*' g*Ext'/(H*(X),Zp)

(ii) There is a canonical isomorphism

(iii) There is a canonical monomorphism from E8^ to E*rft for s<r<R^oo.
(iv) // (using (iii)) we regard E8rft as a subgroup of E\^x for s<r <oo,

wehave ^ n ^
») See [4].
8) See § 3.
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182 J. F. Adams

(v) There exist groups B8'1 such that

Bs, t

and
I

(vi) fi B8t Km.

This is the spectral séquence referred to in § 1. The convergence statements
(iv) and (vi) are not needed for the proof of Theorem 1.1.

If we take X 8°, then II^(X) becomes the stable group of the ra-stem,
and the term E2 becomes Ext£(Zp,Z,). We shall write this H*(A), andrefer
to it as the cohomology of the Steenbod algebra.

We turn next to the products in this spectral séquence.

Theorem 2.2. If X 8°, then it is possible to define products

(in the spectral séquence of Theorem 2.1) with the folhwing properties.
(i) The products are associative, and anticommutative for the degree t —s.
(ii) Theproduct E*2>t<g>El'>t'->E82+s'>t+t' coincides,except for a sign (—l)*8',

with the cup-product4)

Ht>t(A)®H8t>v(A) ->#•+•'.«+*'(A)

(iii) dr(uv) (dru)v + (~l)(*-8>w(drt;).
(iv) The products commute with the isomorphisms E8.1^ ^H8yt(Er;dr) and

with the monomorphisms from E8^ to E8it (if s<r<B <oo).
(v) The products in E^ may be obtained by passing to quotients from the

composition prodwt

We offer next some remarks on the interprétation of thèse theorems. We
should explain that it is possible to define a filtration j?^ of 17^(8°) by con-
sidering cohomology opérations of higher kinds. We consider only those ope-
rations which act on cohomology with Zp coefficients. Let oc : 8n+m -> 8m be

a map. Form a complex K 8n^ En+m+1 by using a as an attaching map.
Then Hn(K) Zp and Hn+m+1(K) Zp, at least so long as a induces the
zéro map of cohomology. Suppose that the following condition holds : if 0 is

any non-trivial stable cohomology opération of the rih kind, with r<s, and
of degree (m + 1), then 0 : Hn(K) -> Hn+m+1(K) is defined and zéro. Then
we set oceF,; this defines F8czII%(80). It is a subgroup, and F8z>Fs+1. We

*) This cup-product will be defined in § 4.
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complète the définition by setting ex € Fx if a induces the zéro map of cohomo-

The author supposes that this filtration coincides with that given by Theo-
rem 2.1 (in case X S0) ; that is, F8 BS8+m. However, he has not tried
to prove this proposition, which is not material to this paper.

We hâve next to compare the classical method of killing homotopy groups
with the method of calculation provided by Theorem 2.1. It is clear that both
rely on the information contained in Cartan's calculation of H*(II\ri). However,

from accounts of the classical method, one obtains the impression that
it enables one to calculate a great deal, but that one cannot guarantee in ad-
vance exactly how much. With the formalism of Theorem 2.1 the situation is
more clear ; we can effectively compute the term E2 (to any finite dimension) ;

we cannot, at présent, give a convenient method for effective computation of
the differentials dr, or of the group extensions involved.

In the case X S0, it is possible to obtain information about the group
extensions involved in /7^($°) from Theorem 2.2; for this theorem will in
particular inform us about the composite of an élément in IJ^(S°) and the
élément of degree p in II$ (S0).

The author's interest is particularly attracted to the phenomena which arise
because the differentials dr may not be zéro ; it will appear that Theorem 1.1
is a case in point.

It is clear that in order to study the spectral séquence of Theorems 2.1, 2.2
we shall need some information at least about the term E%. Although H*(A)
is defined by means of resolutions, to study it in this way seems unrewarding.
We therefore employ the spectral séquence which relates the cohomology
rings H* (A), H* (F) and H*(Q) of an algebra F, a normal subalgebra A
and the corresponding quotient algebra i25). To make use of this spectral
séquence, we prove results on the structure of the Steenbod algebra. Some of
thèse concern a descending séquence of subalgebras Ar of the Steenbod algebra
A A1. Thèse are such that

(i) ÇlAr has the unit as a base.
r

(ii) Ar is a normal subalgebra of A8 if r >s ; and A8 is then a free module

over Ar.
(iii) The quotient ArHAr+1 is an algebra whose cohomology is known.
Such results enable one to apply the method of calculation indicated. They

form a large part of the technical labour of this paper.
We will show next how Theorem 1.1 can be deduced (using Theorems 2.1

and 2.2) from a verysuperficialknowledgeof H*(A) (in the case p 2). We

8) See [4], p. 349.
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write H8(A) EH8tt(A), and catalogue various facts we suppose known.

First, we suppose it known that H°(A) has as a base the élément 1 in dimension

t 0, and that H1 (A) has as a base éléments hm in dimension t 2m,

m 0,l,2,...«).
We further suppose known the foliowing lemma.

Lemma 2.3. // there is an élément of Hopf invariant one in 772n_1(/Sn),
whose S-class is h", then n 2m, and the class h' of h" in E1^1 passes by the

canonical monomorphism to the class hmin E\n.
Conversely, if hm lies in the image of E)£m, then there is an élément of Hopf

invariant one in TI%n_x (Sn) for n 2m.

This lemma will follow as soon as the spectral séquence is set up. In case
m 0, the lemma is still true with a suitable interprétation ; we may take
(and now define) a "map of Hopf invariant one in ^(S1)" to be the map of
degree two7).

Lastly, we will assume the foliowing theorem on H* (A) (in case p 2).

Theorem 2.4. The produits h%hi in H2(A) are subject to the foliowing rela-

tiononly:- M,+1 0.

Theproducts hthihk in H3(A) aresvbjecttothefoliowingthreerelationsonly:-

hh+xh o (h?h+* (K+i? MA,+a)a o

We will now deduce Theorem 1.1. Let us suppose (for a contradiction) that
h'm, hm+1 are $-classes containing maps of Hopf invariant one, and that m > 3.

Consider the élément ho(hm)2 in jB|'2W+1+1. By Theorem 2.4 it is non-zero.
It is a cycle for d% by Theorem 2.2. It is not a boundary for d2, because

d2El>2m is generated by dzhm+1, and this is zéro because hm+1 is in the image

ofE1^1 (Lemma 2.3). Therefore h0 (AJa yields a non-zero élément in j^'2m+1+1.

This implies that, in /7'|m+i_2, the élément Aq(A^)2 is non-zero, that is,
2(A^)2 is non-zero. But since composition in stable homotopy groups is anti-
commutative and the dimension of hlrm is odd, we hâve 2 (h^)2 0. This
contradiction proves Theorem 1.1.

We note as a corollary of the proof, that the differential d2: E\>x* -> E\iV1

maps hA to A0(A8)2, and is thus non-zero. This remark may be paraphrased as
follows.

Corollary 2.5. // 8qu is considered as a œhomology opération of the second

kind, it has a non-trivial décomposition.

fl) Thèse are related to the éléments Sq*m in A, and will be defined at the beginning of § 6.
7) When we use this map as an attaching map, Sq1 is non-zero in the resulting complex.
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The décomposition asserted is of the form

Sq™ u Sa{ 0€ (u) (mod Q) (if u € K).

Hère a{ € E A}-, 0{ is of the second kind, and for the space X concerned

we hâve

H*{X)z>K-D flKera, #*(X)dQc rima.

Such a décomposition evidently shows that it is impossible to form a complex
8n ^En+1* in which 8qu is non-zero. It would be interesting to know whether
such décompositions can be proved directly by Adem's method, or by any other
method.

Theorem 2.4 has the following obvious corollary.

Corollary 2.6. // h![, h", htrk are S-classes of dimensions 2* — 1, 2' — 1,
2k — 1 containing éléments of Hopf invariant one, ihen the S-classes h'! h? and
h"h;jhl are non-zero except perhaps in the following cases (where h% is to be inter-
preted as the class 21 of dimension 0).

The case which concerns (h")2 is due to Adem [1].
This concludes our summary of results and methods.

§ 3. The Spectral Séquence

In this section we prove Theorem 2.1 by constructing the spectral séquence.
We do this, roughly speaking, by taking the homotopy exact couple of a

séquence Foz> Y1zd Y2... of spaces. Thèse are such that YQ is équivalent to
an iterated suspension 8nX, and EH*(YS, Y8+1) (with the cohomology

boundary) is an ^4-free resolution of H*(X). Actually we only obtain this
property for a finite number of dimensions at one time, as we hâve to keep to
a stable range. We shall therefore consider a finite séquence rpr^-olj
of spaces which hâve the required properties in a finite range of dimensions,
specified by a parameter l. By increasing k and l we obtain increasing
portions of the spectral séquence. The reader will lose little (except the détails
needed for rigour) if he replaces formulae containing k and l by suitable
phrases containing the words "sufficiently large". We conclude by proving
the convergence of the spectral séquence. >
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We proceed to give the détails. Let X be a space and C a chain complex of
left A -modules, with augmentation onto H*(X) : -

ZW{X)l-ZCOtttsciit <-...<- ZCStt +-...
Hère, for example, C may be an acyclic resolution of H*(X) by free left
A -modules : it is understood that a free bigraded module has a base whose
éléments are bihomogeneous. The algebra A is still the (mod p) Steenrod
algebra. The second grading t is to be preserved by d and e and to become
the topological dimension in H*(X) ; the opérations of A on C satisfy

We suppose that OM 0 if t<s and that each Cst is finitely generated;
it is always possible to find resolutions satisfying thèse conditions (recall that
Ht(X) is finitely generated).

Suppose given also integers k,L By a réalisation of the resolution C, we
understand an integer n (n ^ l + 1) and a séquence Yoz> Yxz} • • • z> Yk of
CW-complexes and subcomplexes with the foliowing properties.

(1) Yo and SnX are of the same singular homotopy type. (This induces iso-
morphisms8) i: H*(X) ^AHn+*( Fo)).

Ys is (n — l)-connected (for 0 < s < k) ; I7r(Y8, Ys+1) is finite and <p-

primary (for ail r, 0 < s<k).
(2) There are isomorphisms <p: CSft ^AHn^-8{Y8, Y8+1) for 0^s<k,

t <L
(3) The following diagrams are commutative (for t < l and for s + 1 <k,

t < ï respectively).

G,,t< Cs+1>t ^
Jç. J»

We note that a réalisation for some l is also a réalisation for any less L
Similarly, from a réalisation we can obtain réalisations with less &, by ignor-
ing some subspaces Y8, or with greater n, by suspension. This is the reason
for the sign — l)nd ; it is inserted so that the diagram is preserved on
suspension. (The suspension isomorphism is defined using a coboundary map,
and it anticommutes with other coboundary maps.)

We know that resolutions of H*{X) exist ; it is necessary to prove that
réalisations of them exist.

8) The symbol =^ indicates an isomorphism commuting with the opérations from A.
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Lemma3.1. Let C be an acyclic resolution of H*(X) by free left A-modules
(as above) ; let k,l be integers. Then X, C, k, l hâve a réalisation.

Proof. Suppose given X, C, k and l, as above. We take n l + 1. Let
Z8,t be the subgroup of cycles in C81. Let Hom^ (Os t, Zp) stand by convention
for the "eomponent" of TLomA(C9Zp) in dimension (s,t), that is, the image
of KomA(ZC8U,Zp) in Hom((7gtt,Zp). Suppose, as an inductive hypothesis,

that we hâve defined a space F8 such that

Hn+t-.8-i(Fs)^Azgt for t<n
Take a space B8+1 with

(BJ 0

Since £C3+lft is a free left A -module and C8+lit is finitely generated, we

deduce that
-i(B8+1) ^ACMti (for t-s-Kn)

Take also a OïF-complex jP^ of the same singular homotopy type as F8,
and take a (singular) équivalence9) F8 -> F8. We may now take a map
f8+1 : Ff8 -> jBs+1 such that the foliowing diagram is commutative (for t<n).

Factor the map /s+1 through an équivalence and a fibration; we obtain a

fibre-spaee F8+1 -> E8+1 -> B8+1 and a (singular) équivalence ef : ^,+1 ->#a.
The spectral séquence of the fibre-space reduces to an exact séquence in the
low dimensions, and we easily show that

H-+*-*-*{F8+1)ç^AZ8+ltt for t<n
This induction is started (with s — 1) by interpreting F_x as SnX
and — l)nd: Coi -> Z_lft as s: CM ->iT*(Z). We use it to define pairs
-B,, F8 for s ^.k — 1, with singular équivalences e, : £rs -> #,_x.

Let F^ be the total mapping cyhnder of the maps ev for v ^ s ; it is ob-
tainedfrom F y

by identifying Oxai with 1 xev(x) if x e Ev for v>5, and Oxx with
e,(a;) if x e E8. We hâve embeddings Y'0Z) Y[~d • • • 3 7^.

•) A singular équivalence is a map inducing isomorphisms of ail homotopy groupe.
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It is clear that Y'o is équivalent to 8nX, and that Ur(Y8, Y'8+1) is finite
and p-primary. Applying the Hubewicz isomorphism mod p to F8, we see

that Y8 is (n — l)-eonnected. With a routine use of spectral theory, we see that

#»+'-«(Y',, T't+l) c^ACt>t (for t-s<n)
We hâve also two commutative diagrams, namely those set out in the définition

of a réalisation as condition (3). Thèse follow on setting up the appropriate
inclusive diagrams, and hold for t<n, t —s<n respectively.

It remains only to replace thèse spaces Y8 by CW-complexes Y8. The proof
of Lemma 3.1 is complète.

It is clear that a resolution admits more than one réalisation. Therefore, if
we constract anything from a réalisation, we must prove a uniqueness theorem.
Such a theorem will follow by standard naturality arguments from two natu-
rality lemmas, which we give as lemmas 3.4, 3.5. We préface them with some
remarks on réalisations.

Let C be an acyclic lefb -4-complex, and let {Y8} be a réalisation of it ; we
hâve the following lemma.

Lemma 3.2. (i) For s<k, t <Z we hâve the following commutative dia-
gram, in which the columns are isomorphisms.

H«+*-*(Y8, Y8+1) J

z*,t

ii) For s<k, t <Z the map Hn+t-*(Y8) -+Hn+f-8(Y8+1) is zéro.
This lemma is proved by a trivial induction over s, using the exact cohomo-

logy séquence of the pair (Y8, F,+1).
Now let G be a complex of free left Jl-modules, and let { Y8} be a réalisation

of it ; we hâve the following lemma.

Lemma 3.3. (i) For complexes W of dimension <n -M, the compression
of a map f: W -** Y8 into Fs+1 is équivalent to its compression to a point in

(ii) If t<l, then

1) ^ BomA(Oati9Z9)

Proof. The first part dépends only on the data that Y8 and r,+1 are (n — 1)-
connected and (by the définition of a réalisation) n ^ l + 1 • As for the
second, the projection \^ur\i8,18+i) ->



On the Structure and Applications of the Steenbod Algebra 189

is isomorphic for r ^.2n — 2, hence for r<n + l. For a prime p! distinct
from p the ^'-component of nr(YJYs+1) is zéro, by inspecting homology.
Since SCS t is ^4-free, there is a map from YJY8+1 to

X K(E.omA(Cgti9Z9),n + t -s)
which induces isomorphisms of cohomology in dimensions ^.n + l — s.

Next suppose that we hâve the foliowing data.
(1) / : X -> Z is a map.
(2) C, D are left ^4-complexes, with augmentations onto .ff*(X), H*(Z) ;

C is acyclic and D is ^4-free.

(3) {Y8}, {W8} are réalisations ofO, D.
We will suppose that thèse réalisations hâve the same n, k and l ; this will

be sufficient for our purposes, by remarks above. Then we hâve the foliowing
lemma.

Lemma 3.4. There is a map g: Yo -> Wo équivalent to 8nf tvith

We postpone the proof of this lemma until we hâve stated Lemma 3.5.
Next suppose that we hâve the following data.
(1) {Y8}, {W8} are réalisations, as above.
(2) g0, g1 are homotopic maps, with

(for s^kj £=

Then we hâve the following lemma.

Lemma 3.6. There is a homotopy h: gQ~gx with

It is clear that the map g constructed by Lemma 3.4 will yield a map
g* : D8f t->C8t of resolutions (at least îov s<k,t<l — l). Similarly, the homotopy

constructed by Lemma 3.5 will yield a homotopy A*; D8_lt -> C8t
between two such maps.

Proof of Lemma 3.4. Let us assume that /: X -> Z, C, D, {Y8} and
{W8} are as given in the data. There is some map g : Yo -> Wo équivalent to
8nf : SnX -> SnZ ; we hâve to examine the obstruction to compressing it so
that Y**1"* maps into W**1"*. Suppose we hâve compressed it so that

for u^s.
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By Lemma 3.3 we can deform g\ Y^l"8'1 through W8 into W8+1 if (and only
if) the map

is zéro (for t < l). But this map can be factored through

which is zéro by Lemma 3.2. This complètes the proof of Lemma 3.4 by
induction over s.

The proof of Lemma 3.5 is analogous to that of Lemma 3.4; the obstruction

is the composite map

x Y8J x Y8)

We next proceed to obtain the spectral séquence of Theorem 2.1. As indi-
cated above, this is that determined by the homotopy exact couple of the
complexes Y8. Each particular group or homomorphism in it may be obtained
from some réalisation with finite k and l. Corresponding terms obtained from
différent réalisations may be identified, using homomorphisms constructed
with the use of Lemma 3.4.

The détails are as follows. Let X be a space, G an acyclic J.-free resolution
of H*(X), and let {Y8} be a réalisation of C with k > s + r, l>r + t.
Let (?;•', D\l be the images by t, d of IIn+t_s(Y8, Y8+r), /7w+^+1 Y8_r+1, Y8)

in IIn+t_8(Y8, Y8+1). (If s — r + l<0, Y8_r+1 is to be interpreted as Yo.)
Then we may define E*/ O^/D8/.

Similarly, let {Y8} be a réalisation with k > s + 1, l>t+l. Let (?£',

D^ be the images of IIn+t_8(Y8), nn^8+1(Y0iY8) in IIn+t_8{Y8, Y8+1). Then
we may define E*±* O^/D^K

The map dr : E*/ -> E'r+r>t+r-1 is obtained (if both groups are defined) by
passing to the quotient from the homotopy boundary (-—l)wd. (The sign is

introduced so that dr is preserved on suspension.)
If we consider only the terms which can be obtained from a single réalisation,

the formai properties of a spectral séquence are easily verified. In
particular, we hâve E9r^x^:H8yt(Er\dr)\ there is a canonical monomorphism
E^-^E8/ for s<r<B <oo; and E8^ ^ B*,t/B*+1>t+1i where B8** is the
image of IIn+t_8(Y8) in i7w+t-.,(ro). Thus E8^, for t — s m, is a quotient
obtained by filtering J3°'m II^(X). We may also identify El*. In fact, if
k > s + 2, l>t + 2 we hâve
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Eï* nn+t_8(Y8, Y8+1) ^ KomA{C99i,Z9)

and similarly for (s + 1). The map d±: E[ii; -» E{+1}t is obtained by
transposition from d : Cs+lt ->C8t, as one sees by using the pairing of 77* and /7*.

The next point we shotdd consider is the identification of corresponding
terms obtained from différent réalisations. This foliows by standard methods
from Lemmas 3.4, 3.5, and is omitted.

It remains only to prove the convergence of the spectral séquence, by
proving

(vi) fl B8t K™ (iv) fl E'S Etf
t—s—m r>8

The inclusions
fl B8itz^Km fi Er

t—8—m r>8

are elementary ; we hâve to prove the opposite inclusions.
We begin with (vi), in the case when Ht(X) is finite and 2?-primary for

each t, so that the same is true of II^(X). Given m, we will construct a
réalisation {Y8} and an integer u such that IIn+m,(Yu) 0 for m' < m. The
corresponding complex C will be ^4-free but not necessarily acyclic. The
construction is by induction, as for Lemma 3.1. Suppose constructed a space F8
with finite p-primary homotopy groups; let IIn+m,(F8) G say) be the
first that is not zéro. Let Fr9 be an équivalent complex, and let

be a map inducing the projection G -> G/pG of homotopy groups. Factor /,
through an équivalence and a fibration ; let the fibre be F8+1. The induction
is started with F_x BnX. If we form a mapping-cylinder and take
équivalent complexes, as in the proof of Lemma 3.1, we obtain a réalisation
{Ys} with the required properties.

This construction gives the integer u ; for if integers /^ are taken so that
m

pUnf(X) =0 (0 ^ i < m) it is sufficient to take u Z /^. Thus u dépends

only on X. We see that n, h and l can be taken as large as required.
Now let {Y'9} be a réalisation of a resolution C of H*(X)y for the same n.

According to Lemmas 3.4, 3.5 there is a well-defined map from that part of
a spectral séquence defined by { Yfs} to that part of a spectral séquence defined
by {Y8}. Now, in the latter we hâve
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Therefore, if k and l are taken large enough, we hâve

n J3M(ro o

in the former. This concludes the proof in this case.
We next transfer this resuit to the case in which Ht(X) (though finitely-

generated, as always) is not necessarily finite or ^-primary. In fact, let

be an élément not in Km, that is, not of finite order prime to p. Let / be such
an integer that the équation x pfy has no roots y in II^(X). Let Z be
formed by attaching the cône on SX to SX by a map of degree pf on the
suspension coordinate. Then there is an inclusion map SX -> Z ; this induces a

map of spectral séquences. The image of x in II^+1(Z) is non-zero ; so it does

not lie in
n £M(Z)

(for a certain u). Therefore x itself does not lie in

This argument gives a value for the integer u ; for if Ilf(X) is non-zero for
just g values of i with i ^ m, then it is sufficient to take u 2fg.

At this point we hâve completed the proof of (vi).
We turn next to the proof of (iv). Hère we hâve to argue from the structure

of i7n+<_s(Fa). Now this structure is not invariant, presumably, unless we
restrict {Y9}. We therefore proceed as follows.

We call a resolution C minimal if the numer of .4-free generators in C8t is
the least possible, given the structure of C8tt> for t' <t and of C8,t, for s' <s.
Since each C8t is finitely-generated, one can prove by induction that if C, C
are minimal resolutions of iî*(X)} then any map /: C -> C (compatible with
the identity map of H*(X)) is an isomorphism. It follows from this (using
the five-lemma) that if {Y8}9 {Y'9} are réalisations of C, C1, and if

f;{Y8}->{¥',}
is a map constructed by Lemma 3.4, then /* maps nn+t^8(Y8) isomorphicaUy
(for s ^k, t<l — 1). In the same range, I7n+t^8(Y8) is preserved on sus-
pending {Y8}.

We suppose, then, that C is a minimal resolution of H*(X). Let {Y8} be
a réalisation of C with k > 2s + 1, l>s + 1 + t, so that E8S^X, E*^1 are
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deiined. Let F8.** be the p-component of the torsion subgroup of

**n+t-s-l -*s+r) i

let Kï< be the image (by d) of IIn+t_8( Ys+1, Fg+r) in /^.^(F^). Then
P*'* is finite, and there is a monomorphism (induced by d) from

E'/IE8^' to F^jK8/ (if r>a). If we take this monomorphism for two
values of r, it commutes with the maps induced by inclusions.

Next take r s -f- 1, and take an élément e ^0 in E^+JE8^. For each
member x of the corresponding coset e' in Fl+JK8^, the équation x pfy
is insoluble in i7n+f_s_i(F2<H.i), provided that / is suitably chosen ; for
example, let pf be the order of F8yt.

It is next necessary to suppose that the réalisation { Y8} has n, h and l so

large that E88'+1+2f{t_8+1) is defined. This is possible, because by our supposition
that C is minimal, we may replace { Ys} by another réalisation with increased

n, k and Z, without changing /.
Next note that for suitable n1', {8n/ Ys,} (over sf ^ 2s + 1) is a réalisation

of a resolution of iî*(F28+1). Applying to this our results on (vi), we see that
for each x e e', 8n'x is not in the image of nn,+n+t_8_1(8nrY28+i+2f(t-8+i))'
Desuspending, we see that for each x e ef, x is not in the image of

Therefore e is not in the image of
This concludes the proof of (iv), and of Theorem 2.1.

§ 4. Multiplicative Properties o! the Spectral Séquence

In this section we prove Theorem 2.2, by establishing the multiplicative
properties of the spectral séquence in case X 8°. For clarity, we proceed
in slightly greater generality. Let X, X' be spaces, and let X" X xX'/XvXf.
We will show that there is a pairing

Our method is to take réalisations {Y8}, {Y8,} corresponding to X, Xf and
form a réalisation {Yn$n}, using the join opération, so that Y% is the join
YQ*Y'Q. If F0~#M, T'0~8*'X't then F? ~ S^'+HX"). We hâve a

join opération in relative homotopy groups ; it will appear that it gives a

pairing
77^(7,,

for s" s + s1, u" Min (s + ur,u + s')- Such pairings yield a pairing of
spectral séquences, by passing to quotients.
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It is convenient to begin the detailed work by describing the cup-product

Ext°/(H*(X),Zp)®Ext*;>t'(H*(X'),Zp) ^Ext°/*'>t+t'(H*(Xff),Zp)
This dépends on the diagonal map A : A -> A ® A of the Steenrod algebra,
which is defined as follows. There is one and only one universal formula for
expanding the resuit of an opération a applied to a cup-product uv ; let it be

a(uv) E(— iyQ(aL^u)(aR^v)

where a c A, deg(v) g, aLfi e Aj (j j(i)) and aR>i e A. Then we set

Aa ZaL>i®aR>i
i

One vérifies that this defines a diagonal map10).
We next remark that since our cohomology groups are augmented, we hâve

H*(X") ^. H* (X) ®H* (Xf) ; the isomorphism is defined using the external
cup-product. The opérations of A on H*(X") are given by

S{l)(a
hère v c Hq{X'), while a, aLti, aRii and j are as above.

Next suppose that C, C are resolutions of H*(X), H*(Xf). Then we may
make C®C into an acyclic ^4-complex, whose homology in dimension
s 0, sf 0 is H*(X"). In fact, we set

d(c®c') dc®c' + (— l)8c®dcf

a(c®c') '^^Ziiyia
It follows that if C" is a resolution of H* (X"), there is a map m : C"-*C® C.
On the other hand, there is a pairing

ii\ -KomA(G,Zp)®B.omA{G\Zp) ->B.omA(C®C,ZV)

defined by (iA{h®h'))(c®c') (hc)(h'cf). The composite m*>* yields the
required cup-product

Now that we hâve considered the acyclic -4-complex C®C, we will con-
sider a réalisation of it. Let {Y8}, {Yf8,} be reaHsations of C, C. We will
define Yq by setting Y% Fo* Yf0, and subcomplexes of Yq by setting

Y"s,, U Ys* Y'9,

10) The products in A Ç$A are defined by (a (g)6)(c ®d) (— l)U(ac ®bd) (for ae At,
de Ai).
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We may suppose that ro, Y'o are enumerable CW-complexes ; Y% is then an
enumerable CTF-complex. We repeat that since Yo ~ 8nX and Y'Q ~ 8nl X1
wehave Yl

In order to show that {Yf8,,} is a réalisation of O(g)C", we must display
H*(Y"tll,Y"t.+1). Let

be the given isomorphisms11). Then we may define a map

cp» : O99t
(where n" n + n' + 1, s" s + s', t" t + V) by setting

cp{u®v) —1)1*-**'+**'E(<pu-tp'v)

Hère we employ the fact that 70* r£ ~#(70 x r£/70v J^). The élément
q>u-q)fv is defined using the exterior cup-product ; the map E is defined using
excision and suspension. The map

mfr - Y (1 fàC1* -v TJn"+8"-t" (Yn Yn \

is an isomorphism. One vérifies that it commutes with the opérations of A.
One also vérifies that it satisfies the third condition imposed on a réalisation,
by making the diagrams for d and e commutative. (The sign in the définition
of (p" is essential at thèse points.)

We hâve now verified that {Yrr8,,} is a réalisation of C<g)C'. Maps or
homotopiesof {Y8} or {Y8,} induce maps or homotopies of {Yn8,,}. It foliows
that the spectral séquence associated with {Y"»} is well-defined. Since C(&C
is acyclic, there is (by Lemmas 3.4, 3.5) a well-defined map from this spectral
séquence to that associated with X". It remains, therefore, to define a pairing

To do this, we now introduce the join opération in relative homotopy groups.
This is defined by the join of maps of oriented cells12). We obtain a pairing

nm(K,L)®nm.(M,N)
This is natural with respect to maps oiK,L and M, N. If a, p lie in the groups
paired, then

u) In this section we omit to make explicit the finite ranges of dimensions in which thèse
isomorphisms are supposed to hold. The détails are similar to those in § 3.

12) The join K*L is oriented as 8{KxLjK\iL), and we suspend over the first coordinate.



196 J. F. Adams

Hère j, i, V are the canonical maps with values in I7m+m, (K* N ^L*M, L* N).
The products we require, however, represent composition products, not join

produets ; the two differ by a sign. With this in mind, we define the product

by ocxp — l)('-s)n'a*£. (Here we hâve n" n + ri + 1, s" s + sr,

t" t + tf, u" Min (s -\- u',u + sf).) We now hâve the boundary formula

The following statements are now open to vérification. Firstly, the pairing
of relative homotopy groups passes to quotients, and defines a pairing

Secondly, the boundary dr satisfies

dr(uv) (dru)v + —l)<'-»>tt(drt;)

Thirdly, the products are natural with respect to the isomorphisms

and with respect to the monomorphisms E8^ -> E8>t for s<r<R
Fourthly, the composite map

coincides, except for the sign — l)*8', with the pairing

(This follows from the description above, on considering the pairing of II*
and H*.)

Fiffchly, the products are associative, and anticommutative for the grading
(t — 8). This follows from analogous facts for the join opération, together with
naturality arguments. We note that the products in I£xt^(Zp,Zv) are
associative, and satisfy the anticommutative law

uv (-1)**'+"'™, (for u € ExtM v € Ext*''*')

Sixthly, consider the case X X' X" 8°. Then a composition product

is defined in 11^(8°). This passes to the quotient and defines products in
U^*($°), which coincide with those considered above. (This follows from the
known équivalence between composition products and join products.)

This concludes the proof of Theorem 2.2.
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§ 5. The Structure o! the Steenrod Algebra

We collect our résulta on the subalgebras of the (mod p) Stbbnbod algebra
A in Theorem 5.1. This theorem is followed by explanatory définitions, and
a great deal of proof. This is followed by two further theorems (5.12, 5.13)
giving further information needed in considering H* (A). One concerns a self-

map A -> A ; the other concerns the commutators in A.
If p > 2 we hâve :

Theorem 5.1P- (a) Any finite set of éléments of A générâtes a finite algebra.
(b) A contains subalgebras AR>T for each 1 ^ 2?<oo, 1 < T <oo with the

folknving properties.
(c) AR>T=A1>Tr,AR><». If Q^T, then A^cA1'*. If P < U, then

Ap>">z>AR>°°. AR>T is the unit subalgebra if B>T. The subalgehra AX*T is
that generated by p and Pk for h<pT~x. We hâve Aloo A.

(d) If B^T<oo, the rank of AR*T is 2upv, where U T -R+l,
V \(T -R)(T -R+l).

(e) If P<Q, AQ>Tis normal in Ap>Tyso that AP>T/IAQ>T evists ; and AP>T

is free, qua (left or right) module over AQ*T.

(/) IfP<Q<R, then AQ>TI/AR>T is embedded monomorphically in AP>TI/AR>T;
the former is normal in the latter, with quotient isomorphic to APiTjjAQ'T.

(gv) Moreover,if B^P + Q, then A*>T\\AR*T is central in AP^\\ARA\
in the sensé that if a4fj e AP*T, bkl e AQiT, then in Ap>T//ARfT we hâve

(hp) If B < î7, we hâve

AR>T//AR+1>T g* E{E%\ 1)®P (27p*,O ;pr-*)

If p — 2 we hâve :

Theorem 6.12. The statements (a) to (/) hold word for word on interpreting
"p" as 2, "f as Sq1 and "Pk" as 8q2k. The statemenis (gp), (hp) become:

(g2) Moreover}if B^P + Q9 then AQ>TJIAR>T is central in A*>T\\AR>T.
(A2) // B < î\ we hâve

^ P(2R - 1 ; 2T~R+1)

Explanatory définitions. Ail our algebras are algebras with unit and with
diagonal [4, p. 211] over the field Zp. They are graded if p 2 and bigraded
if p > 2. Their components in dimension 0 or (0,0) are their unit subalgebras
(hère the unit subalgebra has the unit as a Z9 base). Ail our maps of algebras
préserve this structure ; in particular, the injections of subalgebras and
projections onto quotient algebras do so.

14 Commentai!! Mathematici Helvetici
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The Steenrod algebra A (over Zp) is defined as above. If p>2 it may be

bigraded by setting Deg(P£) (k,0), Deg(Pv) (0,l)13). The single grad-
ing q corresponding to the bigrading (i,j) is given by q 2(p — l)i -f- j.

The other algebras introdueed are as follows. The exterior algebra E(i,j)
(over Zp) has a Z^-base {1,/'}. The élément 1 is the unit ; the élément /' has
bidegree (i,j). The product is given by (/')2 0 ; the diagonal is given by
A (/') /' ® 1 + 1 ®/'. The integer j must be odd (if p > 2).

The tmncated divided polynomial algebra P(i,j ;k) (over Zp) has a Zp-base
containing one élément ft of bidegree (li, Ij) for each l such that 0

The product is given by fl-fm (l,rn)fl+m ; the diagonal is given by

AU Z fm®fn

(Hère the binomial coefficients modp are defined by (l,m) ±-j-.—l^-j. The

integer j must be even (if p>2) ; and h must be a power of p, or else oo.

If &=oo, the algebra is not truncated. The algebra P(i;k) is similarly
defined, but graded instead of bigraded. For the tensor product of algebras,
see [4].

If A is a bigraded algebra, as above, we define I(A) S Aiti ;

;
similarly for a graded algebra. If A is an algebra containing B as a subalgebra,
we call B normal in A (cf. [4] p. 349) if A I(B) I(B) A ; we then define

Since the word "dimension" is already in use for the grading, we speak of
the rank of a subalgebra, meaning its dimension when considered as a vector
space over Z,,.

This concludes the explanatory définitions.

Proof. The proof will proceed in several stages. Following Seere, Thom and
Cabtan, we shall make use ofa faithful représentation of the Steenrod algebra,
obtained by allowing it to operate on a Cartesian product of spaces of type
(Zp> 1). We take first the case p>2.

Let X be the Cartesian product of n + n' spaces, each of type (Zp, 1) ; let
their fondamental classes be x1}.. .,xn, x[,.. .,xfn,. Set

Let u c I?***1*' (X) be the cup-product yt... yn x[... xfn,.

H*(X) is the tensor product of exterior algebras generated by the xi3 x\
and polynomial algebras generated by the y^y^ We shall need a notation

M) In [2] the second grading is called the "type".
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for certain polynomials D*n n, lying in fl*(JT). Let

be a séquence of integers with k{ > 0, et 0 or 1 ; only a finite number are
to be non-zero. Following Cartan [2], we define the polynomial D*n n, as follows.
Among the monomials y\x... y\n, consider those in which just %i exponents
are p% (for each i), the remainder being 1. Let the sum of such monomials
be s14). Next consider the monomials obtained from x[... xfn, by replacing
x'j ^y (yfj)pi f°r 3US^ ei+i values of j (this for each i). Each such monomial is to
be taken with a sign, namely the signature of a certain permutation q of
1,... ,nf. Hère q brings the factors %fk in the monomial to the left (arranged
from left to right in increasing order of k) and the factors (yfj)p% to the right
(arranged in increasing order of i). Let the sum of such signed monomials be t.
Then we define D{n, =st.

The éléments D*n n, in H2n+n'+q(X) generate a submodule D2n+n'+* ; they
are linearly independent if n, n' are sufficiently large (depending on q).

Evidently a Z^-linear fonction 6: A ->#*(X) is defined by 6 (a) a(u).
This is the représentation used.

Theorem 5.2. If n, n' are sufficiently large (depending on q) then
6Q : Aq -> H2n+n'+q (X) has kernel zéro and image D2n+n/+q.

This theorem is due to Cartan [2]. His proof shows also that 6 préserves
the bigrading, if the second degree of polynomials D*n n, is defined by / Ee^

We next note that this représentation has a convenient relation to the diagonal

in A. In fact, if the space Y is defined using m + m' factors of
type (Zv,l), then 1x7 is homeomorphic to the space Z defined using
(n + m) + (n' + mf) factors of type (Zp,l). If v and w are the analogues of
u for Y and Z, then uv corresponds to w in this homeomorphism. Let 6X, 0Y,
0z be the functions 8 for the three spaces. By evaluating a(uv) and a(w) we
hâve the following obvious lemma.

Leinma 5.3. // aeA and 6za Dl+mn,+m, then

=^ Z (-\TDil
Hère, for séquences I {ei9Xé}9 J {rjuPi} and K {£*,?*}, the équation

J + K I means that rj{ + £«• e{ and fc + vt ^ for each i > 1.
The sign is given by

___ v ^

u) Thus, * wi be zéro if 2^ > n. Similarly, later, for t.
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Since Aa has among its components the term a (g) 1, Lemma 5.3 has the
following corollary : if 0za D^mn,+m,, then 6xa — Dlnn,. It follows that
we may write 6a D1 to mean that 6xa Dln n, for ail n,nr ; similarly
for the équation 6 a ZXjD1.

Theorem 5.2 allows us to exhibit certain distinguished éléments in the
Steenbod algebra. In fact, let us define I(r,k) (r > 1, k > 0) by Xr &,

l. 0 for i ^zr, e{ 0 for ail i. Define erk ei by 0(er,fc) DIir>k).
Define Vf (r > 1) by JL4 0 for ail i, er= l, et 0 for i =£ r. Define
e'r€A by 6 (ej) DV(r).

Thèse éléments hâve the following properties, which indeed characterise
them.

(1) er 0 is 1, the unit.

r-2
Dege^ (Up*,!)

(3) Aerk E er i®erj

(4) If x, y are the generators of H*(ZV, 1 ;ZP), then

0 otherwise

For example, (3) follows immediately from Lemma 5.3 by using Theorem 5.2.
From (3) and (4) we deduce the following property by induction :

yP* (k 0)

0 otherwise

Our next theorem will show in what sensé the éléments er k, efr are generators
for A. In order to state it, let us regard erkf, for each r ^ 1, as an expression

in the variable kr. Let us order together in some fixed order the expressions

erhf and e'r. Let us form monomials by omitting from this ordering ail
but a finite number of terms, and then inserting integer values kr ^ 1 for the
remaining variables kr. Thèse monomials then represent éléments of A. The
identity élément is included, as the empty product. We then hâve :
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Theorem 6.4. For each fixed ordering, such monomials form a base for A.

Prooî. Let M be a typical monomial, of single grading q. By Theorem 5.2,
it is sufficient to show that the éléments M(u) form a base for D2n+n'+Q (for
n, n' sufficiently large). To this end, we order the base D1 of J)^W+a by
ordering the séquences /. Foliowing Caktan [2], we order them lexicographi-
cally from the right16).

Using (3) and (5), we deduce:

(6) e^D1
K>J

e^D1 (-l)€DL (if er 0)

e'rD1 0 (if er 1)

Hère / {e,,yl<}, J I + I(r,k), and L I + I'(r) if er 0 ; the sign
is given by e 2 ei;.

%<r
Let Il {eri,Xri} be another séquence, J'=r+I{r9k), and Lf=r+F(r)

if e'r — 0. Then we hâve, trivially :

(7) If /</', then J<J', and L<L' if €r e; 0.
From (6) and (7) we deduce, by induction, that :

(8) If M is a typical monomial, then

M(u) rjD* +

where rj ± 1, and the séquence / is determined by M as follows. sr is 1

or 0 according as e'r is in M or omitted ; Xr is 0 if erkf is omitted from M, and
otherwise it is the integer substituted for hr.

We see that there is a (1 — 1) correspondence between M and /. Therefore
the éléments M (u) in D2n'¥nf+q form a base for it. This concludes the proof of
Theorem 5.4.

The statement and proof of Theorem 5.4 remain valid if, instead of using
expressions erhr, one for each r, we use expressions {ert9i)d'>*9 one for each r
and each i > 0. We hâve then to substitute, for the variables dfti, integer
values such that 0 <dri < p.

We may now obtain the subalgebras ARiT. Given a fixed ordering, as in
Theorem 5.4, we may consider the monomials M in which the factors er>fc hâve

r > JB, h <pT"r and the factors e'r hâve R < r < T. Thèse form a base for

u) However, our argument differs from his in that our inductions (if stated) would proceed in
the opposite direction along the ordering. Since the bases ordered are finite (for each q) thia is
immaterial.
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a submodule ARiT of A. This is so whenever 1 ^ i?<oo, l^T^oo; but
we note that the base reduces to the unit élément if T<R. The inclusion
and intersection properties in Theorem 5.1 (c) are trivial.

Theorem 5.5. AR>T is independent of the ordering chosen. It is a subalgebra
of A and closed for the diagonal.

Proof. Consider the polynomials D1 for which the séquence / {ei9kt} sat-
isfies XiKyF"1 for eachi, At- 0 for i<R, and e€ 0 unless R < i < T.
Thèse generate a submodule DRiT of

Lemma 5.6. erkDR>Tc:DR>T if r^R, k<pT~r,

e'rDR>TçzDR>T if R^r^T.
We will defer the proof of this lemma in order to show how the theorem

follows from it. In fact, the lemma clearly implies that d{AR'T)çzDR'T. But
further, if T is finite, ARyT and DR*T hâve the same rank, namely 2upv where
U T -R+l, V \{T -R)(T -R+ 1). Therefore 6(AR>T) DR>T

if T is finite ; this implies the same équation with T infinité. The équation
0(AR}T) DR'T shows that AR'T is independent of the ordering chosen;
and with Lemma 5.6, it implies that ARfT is a subring. Lastly, it is clear from
Lemma 5.3 and the définition of DR>T that e-^D5»11) is closed for the diagonal.

This concludes the déduction of the theorem from the lemma. We note
that we hâve proved Theorem 5.1 (d).

Prooî ol Lemma 5.6. The property (6) above shows trivially that

e'rDR>TczDR>T if R^r^T.
Let us take D1, where / {ei9 AJ, and form the expansion

SXKDK

The sum may be given explicitly as follows, by using (3) and (5). It extends

over séquences J {^0>Vi^i> • • • > Vi^i* • • •} w^k Zfai + rji+iÏP* *•
The term given by J will correspond to the summands in which, for each i,
just fa of the factors y^ (1 < j < n) and just rji+1 of the factors (^)p*
(1 ^ j ^ n1) are operated on by er p%. The séquence K {Çi9 vj is given by

— t*i<Q, et — fji<0 or e€ — r\% + rj^r 2, then the term given by
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J is zéro. The coefficient XK is given as foliows.

xK (iTn
where e Z (e}- —r\^)r\l

i<j<i+r
We now introduce the assumption that DIeDR'Ty r^R, and k<pT~r.
In fact, since DI€DRT, we hâve Xi¦ 0 and st 0 for i<U; we also

hâve r ^ R. Using the formulae for vt, d we see that v{ 0 and f^ 0
for i<R.

Similarly. since

we hâve rji+1 0 unless i < î7 — r. Thus ^t_r 0 unless i ^.T. We also
hâve e4 0 unless i < î7 ; thus Ci 0 unless i ^.T.

Lastly, we hâve Ài<pT~i, so ^ — ^i<VTi- We also hâve

so fJti<pT"r~'i and ^i^r<VT~il• It follows that (X€ — ^,^f_r) 0 whenever

< Pi+Pir >P
Thèse remarks in combination show that if D1 € DiJ'2T, r ^ iî, and k <pT~r,

then the non-zero terms of the expansion

lie in DR>T. The proof of the lemma is complète.
The statement and proof of Theorem 5.5 remain valid if, in defining ARfT,

we use, instead of the expressions er,*f> the expressions

We hâve to take those for which r > R and i<T — r.

Corollary 5.7. AltT is the subalgebra generated by /? and by Pk for k<pT~1.

Proof. Since ft e[, it lies in AliT for T > 1. Since Ph elh, it lies in
A1>T for jfc<2>r~1. On the other hand, by the remarks immediately above,

r-l
AliT admits a system of multiplicative generators in bidegrees (pi2Jpti 0)

r—2 0

(where i<T —r) and (27p\ 1) (where r <T). Thèse can be written in terms
o

of the éléments fi and P*, and by their dimensions we shall hâve k<pT~1,
each A. This concludes the proof of the corollary.

Corollary 5.8. Any finite set F of éléments of A générâtes a finite svbalgebra.
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Proof. The éléments of F may be expressed in terms of /? and Pk for k<pT~1,
some finite T. Thus the subalgebra generated by F is contained in the finite
subalgebra A1>T.

In order to obtain our next resuit we will consider the représentations of A
by its opérations on a différent space. Let YQ be the Cartesian product of n
lens spaces Yl9..., Yn of dimension 2pQ — 1 and nf lens spaces Y[9..., Y'n,

of dimension 2pQ~x — 1, so that we hâve

where T is a truncated polynomial algebra. We introduce notations for the
éléments of H*(YQ) exactly as before, writing v instead of u, and E1 instead
of DJ for the distinguished polynomials. The submodule ERfT of H*(YQ) is
defined word for word as DRiT is. Consider the séquences / {ei9X^ of
grading q which satisfy e{ 0 and At- 0 if i > Q ; the corresponding
polynomials E1 are linearly independent and form a base of E2n+n'+* (at least if
n, n' are sufficiently large, depending on q). Ail other polynomials E1 of grading

q are zéro.

Theorem 6.9. AQ>* is normal in AP>T if P<Q. The ruU d{M} M(v)
defines a Zp4inear function

Q ; Z9)

If n, n' are sufficiently large (depending on q) then 6q has kernel zéro and image

Proof. The proof that AQ>T is normal in AP>T will be as follows. Each
élément of APiT gives a Z^-linear map from H*(YQ) to itself ; thèse maps
constitute a quotient ring APyT/K of AP>T. We will show that the kernel K
isboth I(AQ'T)-A*'* and A***-I(AQ**).

Let us use the représentation of Theorem 5.4, with the ordering e[, eXk%, e!2,

e2,fc2> • • • I^t us divide the monomials of AP>T onto two classes ; one, say B,
shall consist of monomials formed from factors er k with P ^ r <Q, k<pT"r
and efr with P ^ r <Q ; the other, say C, shall consist of the remaining monomials.

C is a base for a submodule L. Then, by the choice of ordering,
LcAp'T-I(A*'T). We also note that if r>Q, then

ertkH*(YQ)~0 e'rH*(YQ)~0

This shows that Ap>T-I(AQ>T)cK. On the other hand, let Jf run through
B ; then, by property (8) (which remains valid for YQ) the éléments M(v) are
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linearly independent éléments of JÏ*(7Q). Hence the classes {M} are linearly
independent éléments ofAp'T/K, and K L. We conclude that

AP'T-I{AQ'T) K ;

by using the opposite order in the monomials, we see that

We hâve shownthat AQtT is normal in AP*T, and incidentally established the
représentation 6 of AP>T//AQ>T. The proof of Theorem 5.9 is complète.

Corollary 5.10. If P<Q<R, the injection AQ>THAR>T-> AP*T\\AR>T is
monomorphic.

Proof. Both quotient algebras are represented by opérations on the same
module #*(YR).

This corollary, with Theorem 5.9, implies Theorem 5.1 (f).
For Theorem 5.1 (g), it is sufficient to prove the anticommutativity relation

when di j and bk x are generators ekr or efr. This is easily done by expanding
abv and bav.

It remains to obtain the structure of ARiTjjARJr1^ (for R < T). We hâve

eRyk e AR>T if k<pT~R, erR * A*>* ; let their images in AR^TJIAR^T be fk, f.
Lemma 5.11. The éléments fk(f'f (e 0 or 1, 0 < i<^T""jR) form a base

for AR>THAR+1>T. The product is given by

i tr* f tr* - i (M/w-itfr* (e + n 0 or 1)
/*(/) •h(t) - j0 (e + rj 2)

The diagonal is given by

Prooî. According to Theorem 5.9, the éléments {M} of AR>THAR+l>T are

faithfully represented by the corresponding éléments M(v) of Jî* YR^.Î). The

image module ER>T has as a base the polynomials E1, where / runs over the

séquences fo-,AJ for which 0 ^ÀR<pT~~R, eR 0 or 1, and X{ 0,

st 0 if i ^z R. By (6), such a polynomial E1 is exactly eRk(efrfv with
k XR9 e=eR. Therefore the éléments /*(/')* form a base of ÀR*THAR+1>T.

The product formula for Mt M2 now foliows by expanding Mx(Mzv),
using (6). The diagonal formula foliows similarly from Lemma 5.3.

The proof of Theorem 5. lv is now complète.
The proof of Theorem 5.12 is analogous, but somewhat simpler. As already
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remarked, we interpret "p" as 2, "fl9" as Sq1 and "P*" as 8q2k. We replace X by
the Cabtesian product of n spaces, each of type (Z2,1), and delete ail référence

to the other n' factors. H*(X ;Z2) is now a polynomial algebra. In the
arguments, we replace each yi (1 ^ i ^ n) by xiy and delete ail références to
x{. Thus, we take u a^a^... a?n, the product of the fundamental classes.

Our indices / become séquences {a^ag,..., olï9 ...}; oc{ replaces Xt and et is
deleted. D1 is the sum of ail monomials (in the xt) in which exactly at expo-
nents are 2i, the rest being 1. We define I(r,k) by <xr &, 0^=0 for
i ^ r ; we define er>fc €i by cr)fc(^) DIir>k). Thus Deger& k(2r - 1).
Thèse er fc replace those defined for p>2; we do not define any e£, and
delete ail références to them. In the proof of Theorem 5.4, we order the
séquences {aj lexicographically from the right. In defining ARiT and 2>R>!ZT,

and in ail subséquent arguments, we replace T by T + 1 in each inequality
restricting the choice of generators erk or of entries at in séquences. The rank
of AR>T is thus 2F where F \(T - R + 1){T - R + 2). We represent
AP*THAQ'T on a Cabtbsian product FQ of n real projective spaces of dimension

2Q — 1. In Theorem 5.11, we obtain base éléments fk {eRk} without
éléments /'.

With thèse altérations and interprétations, ail our intermediate theorems
remain valid.

We next pass on to the last theorems of this section. If p > 2, we hâve

Theorem 5.12p. There is a homomorphism h: A->A of algebras with diagonal

such ihat

If p 2, the theorem remains valid on interpreting "p" as 2 and omitting
ail référence to e!f.

Proot. Let us take the space X as before, but with n1 0 ; and in what
follows, let us suppose as necessary that n is sufficiently large.

Let I be a séquence. Let the polynomial E1 be formed from D1 by sub-

stituting (yi)p for yi (1 < i < n) ; similarly, let v y\y\ yvn. Let E
be the submodule of H* (X) generated by the E1 ; it is clearly closed under A.

Each élément of A induces a linear map of E, and thèse constitute a
quotient ring R of A. We will next show that the linear map {a} is determined

by a{v). In fact, we hâve an analogue of Lemma 5.3 ; if Aa 2aL'i®aR>i,

then a(v) détermines aLti(v)$ aRfi(v). This implies the following statement.
Suppose that a {v) détermines a (w) and a (z) for ail a € A and certain w, z. Then
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a(v) détermines a(wz) for ail a e A. But a(v) détermines a (y?) for ail a and
each i ; therefore a(v) détermines a(EI).

This argument shows that in the epimorphism A -> R, the diagonal map
passes to the quotient.

Next let 8 be the subalgebra SAi>0 of A. We will identify R with #. In
fact, let J run over the séquences in which s{ 0 for ail i ; and define a func-
tion g : R -> 8 by g {a} 6 where

a(v) ZXjEJ and b(u) ZXjD*

It is clear that g commutes with the diagonal. We will show that g is a homo-
morphism. In fact, by the définition of g, we hâve the following statement, in
which y stands for a fundamental class yi :

If aeA, and ayv Zkjyvj, then (g{a})y 2

From this we deduce, by passing to products, that :

If acA, and aypk ZfjLiypl, then {g{a})yk Z
i i

It foUows that g{a}((g{b})y) (g{ab})y
Again, since g commutes with the diagonal, the statements

9 (a}9{b)w 9{ab}w g {a}g{b}z ^{a6}« (for ail a, 6)

imply g{a}g{b}wz g{ab}wz. Therefore, for the fundamental class u, we
hâve # {a}<7 {b}u ~ g{ab}u. Thus gr {a}gr {6} g {ab}, and gr is homomor-
phic.

It is also clear that g is monomorphic.
g

Lastly, the composite h : ^4 -> iZ -> ^ satisfies

r t/-. II A- HZ

Thus gr is epimorphic. The existence and properties of h are established.
We state explicitly that h does not préserve the grading. We hâve

M»>* tf * ° (mod P) and ^ °
otherwise

The proof remains valid for p 2 on interpreting "y/1 as ^ and "/S" as ^4.

For the next theorem, we will fix on an ordering of the generators e'r and

r,»i)df'*. For definiteness, we take the ordering e(, (eltl)dl>Q, (eltP)dl>i,...,

Next consider the anticommutator [e,/] e/ — (— l)e/e. Hère c, / are
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distinct generators, with indices r, s say : e 1 if e err, f e8 and e 0

otherwise. One of ef, fe is a permitted monomial for the ordering above ; the
other is not. The anticommutator can be expanded as a sum of permitted
monomials. The dimension concerned contains at most one generator g, if any ;

let its coefficient in this expansion be A, or if there is no generator in this
dimension, set X 0. Since the anticommutator maps to zéro in Ali0Ol/Ar+8yCO

(by Theorem 5.1) its expansion takes the foliowing form :

[e,f] kg + $MtNt
Hère M{ cl (A), g, N{e I (Ar+Sy °°), and g is a generator. If p > 2 we hâve the
following theorem :

Theorem 5.13p. A ^ 0 (mod p) in the following cases, and in thèse orily.
(a) The pair e, f is erpi, e8J)r+i in either order.

(b) The pair e, / is e'r e8)2>r-i in either order.

If p 2 the theorem remains valid on interpreting "p" as 2 and omitting ail
références to e'r, including case (b).

Prool. We may first eliminate the case e e'r, f — e8, since there is then
no g.

We take next the case e e'r, f espj, g e't. The dimensions must
satisfy f_2 9_x t_2

Epu + $ Zpu Epu
U=0 u—0

The only solution is j r — 1, t r + s. We then hâve [e,/] — gr by
direct use of the Cabtan représentation.

We take third the case c er pi, f e8Pj, g — ettPk. The dimensions must
satisfy f-1 8_1 e_x

u pk
«=0

There are only two solutions ; one is k i, j r + i, t r + 5 ; the other
is obtained by interchanging e and /. It is sufficient to consider the first.

Consider the case i 0. Hère [e,f] —g by direct use of the Cabtan
représentation.

Consider the case i > 0. Form the expansion

Apply, i times over, the homomorphism h of Theorem 5.12,. We obtain (say)
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Hère the monomials M[N[ are still permitted (by the spécial choice of
ordering) ; while e' er1? f e8pf, g' er+M. We hâve X 1 by the
case i 0.

This concludes the proof in case p > 2.
In case p 2, we omit ail références to efr. We hâve also to consider two

further solutions of the équation for the dimensions.
Case (i) i j, and either r 1 or a 1 ; say s 1. Then « 1 and

* r + i.
Case (ii) i j, but neither r — 1 nor « 1. We then hâve A i + 1

j+ 1, t^r s.
Both cases may be eliminated, since g € Ar+8t°°, so that t ^r + s.
This concludes the proof in case p 2. We hâve now obtained sufficient

data on the structure of the Stbbneod algebra.

§ 6. The Cohomology o! the Steeiyrod Algebra

In this article we prove Theorem 2.4. The results of this section, therefore,
are very far from complète, compared with those of § 5.

We take p 2 throughout this article, and will be free to use the letter p
for other purposes. Tensor products aretaken over Z2 unless otherwise stated.

When we wish to display spécifie éléments in H* (A), we use the notation
of the bar construction (see [3] p. 3-09). Thus we define

q>0
(I(A))« Z2 and (I(A))° I(A)®(I(A))-*

We define B(A) E (I(A))8, and write a typical élément as [#i|#2| • • Aa$] •

The second grading t of B(A) is defined by t Zqt when a{ €AQi. A bound-

ary in B{A) is defined by

d is of degree (—1,0). The cohomology group H8^(B{A),Z^ is Ext9/(Zt,Z%)9
thatis H'^(A),

For example, let us calculate HX(A). (Hère, by convention, H8 (A)=ZH9' *(A).)

There are no coboundaries (except the zéro cochain) ; while a cocycle is a
i?a-linear fonction /, with values in Z%, defined for arguments [a] (a eI(A)),
and such that /[a^] ° (eachl ai>a* € I(A)-) By the known structure of
the Stebnbod algebra, there are unique cocycles fm of dimension t 2m
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(m ^ 0) such that fm[8q*m] 1 ; and thèse form a base for the cocycles.
Define hm {fm} ; we hâve a base for H1 (A).

The eup-product of two cocycles is obtained by transposition from the diagonal

map __ _ __

A: B(A) ->B{A)®B{A)
This is defined by

A[a1\a%\...\an] S \ax\.. .|<]<8>[<Vn|.. .\an]

As stated in § 2, our methods dépend on a spectral séquence ([4], p. 349)

relating the cohomology rings H* (A), H* (F) and H*(i2) of an algebra F,
a normal subalgebra A and the corresponding quotient algebra Q F//A.
It is sufficient to take A central in F; this has the resuit that the opérations
of Q on H* (A) become trivial, and we hâve E* ^ H* (A) ® H*(Q).

It is convenient to hâve a spécifie construction for the spectral séquence. We

may obtain it by filtering B(F). A chain [ail* ••!<*«] is of filtration p if
ai e I(A) for (s — p) values of i ; we thus obtain homology and cohomology
spectral séquences, in good duality. The isomorphisms

are induced by the natural maps B(A) -> B(F), B(F) -> B(Q). The
(cohomology) spectral séquence has good products ; thèse induce the isomorphism

Since this section is not a final treatment, the reader will perhaps excuse it if
we do not give the détails more fuUy.

We next proceed to the détails of the calculation. We will write Ar for A'*00,
so that A1 A. We recall that Ar//Ar+1 is a divided polynomial algebra,
with a Z2-base {fk}. Take a cocycle fri in dimension (l,(2r — 1)2*) such
that frti[f2i] 1 ; let hri be its cohomology class. Then H+iA'lfA**1) is a

poljmomial algebra with generators hrti (for i ^ 0).
Let hm be the image in H^iA1//^) of hltfn in H* (A1//A2). This is

consistent, for the original hm in H* (A1) is the image of hlm. By the same argument

as before, H1(A1I/Ar) has as a base the éléments hm in it.
Nowtake^=^^V/^r+2> r=A1//A*+*, Q=A1//A'+1. Let d* : E°2>x-> E*>°

be the differential in the spectral séquence. Since

is zéro (for r> 1), the classes d*hr+ti must be non-zero éléments of H2(AxjjA r+1).
Let us write
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In case r=l, we hâve giti=hihM. This is proved as follows. In H^
we hâve one non-zero class in dimension t 3.2* ; it is dual to hthi+l9 and

may be represented by the cycle

[elf2i\els2i+i] + [elf2«+i|eM<] z, say).

By Theorem 5.132, we hâve in A a relation

ei,a*ci,2*+i + cif2*+i6i,2* ?M-jNj + e2 2%

where Mj€l(A1), N^IiA2). The chain

[e1>2i\elt2i+i] + [elt2i+i\elt2i] + f[Mt\N,]
has as boundary [e22i] ; it is thus a cycle in El 0 and by the map A1 ->A1\\A2
it passes to z. Thus d2{z} {[e22i]}. Transposing into cohomology we hâve
d2h2 i h{hi+1, as asserted.

In case r > 1, we must consider the behaviour of the class gri in the spectral
séquence which arises when A A^/A**1, F A1/^^1, Q A^A*. We
know that H%(A1\\Ar+x) is filtered. The class gri will hâve an image in the
first quotient, which is isomorphic to a subgroup of 252'2 ; and if this image is

zéro, then gr t will hâve an image in the second quotient, which is isomorphic
to a subgroup of E\A. Now E°2*% ^ H2(Arl/Ar+1)9 which we know ; the image
of gr t- is necessarily zéro, by considering the grading t.

We seek, therefore, the image of gri in a subgroup of E^1. We will show it
is exactly

hère the products are formed by considering hi as an élément of 2?2'° and hrj
as an élément of E®'1. In fact, by transposition, it is sufficient to détermine
the pairing of gri with a certain quotient module of E\x. We will construct
représentative cycles for E\x. By Theorem 5.132 we hâve relations

er>2i SPjQs + er

where M^P^eliA1), N,,Qj c /(4r+1). Thus the ehains

E«r,2<+l|«l,2*] + [«1,2* l«r,2<+l] W>

[eff2i |e1>2r+i] + I>i,2'+*K2*] *, say)

give classes in H2(A1HAr+1). Thèse ehains are of filtration 1, and yield a base
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for E\x in dimension t (2r+1 — 1)2* (as one vérifies, knowing the structure
of E\>{). On applying the map dz: H^A^/A1^1) -> H1(Ar+1HAr+*)9 we hâve
d2{w} d2{z} {[er+i,2î]}- (This is proved by exactly the same argument as

was used in the case r 1 ; note that this d% lies in the spectral séquence for
A Ar+1HAr+*, etc.) We hâve, then,

On transposing, we hâve in E\*x the relation

{9r,i} K,i+1 K + h,i K+i y

as asserted.

Lemma 6.1. In H2(A1I/Ar+1) the éléments gri, urith the éléments hjhk for
which j ^.k — 2 or j k, are linearly independent. The éléments hihi+x are
zéro.

In fact, if r > 1, then H2(A1/IAr+1) is filtered ; the éléments gri map to a

linearly independent set in E\'x, while the éléments hjhk map to zéro. It
remains to prove (by induction over r) that the éléments hjhk (j < k — 2 or
j k) are linearly independent. If they are so in H2(A1UAr), then they are
so in H2(AlHAr+1), unless in the spectral séquence concerned some linear
combination of éléments h$hk is equal to d*(hrl). This is impossible, by
considering the grading t. To begin the induction, the éléments named are
linearly independent in H*(AXIJA%).

The éléments h^hj+x are zéro in R%{AX\\AZ), being d2(A2J).
We next consider again the spectral séquence which arises when

A Ar/IA'*1 r A^IA**1 Û

Since gfi lies in Ht(AlIJAr+1)i the éléments Ar,<+i*«+**,«**+< in E\*x are
cocycles for dK Thus the éléments (K.i+iK + hrtihTJiri)hi zrij say) in jEj»1

are cocycles for da.

Lemma 6.2» // r ^2, the dusses {zrtifj} in E^1 satisfy the follotving
relations only ;

{*i.«.m} =0 (r 2)

// r^2, El'2 has as a base the classes {(Ari)2}.

Prool. We hâve to examine d2 : -EÎJ'2 ~> J^'1. Hère J?5>2 ^m as a ^ase
éléments hrihri. In 2^fl (if r>2) the éléments

higr-ij, htihhh < * — 2 or j *)
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are linearly independent, while the éléments hrih$hj+1 are zéro ; this is by
Lemma 6.1. The boundaries are given by

From this, the conclusion follows.
In case r 2, El*1 has as a base the éléments h2 ihjhk> while the boundaries

are given by

The conclusion is again elementary.

Lemma 6.3. If r>2, the classes {flv,,*,} in H*(Al//Ar+1)lp*Hz(A1HAr)
satisfy the following relations only :

(i) 9r,iK+i+i + 9r,i+ihi 0 (r^2)
(ii) KA+i} =0 (r 2)

Proof. The image of 9rtihj in JSg'1 is {zr,i,j}- On applying Lemma 6.2,
we obtain the results of this lemma, except for the exact relation (i). This
follows immediately from the remark (above) that Ay^A,. + hrihr+i is a
cocycle for d2.

Lemma 6.4. In £r3(^1//^r+1) (r > 3) the éléments h^hj, are subject to
the following relations only.

(i) h.h^h, 0

(ii) (A,)2hi+2 (Am)3

(iii) A^+2)2 0

Proof. We know the structure of HZ(A1//A2) and will prove the lemma
by induction over r. We hâve to consider the spectral séquence in which
A A^HA'*2, r ^V/^r+2 and û -41//^r+1- Iû this we have to con'
sider the differentials d2 : J?^1-^^0 and d3 : J£'2-> JE?*'0.

We hâve ^(A^+i^A^) 0V,<V By Lemma 6.3 this introduces no new
relations into p*H3(A1l/Ar) if r>2. If r 2, we^have only to consider the
case j i+ 1 • We verify that

by a direct calculation (given below) ; the resuit

follows by using the homomorphism of Theorem 5.122. If r 1, we hâve
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We next eonsider d3. By Lemma 6.2, j^'2 has as a base the classes

By considering the grading t, we see that d3 introduces no new relations be-
tween the classes A^&j. unless r 1. We then verify

by direct ealculations (given below) ; the resuit

follows by using the homomorphism of Theorem 5.122.
The direct calculations are similar to those above. They are carried out in

homology, and are as follows (for brevity we hâve replaced the symbol er 2i

by its dimension (2r — 1)2\)

[2|7] + [7|2]
[4|S|2] + [3|4|2] + [3|2|4]

\ +[2|2|2]

This concludes the proof of Lemma 6.4, of Theorem 2.4, and of Theorem 1.1.
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