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Effective Column Length in Unsymmetrical Frames
Longueur de flambement des cadres asymétriques

Knacklinge in unsymmetrischem Rahmen

KUANG-HAN CHU HSUEH-LIEN CHOW
Ph. D., Professor of Civil Engineering, Structural Engineer, Westenhoff and
Illinois Institute of Technology, Chicago, Novick, Ine., Chicago, Illinois
Illinois
Introduction

In the design of bulding frames, the slenderness ratio of any column is
determined by its effective column length rather than its actual unbraced
length. The ratio K of the effective column length to the actual unbraced
length is of great concern to designers working with unbraced frames. This is
because K is always less than 1.0 in braced frames but it is usually greater
than 1.0 for unbraced frames subject to lateral sway. The value of K for
unbraced frames is usually determined by the alignment chart given in the
AISC Manual of Steel Construction [1]. This chart is based on an equation
(given in the Guide to Design Criteria for Metal Compression Members [2])
which is the buckling equation for columns in a symmetrical rectangular
frame subjected to symmetrical vertical loads at the tops of the columns [3].
As shown in Fig. 1, the frame is assumed to be braced in the direction per-
pendicular to its plane with moments of inertia of the colums (which resist
bending in its plane) I.=1I, and subjected to loads P’'=P. Note that the
moments of inertia of the beams are not equal (I;+ I,) and the column bases
become fixed if I, =co hinged if I; =0.

Since the AISC alignment chart is based on symmetrical frames symmetri-
cally loaded, the question arises as to what will be the value of K if P’ P
and I +1,. In this paper, the basic buckling equation will be derived and a
chart which gives a coefficient for modifying the K values given by the AISC
chart will be presented. Since coefficients given by the chart are average
values, some errors can be expected in the modified K values obtained. How-
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ever, the maximum error of the modified K will be at most about 20 per cent
and for most pratical cases less than 10 per cent.

P P'=P
Ip
L
P.
: . .
I =l |Lc Mij /R
Vi a
I ' R &L
' L y Mii\/ P
r 2 - Vi
Fig. 1. Symmetrical frame Fig. 2. Notations for the slope
symmetrically loaded. deflection equation.

Buckling Equation

The slope deflection method will be used in the derivation of the buckling
equation. The slope deflection equation for a member ¢j subject to an axial
load P (Fig. 2) as given in standard textbooks [4,5] may be written in the
following form [6, 7].

_2EI

M 7 (2a0;+b0;—cR), (1)
in which M,; = moment at end 7 (M;; at end j), positive clockwise,
E = modulus of elasticity,
1 = moment of inertia about an axis perpendicular to the plane
of the frame,
L = length of the member,
0;,0; = slope at ends ¢ and j respectively, positive clockwise,
R = slope of the chord, positive clockwise,
= A4/L = end deflection/length of member,
I
a = 4 1—¢>cot¢+00t¢ , (2a)
_ i( ¢ )
b =5 1—¢cot¢_00t¢, , (2b)
2
c = 2a+b= ¢ (2c)

1—¢cotg

L./ P
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For small values of ¢

L _@4r 124y

a= 30 25000 O’

_ (2¢)2 13 (2¢)*

b= 1+~ 25000
for ¢ =0 a=b=1.

(4a)

(4b)

(4¢)

Letting K be the ratio of the effective column length to the actual unbraced
length, then P at buckling becomes the critical load P, given by

m BT

cr

and

Referring to Fig. 3, let
P =AP(0=A1),

IJL
G, == c7
4 LL,
I/L
Gy =2
B L Ly

(K L)
B

e

B

(5)

T
5K (6)
I, =al,(0=«=<1), (7a,b)
r_ Aol Lo _
Gy= e = G (8a,b)
p_ Lol Lo _
GB == Ib,/Lb = OLGB, (SC,d)

in which I, and I are moments of inertia for the columns, I, and I, are the
same for the beams, L, and L, are the lengths of the columns and beams

respectively as shown in Fig. 3. With the coefficients a,,b;... etc. for the
P . b P'= AP
A 51910, GQ‘Q A
| "6a /J'
. [/ Te =1,
ap |/ oy i Q&£
Le b, ff b, ([ 0£A=l
CZ l! 1 1 C'g i
og_ lp»al by ,
B 2 B
Fig. 3. Unsymmetrical frame ! %s
unsymmetrically loaded. L L -

members as indicated in Fig. 3, the slope deflection equations for members

t4A A" and A B are

(9a)

(9b)

For equilibrium at joint 4, > M, =M, ,, + M ,5 =0, yields

2(a1+GAa2)0A+GAbng+b10A'—GAC2R - 0.

(10a)
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Similarly with > Mz =0, > M ,. =0 and > Mg = 0, one obtains

Grby0,+2 (a)+Gpay) fy+bl 0 —Ggoy R = 0, (10D)
b0, +2(ay+aG,al) 0 +uC b,0h—xG ciR =0, (100)

The shear equilibrium equation

MAB—*_J'MBA+MA'B'+MB'A'+PLCR+P,LC‘R=O (11&)
gives ¢yl +cobptac,0 +ac0p—2[co+ac,—(1+A)$?*] R =0, (11b)
. L2P

. , L2
in which % = iEL (12)
Let 2y +acy,—(1+A) 2] =d. (13)
From Eq. (11) R=%2(0A+03)+°.‘—;%(0;+939). (14)

Since there is no axial force in the beams 4 4" and BB’,

Substituting Eqs. (14) and (15) into Eqs. (10a—-d), yields

(2+G,W)0,+ Gy Wolp+ (-G, W;) 0, — G4 W0y =0, (16a)
G Wa0,+(2+Gp W) 05— G W;0,+(1 -Gz W;)0p =0, (16b)
(1-G, W) 0,— GaWs0p+(2+G 4 W) 0, + G4 W, 05=0, (16c)
—GpW;0,+(1—-Gg W;)0p+ Gp W04+ (2+Gz W;)05 =0, (16d)
2 c2

in which Wl=2a2-—%, Wy = by, (17a,b)

, Cy)? , Cy)? €y Co
W= 2aay—E9E g O G 70

The buckling equation is obtained by setting the determinant of the coeffi-
cients of the unknown 6’s in Eqgs. (16) equal to zero, or
2+ G, W GaWe 1-G, W, -G, W

GpWy, 2+GgW, —GpW, 1-Gyg I/Vs

, U I =0. (18)
L—G Wy —G Wy 2+G, W, Wy~
Couw eaw Gaw, 2ecaw
Expanding and rearranging Eq. (18), one obtains
3N+QRUN-Ush-U; V3-U, V- U, V;) G, (19)

H(UN=U Vo= Ug V= Ug V= Uy Vz+ V) G3 = 0,
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in which
Uy = Wi+ W+ W, Uy = W Wy— W,
Us = Wo+2 W, Uy = WMW,— W, W,
Us = Wy+2 W, Us = Wy Ws— W, Wy,
§ (20a-k)
U =2W+ W, Ug = W W,— W2,
Uy =2W,+ W, U= W, Wy — W2,
Up =W, Wy— W
V1=3+2GU,+G}U,, Vo=GpUs+ Gy Us,
Vo =GpUs+ G} Uy, Vi=GpU;+G% Us, (21a-f)
Vs = GpUs+ GF Uy, Ve = 0% Uty

In Eqgs. (20), the W’s are obtained from Egs. (17a—e) with a,, b,, etc. obtained
from Eqgs. (2a-c) and (4a,b), using

Ly P o«
=2 Vzi~ ek (222)
for a,, b, and c,, and
. Lo/ P o= ]/i
¢=¢=5Vwr ~axls (22b)

4 ’ ’
for a;, by and cg.

Special Cases

The following special cases may be obtained from the general buckling
Eq. (18) or (19)
a) If ¢ ,=0, (I,=0), then in Eq. (19), /;=0 or
3+2G5U,+G% U, =0. (23)

b) If G =00, (I,=0), then in Eq. (19), the coefficient of G% =0, hence
Us—Uy Vo= Ug V3= Ug Vy— Uy V5 + Vg = 0 (24a)
or GR(U3—2U,Usg—Ug— Ui~ U3y)
+ GB(2 Ul Uz— U4 U5_ U3 UG_ U7 Us‘_‘ U9 U10)+3 U2 = O.
¢)If P=P and I,=1,then A=1, a=1, W;=W; and W,= W,. Consider the
case 0 ,=0"; and 0p=0%.
Let W, =W, W, = W, W, = Wy (25a—c)
for this particular case. Eq. (18) becomes
3+G (W — W) Ga(Wy =W5)| _
Gp(Wy —W5) 3+ Gg(W, — W)
or 9+3(G4+Gp) (W — W)+ G Gp[(W) — W) — (W, — W)*] = 0. (26D)

(24D)

0 (26a)
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2

Note that W) - W, = 2(@2—%) = %(eoth—tanqS) =¢cot24¢, (27a)

— o} ¢

Wy — Wy = b,— 1= ——2~(cot¢+tan¢), (27b)
. : 4p3cot ¢

- —d2) =
in which d = 4(cy—¢?) T—gootd’ (27¢)
Eq. (26b) becomes
9+3¢cot2¢(G,+Gp) -G, Gzd?=0. (28)

With ¢=ﬁ, Eq. (28) is identical to the equation given in Guide to Design
Criteria for Metal Compression Members [2].

d) If I,=0 («=0) and P'+0 (A+£0), then ¢'=co and W,, W, and W;
become indefinite. There will be no solution for Eq. (18). The structure will

buckle since there is a load on a column of zero flexural rigidity.
However, if ;=0 and P'=0, then « =0 and W;=W,=W;=0.

Let W, =Wy, W,=W (29a, b)

for this particular case. Eq. (18) becomes

2+GAm/I GAWZ” 1 0
GeWy 2+Gz Wy 0 1
1 0o 2 o= (30a)
1 0 1 0 2
or 946 (Gq+ ) Wy +4 Gy G [(W)2— (W) = 0 (30b)
2
with W, = 2a2—% = W, - W, (31a)
n cg 4 7
Wy = by 2= Wy - W  (31D)
2¢3cot ¢
— ¢ — h2y — i
and d = 2(cy—? I—dootd’ (31c)

The case of I,=0 and P’'=0 is equivalent to the case with the member
A" B" omitted and the ends A" of 4 A" and B’ of BB’ supported on rollers
(see Fig. 4a). It can be seen that Eq. (30b) is the same as Eq. (26b) for the
symmetrical frame symmetrically loaded if 2 G, and 2 G'y are used instead of
G, and G'i. The same result is obtained if 2 L, is used instead of L,. This is
because in the present case the points of inflection of the beams are at the
ends A’ and B’, whereas in the symmetrical case, the inflection points are
located at the midspan of the beams (see Fig. 4b).
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i Ip

a) [F Ly 1 Lb/2 | Lp/2 b)

Fig. 4. Comparison of the deflection pattern of the case P’=0 and I; =0 with the symmetrical
case.

e) For the case of P=P and I=1, A=1, a=1, W, =W, and W, = W)
without the restriction of 8 ,=0, and 6,;=0y, it can be shown that Eq. (18)
may be reduced to

{1—(G4+Gp) (Wi + W)+ G, Gu[(Wy+ W) — (W, — W;)?]}-

{9+ 3(Cy+ Cp) (Wy— W)+ Gy G [(Wy— Wy — (Wy— Wy = 0. 3P

Setting the terms in the second pair of braces equal to zero results an equation
which is identical to Eq. (26b) for antisymmetrical buckling. Setting the
terms in the first pair of braces equal to zero would result an equation for
symmetrical buckling. Since K values for symmetrical buckling is always less
than 1 while that of the antisymmetrical buckling always greater than 1
(equal to 1 if I, =1;=00). The buckling load will be governed by the anti-
symmetrical case instead of symmetrical case.

Solution of the Buckling Equation and Presentation of Results

Eq. (19) may be solved very simply in the following manner. If the values
of «, A, and G are given, values of G, may be determined for any assumed
values of K. Since the equation for ¢, is quadratic, negative and complex
solutions must be discarded. Also some false or physically meaningless roots
must be rejected.

It is noted that Kq. (18) is symmetrical with respect to G, and G'5,. Hence
G, and G5 are interchangeable. Thus Eq. (23) may be regarded as an equation
for ¢, when G/ =0 and Eq. (24) as an equation for ¢/, when G'z=co.

Various methods of presenting the results were tried. It was found that for
a given pair of « and A values, the B values defined by the following equation
remain approximately constant for various values of ¢, and Gj.

K

in which K is the ratio of effective length to actual unbraced length for a given
pair of « and A values corresponding to a pair of specifies G, and G5 values
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(referring to the stronger column) and K, is the value of K for A=o=1 (sym-
metrical case) with the same values of G, and Gp.

The ratio B is determined in the following manner. For given values of «,
A and G g, using Eq. (19), G is obtained for some assumed value of K. Using
the same G, and G@p, K, is determined from Eq. (28) by Newton’s method
for solving transcendental equations. Then B is determined from Eq. (33). All
computations were carried out on an IBM 360 computer.

For a given pair of « and A values, an average value of 8 is determined for
various values of G, and Gg. A set of curves of the average 8 versus o for
various values of A is plotted in Fig. 5. This figure is to be used in conjunection
with Fig. 6 which is reproduced from the AISC Manual [1]. With known values

” T
17 ——
P P':Mfl_J Ca Ko Ge
6 Ib [
Neohn =3=20, —
I i Gale 1000 F783 — 1000
15 L " 500— I — 50.0
- 300 -+ 5.0 — 300
14 : 200— I 40 — 200
\ \ 8- K(O£A1,0= a=1) 1 : |
\ \ " KolA=l,o=1 with Ga a..a) T
the some os for K
B * 100 1 a0 — 100
N T 9.0 — 9.8
2 j B8O ] X
NN | 70 — 70
B ) - T 60— — 60
L AN NN - i T 50— . ~~ 50
AR NI~ b || 40— -+ 20 n 40
{ ‘. R
\ ™~ L T
TR s 0 o e e e A2 ! — 30
0.9+ s S e s L
= 0.2\ = ] —— 20— r—- 20
os - —— —+ i5
v T T—lon \\‘“~“1N+i . I
07 — T 1.0— = {0
0.6 1 : [
0.5 T O-j -0 L 0
(¢} [oX] 02 03 04 05 o« 06 Qr o8 09 10 :
Fig. 5. Curves of average 8 versus « for Fig. 6. Chart for the determination of K.
g 3 4 g Ao
various values of A. (After AISC Manual of Steel Construction.)

of A, «, G4 and Gy, the value of K will be given by B K, with 8 determined
from Fig. 5 for a given « and A and K, from Fig. 6 for given values of ¢,
and Gp.

Since average values of 8 are used in the plotting, some errors can be ex-
pected. It was found that the error increases as o of A decreases (i.e., as the
frame or loading becomes more unsymmetrical). For very small value of «,
the error may reach 20 per cent. However, the maximum error is 11.3%, for
xa=0.3, 8.99 for «=0.5, 4.5%, for «=0.75 and 1.19, for «=1.0. For most
practical cases, the error will be less than 10 per cent since « is seldom less
than 0.5.

It should be noted that the estimated errors are maximum values. For the
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ordinary ranges of G, and G, B will be near the average and the error will
be much smaller. In case precise K values are needed, Eq. (19) may be solved
by the method of linear interpolation (false position) using as first approximate
values of (1+e)K in which e is a small fraction representing an estimated
error and K is determined from Figs. 5 and 6.

Numerical Examples

Various problems may be solved by using the charts presented herein
intelligently. For readers not familiar with the use of the AISC Chart, examples
will be shown for both the case of B=1 (for A=1 and «=1) and the case of
B+1.

Example 1. A ten story frame is shown in Fig. 7 (a). The moments of inertia
of the columns and beams are as shown in the figure. It may be noted that the
ratio of G, and G5 at all joints are equal.

(Le/2)/ Ly _ o) Le

(G,) at A = =
A ’
Ib/2 /Lb Ib/Lb
() at B - LU+ LJDVL, _ LJL,
- ’
L[ Ly, I/ Ly,
e - Tl _ LiL
[(Ls/2) + (Lp/2)]] Ly ol Ly
Gy ap D = Tt L _ L/L,
B .
T+ 1)L, ~ Ty/L,
Pl P P P P Pl Pl
b2 ¥V Ibr2 Iv/z In/z
A C
1‘-’ IL IKJ ]c —I-; (b) Ic I_G L
‘Ew bo b [ 2 1o |® ¢
>
L Ic d ++ e Ik L tb.]
Ip Ip Ip
I Ie I e .
9 2 T Ty 1 2 (c) Identical _wn.h(u)except Column
(€] N P Bases are fixed as shown
ol '1 4' —— .
b | I Ip Ip Iy
I Ic Ic Tc i I Ic Ie Ic L
Il |n [ TTlw P Ll | [ TTLn |2
L Ie Ic I %c . Ic Ic e *
l Ij T 1
A - b/z 3 bzg y b2 Jn Jir - Jr kd
(@) n Spans @ Ly J n Spans @ Lp _]
1 T 1

Fig. 7. (a) Frame solved in example 1. (b) A unit of the frame shown in (a). (¢) Frame solved in
Bleich’s book.
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The problem may be treated as a superposition of the basic frame as shown
in Fig. 7(b). Noting that B=1 and K =K, from Fig. 6, connecting a straight
line between the given values on the ¢/, and G5 scale and finding the inter-
cepts on the K|, scale, one can easily determine the values as shown in Table 1.

Table 1. K values for the ten story frame shown in Fig. 7

K=K, 1.31 1.59 1.83 2.05

The values in Table 1 check very well with the curve given in BLEICH s book
[4] for the solution of the frame as shown in Fig.7(c). The frames shown in
Fig. 7(a) and Fig. 7 (c) differ only in the degree of fixity of the bases of the
bottom story columns. However for tall buildings the effect of base fixity of
the columns in the bottom story will be negligible.

Example 2. The problem as shown in Fig. 8 (a) was solved by JoHNSON [8].

I/L 21/L 1
(GA)AD,CF = 51—/(/%—3) = (G4)pr = *2*27/*/(%—[/—) =3~ 0.33,

I+21)L oT+4D)L 3
(GB)ap,cr = (2}_/71))/) = (Gp)pr = %ﬁj—l/—(%)—l/,)— =3= L

3
(GA)DG,EH, FI = (GB)AD, CF,BE — )

(GB)pe, er,pr = 0-
From Fig. 6, K=K,=1.21 for columns AD, CF and BE and K=K,=1.15

for columns DG, EH, F1I. The given solution is P=7.10 %: (II_;%){E with

K =1.18 which is exactly equal to the average of 1.21 and 1.15. The frame
may be treated as a superposition of two frames shown in Fig. 8 (b). It may
be pointed out that the results are good primary because the column stiffness
is proportional to the loading.

Py Py
1
P 2P P P P P
21 21 21 ¢ 21
e 1 I L
1 1| 1 P2 Pa
P P PP P 1
SRV -3 B R
2t 2ft 2t 21 I 1 L
'l L J » J7 1L JL_—JL
2. %L 1:
2
(a) (6)
Fig. 8. Frame solved in example 2. Fig. 9. Frame solved in example 3.

Example 3. The previous example shows that very good results can be
obtained by using the AISC Chart for well proportioned rectangular frames.
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This example will show the amount of error involved in applying to some
other cases. Fig. 9 shows a frame which has been solved in reference 9. The
given values of E I/L? is 1007 and the solutions are P, =4007 and (P, + B,) =
8077 corresponding to K =K,=mx/ /4.0=1.56 and ) ¥8.07=1.10 respectively.
From Fig. 6, the K value for the top column is 1.24 for ¢ ,=% and Gz=1
and that for the bottom column is 1.15 for G,=1 and G5=0. Consider the
fact that column stiffness is not proportional to loading, the errors involved
are reasonable.

Example 4. The four cases shown in Fig. 10 were solved by Zwgia [10].
A comparison of the results will be of interest. For cases I and I1I, G ,=G5=0

TR
T l ! IJ «11 1 dll

Fig. 10. Frames solved in example 4.

and K,=1. For cases Il and IV, ¢, =0, Gz=00 and K,=2. The values of 8
for various values of A and « from Fig. 5 are listed in Tables 2 and 3.

Table 2. B values for cases I and 11

A =72 0.16 0.49 0.81 1.0

B 0.76 0.86 0.95 1.0

B (Zweig) 0.765 0.864 0.951 1.0
Table 3. B values for cases 111 and IV

o = r? 0.16 0.49 0.81 1.0

B 1.27 1.08 1.02 1.0

g =rB 0.508 0.756 0.918 1.0

B’ (Zweig) 0.532 0.812 0.946 1.0

Error 7% 7% 3% 0%

It should be noted that the notations A and « are respectively corresponding
to 72 and 72 given in reference [10] and the 8 values can easily be derived from
the K values given therein. Also for cases III and IV, the critical load in
reference [10] is related to the weaker column, thus

p_ am? B I _ rm2 Bl 7B
(B KoL)} (BK,L)*

(B" Ko L)?
It can be seen that for cases I and II, the B values checks very well and for
cases I1I and IV, the errors are within the maximum values stated previously.

Hence B’ = rB.
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Example 5. This example shown in Fig. 11 (a) was also solved by Zwzic [10].
It would put a severe test of the versatility of the proposed method. This
frame may be treated as a superposition of the frames shown in Fig. 11 (b)
and the equivalent frame is as shown in Fig. 11(c). The conditions of the
column bases, however, are dissimilar and can not be replaced by a single

150K 200K 350K 200K 150K 150 100 100 35072 350/2 100 100 150

l | | | | l || ! l

' TI, - Ip=c0 Lip=o0 - -
40| 1er3 75 - 7% opzind  [273 sz | + lws2 swve| 4 fss2 TS| 4 frs2 2r3
7 #

l__Lm__‘L_/an. T T Loz | Los |
T- Tt

H I = T H
1OWE49 12We5 I2wes  12wes  lowag (@)

(b)

350
650= (uso) 400= [jggj

Al +150 C»l

.
533 Iy /L
(c) 273 175 A .
273 173 1-|350/4:875
1-1079 4 1=350
8 o

Fig. 11. (a) Frame solved in example 5. (b) Superposition of frames. (¢c) An equivalent frame.
(d) Final equivalent frame.

beam. Nevertheless since column C’'D" has G, =0, Gz=00 and K;=2 (from
Fig. 6), it may be replaced by a column of C”"D” with G, =G5=0 and K,=1
if Towp = I%%_%:%O — 87.5 in® as shown in Fig. 11(d). Noting that A =
400/650 =0.615, «=87.5/1079=0.081, and G,=G5=0, one obtains f=1.24
and K,=1 from Figs.5 and 6 and K =8 K,=1.24. The answer given in reference
[10] is 3.14/2.46 = 1.28. The error is only 39, although the « value is very

small in this case.

Discussion of Results and Conclusions

The following conclusions may be reached particularly with reference to
Fig. 5.

1. Note that for A=1, on the average, §=1.08 for «=0.5 and B=1.15 for
a=0.3. This means that for equal loads, if the stiffness of the column on one
side is only 50 per cent of the stiffness of the column on the other side, the
K value is only slightly higher than the K, value for the symmetrical case.

2. For equal loads (A=1), K will be significantly higher than K, only when
o is small (say « <0.3).

3. With the exception of A=0, if the loads and stiffness are in the same
proportion (A=«), the average 8 will lie between 0.9 and 1.0.
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4. With the exception of A=0, 8 will be greater than 1.0 only when A> «.

5. When there is no load on the weaker column (A=0), 8 will have values
lying between 0.8 and 0.7 for 0.3 <« <1.0 with a smaller 8 corresponding to
a larger o.

6. As bointed out previously, there will be no solution for the case «=0
and A+0. However, for « =0 and A=0 roller supports are assumed for the
beams, with the weaker column omitted. The K value may be obtained from
the AISC alignment chart using 2 L, instead of L, in computing the values of
G, and Gp.

7. As pointed out previously, the maximum error in using Fig. 5 would be
less than 9 per cent for o =0.5. It may reach 20 per cent for small values of «.

8. By intelligently using the concept of considering G, (similarly Gz) as
the ratio of > I /L, and » I,/L, instead of the ratio of I,/L, and I,/L,, the
rectangular frame studied may be considered to represent any story of a
multistory, multibay frame as shown in the numerical examples.

Notation
a see Eq. (2a)
ay,0q,0,,0 values of a for members as shown in Fig. 3
b see Eq. (2b)
by,b1,b05,b4 values of 6 for members as shown in Fig. 3
c see HEq. (2¢)
84361 5 Cars O3 values of ¢ for members as shown in Fig. 3
d see Kq. (13)
e a small fraction representing an estimated error
E modulus of elasticity
G,, G, (g, G see Eq. (8a—d)
I moment of inertia about an axis perpendicular to the plane
of the frame
1,1, moment of inertia of top and bottom beams respectively
1,1, moments of inertia of columns as shown in Fig. 3
K ratio of effective column length to actual unbraced length
K, K for the symmetrical case A=a=1
L length of a member
L,, L, lengths of beam and column respectively
M moment at end ¢ of the member 4 j

-

™,

e ~.
~

column axial loads (P’ < P)
chord slope of a member
see Kgs. (20a—k)

see Kqs. (21a-f)

see Jgs. (17a—e)
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W/, W), W, W's for the symmetrical case A=a=1

S LR

S o ¥

10.

", Wy W" s for the case A=a =0

1

= IJI,(0sx<1)
= K /K, using the same (¢, and G for K and K,
= deflection of one end of a member with respect to the other end
slope of a member at end ¢ = rotation at joint s
= P[P (0AL])
L¢y/ P
- Ve
Leyf P’

2 VEI;

I
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Summary

In this paper, the basic buckling equation is derived for an unsymmetrically

loaded unsymmetrical rectangular frame which may be considered as repre-
senting a portion of a multistory multibay frame. The ratio, K, of the effective
column length to the actual unbraced length may be considered as equal to
value of K, obtained by the alignment chart given in the AISC Manual of
Steel Construction multiplied by a coefficient 8. A chart which gives average
values of 8 is presented. For most practical cases, the maximum error of the
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K values obtained from this chart in conjunction with the AISC chart will be
less than 10 per cent. Numerical examples are given for illustrating the use
of the charts presented.

Résumé

Dans cet article, les auteurs étendent ’equation générale du flambement
au cas d’un cadre rectangulaire asymétrique et changé asymétriquement que
I’on peut considérer comme une portion d’'un cadre a plusieurs étages et a
plusieurs ouvertures. Le rapport K (longueur de flambement sur longueur
théorique) peut étre considéré comme égal & la valeur de K,, obtenue par les
diagrammes du manuel de I’AISC pour la construction métallique, multipliée
par un coefficient . On donne un diagramme indiquant des valeurs moyennes
de (. Dans la plupart des cas, I’erreur maximum des valeurs K obtenues a
I’aide de ce diagramme et de celui de 'AISC est en dessous de 109,. Pour
montrer 1'utilisation des diagrammes, on a apporté des exemples numériques.

Zusammenfassung

In diesem Beitrag wird die Grundknickgleichung fiir einen unsymmetrisch
belasteten, unsymmetrisch gebauten und rechteckigen Rahmen hergeleitet,
der als Ausschnitt eines vielstockigen und mit vielen Offnungen versehenen
Rahmens aufgefaflt werden kann. Das Verhéltnis K der Knicklinge zur geo-
metrischen Lénge kann gleich dem Wert K, den man aus dem Schaubild
des AISC-Handbuchs fiir Stahlkonstruktionen herausliest, multipliziert mit
einem Beiwert 8 gesetzt werden. Ein Diagramm fiir durchschnittliche Werte
von f3 ist abgebildet. Fur die meisten praktischen Félle liegt der maximale
Fehler des Wertes K, den man aus dem Schaubild fiir f# und K° der AISC
erhélt, unterhalb zehn Prozent. Numerische Beispiele sind beigefiigt worden,
um die Anwendung der Schaubilder zu zeigen.
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