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Prestressed Suspended Roofs Bounded by Main Cables
Couvertures précontraintes suspendues limitées par des cables principaw

Vorgespanntes Hingedach mit Randkabel

AVINADAYV SIEV
New-York, USA

Introduction

Several studies [1, 2, 3, 4] have recently been published on the analysis of
two-directional prestressed cable nets under the following limitations:

a) The cables in each direction lie in parallel vertical planes, with the two sets
of planes usually perpendicular to each other.
b) The frame bounding the net is stiff, i. e. its deformation is negligible.

In ref. [3, 6], a method is described by which frame deformation may be
taken into account by the following iterative procedure: the joints at the bound-
ary assumed as fixed and the net is solved; variation of the forces acting on the
boundary joints is then caleulated, yielding the frame deformation; the effect
of the latter on the net is finally determined, and iteration is carried on to the de-
sired degree of accuracy. A general theory for prestressed suspended nets,
published recently [4], permits solution of any type of net under any boundary
conditions, with non-linearity taken into account.

The present paper is an analytical and experimental study of one of the sim-
plest models of suspended roof bounded by main cables (Fig. 1). The model
consists of four main cables 12-13, 13-14, 14-15, 15-12, fixed at points 12, 13,
14, 15. Two of the fixing points 12 and 14 are elevated, and the other two
depressed. Four diagonals are stretched in each direction between the main
cables. The model approximates a hypar surface bounded by parabolas in plan
(Fig. 2). When a denser net is used, cables 2-5 and 6-9 tend to a convex para-
bola and cables 0-11 and 1-10 to a concave one. It is easily proved that a system
of this shape, composed of bars with frictionless ball joints, is unstable [6]. For
a determinate structure the number of bars should be 3./, where J is the number
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Fig. 1. Plan of the model.

Fig. 2. An approximately hypar surface net

bounded by cables of parabolic shape in plan.
) I I I

of inner joints. In this case J =12, but there are only 28 bars instead of the 36
necessary for a determinate system. In the case of prestressed cables. however,
a certain degree of stabilization is provided, as shown for similar suspended
roofs [3]. The higher the prestress, the stabler the system.




PRESTRESSED SUSPENDED ROOFS BOUNDED BY MAIN CABLES 1973

The object of the present study was analysis of the behaviour of a system of
this type under various modes of loading, checking the effectiveness of the
theory by means of the model, and comparison of numerical and experimental
results. The theory, once verified, permits any real structure to be solved directly
without recourse to similarity considerations.

The Model

Fig. 3 is a photograph of the model. A frame with a smaller cross section
would have sufficed from the statical point of view, but excessive dimensions
were used so as to obtain extremely high stiffness and minimum deflections.
Joints 12, 13, 14, 15 were anchored to a welded frame of 4" @ pipes. The
spacing of the anchorage points was 200200 em and the height — 63.5cm.

Fig. 3. A picture of the model.

The horizontal component (H) of tension in all diagonal cables was assumed
constant and different from its tensile counterpart (/,) in the center of the
main cable (sections 3, 6, 21, 24). It was also assumed tan «=0.25 (« angle in
the horizontal plane, as defined in Fig. 1), hence « =60.609 cm; 5 = 14.286. All
other dimensions and coordinates are given in Fig. 1. For equilibrium in the
horizontal plane, we must have

> :
= 1'(%_JFB)H. (1)

Points 3, 4, 7, 8 are at mid-height; 1 and 2 are symmetrical with respect to
mid-height. In other words, an equilibrium equation of the vertical prestress
components forces in the unloaded system contains a single unknown — the
elevation +/ of points 0, 1, 2, 5, 6, 9, 10, 11, namely:
s 2k H o635
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On substituting H, from Eq. (1), H is eliminated. implying that it is irrele-
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vant to the shape. Rearranging and simplifying, we obtain:

63.5 a :
(=" (3)

V2 38+2V2a

or: = e

The exact length of each section is now obtainable with the aid of Pytha-
goras’ theorem.

As the cables are prestressed, their initial length should be less than the geo-
metrical length [ of the section.

l=zo(1+%). (4)

The model was formed from three wires (Fig. 4): One (representing the main
cable) I mm in diameter, and the other two 0.5mm. Each wire formed a loop
with a single joint, cut to its exact length with the smallest possible tolerances
(say below 1 mm). The length of each section was marked consecutively on the

1%' WIRE
———2M WRE

——e 37 WIRE

Fig. 4. The tree wires forming the model. Fig. 5. Anchorage of the model.

wires, and connections at the joints were formed by soldering. Vertical wires
were connected to each joint, from which scales were suspended for holding
load weights. Prestressing was applied by screws (Fig. 5) at all anchorage
joints, permitting some correction of inaccuracies in wire length. Tension in the
wires was measured by a dynamometer, deseribed on an earlier oceasion [3].
Comparison of tension in the sections (which should theoretically be equal),
indicates the degree of accuracy in the erection of the model. The tension in the
wires was determined as 4.15kg + 0.150 kg, i. e. tolerances of + 3.5%,. The modu-
lus of elasticity was 1.9 108 kg/em?for the 0.5 mm @ wiresand 1.95 x 106 kg/cm?
for the 1.0mm & wire.

Symmetry of Model

The model is symmetrical about two diagonal axes, and antisymmetrical
about axes C-C and D-D. Considering single concentrated loads, a load at 0 is
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identical to one at 1 as to its effect on symmetrical joints, hence the deflection
of joints 0 will be the same as that of joint 1. Horizontal displacement to the
right (positive) under a concentrated load on 0 will correspond to one of the
same magnitude to the left (negative) under a load on 1. This will not be the
case for joints 1 and 2 owing to the non-linearity of the structure, but if non-
linearity is neglected under small loads these two joints will also be identical.
As the deflection versus load curves are non-linear, deflections under a positive
load P, are not necessarily equal (in absolute value) to those under an equal
negative load. On reversing the model, the lower joints (2, 5. 9, 6) will become
the upper ones and vice versa, with the load at 1 directed upwards; as the effect
of a negative load is not equal to that of a positive one, joints 1 and 2 will not
behave identically. Actually, only three cases need be considered, namely those
of joints 1, 2 and 3 under positive load, and the effect of negative concentrated
load may be deduced from the above information. For example, the deflection
of 1 due to negative load at 1 is equal to minus the deflection of 2 under the
same positive load at 2; on the other hand, the deflection of 3 under a load at 3
is antisymmetric for positive and negative loads. More symmetry features will
be discussed later.

Experimental

Weights representing single concentrated loads were applied to all joints in
200-gram increments from zero to 2000 grams. All corresponding vertical de-
flections were measured as a check of accuracy, and averages were used for
comparison with theoretical results [7].

Measurement Technique

In earlier tests on nets of different form [3], curves plotted on the basis of
deflectometer readings were not smooth, probably due to friction. An optical
level Wild N 3 type was used accordingly in the present study. Deflectometer
accuracy is 1/100 mm as against 1/10mm for a level (although 3/100 is obtain-
able by interpolation). The loss of accuracy was offset by elimination of friction
and of any other external interference with the system. In the event, the choice
justified itself. No convenient means was found for measuring the horizontal
components, but in view of the satisfactory correspondence observed in the
vertical components, the same may be assumed with regard to the former.

Method of Computation

The general theory [4] was chosen for solving the system. Although involving
a larger number of equations than other theories [6], it was considered the sim-



Table 1. Comparison of measured and computed deflections U

T
Measured Measured Measured Measured | ‘
Load Us, 0.0 Us, 151 Us, 10; 10 Us, 1111 Average U | U
kg ——s — —— |— ———————|———————— | measured ‘lCompnt(*(l | Corrected*®)

Load Unload Load Unload Load Unload Load ‘ Unload ‘ [ ;

| | |
0.0 0.000 0.001 0.000 -0.001 0.000 ] -0.003 0.000 ‘ 0.001 ! 0.000 0.000 | 0.000
0.2 0.203 0.204 0.202 0.203 0.198 0.196 0.196 i 0.198 0.200 0.213 | 0.197
0.4 0.390 0.395 0.402 0.399 0.389 0.379 | 0.393 | 0.393 ‘ 0.393 0.432 ‘ 0.393
0.6 0.591 0.591 0.605 0.601 0.580 0.577 i 0.592 0.592 | 0.592 ‘ 0.630 0.586
0.8 0.789 0.791 0.792 0.797 0.767 0 7658 80795 0.782 0.784¢ | 0.833 0.775
1.0 0.978 0.978 0.991 | 0.995 0.959 0.957 0.963 0.963 0: 97380 21.032 ‘ 0.960
1.2 1.170 1Lz 1.183 1.184 1.141 | 1.142 ‘ 1.157 1.159 1.163 ‘ 1.224 | 1.141
1.4 1.359 1357 | 1.379 14370 1.322 13211 1.344 1.344 ’ 1.348 1.411 15317
1.6 1.545 1.637 S 10556 - el 550 1.506 ‘ 1.503 ‘ 1.5626 1.523 1153 088 (BN ET1159 8 1.489
1.8 15725 1.723 ‘ 1.744 1.741 1679 ] N 6 S ST BT 7,06 1.707 5713 1.768 1.655
2.0 1.905 1.905 { 1.929 1.929 1.862 1.862 r 1.884 1.884 1.895 ‘ 1.937 ‘ 1.816

*) Corrected computed values — those obtained after increasing £4 by 6% and 7' by 89,. In this case, the correction changed the
discrepancy between computed and average measured results from about + 29, to about —49,.

(Note: The first subseript refers to direction, i. e. X3 or Z axis; the second to the point of force application ; the third to the observed
point.)

AHIS AVAVNIAV
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plest and most promising method. The system contains 16 joints, of which 4
are fixed anchorage joints and 12 are inner joints. The unknowns are the three
components of displacement of each inner joint, i. e. a total of 36. A program
was prepared for the Philco 2000 computer. which yielded the matrix terms,
the new coordinates of each joint, the elongation of the wire sections and the
new tension in each. Finnally, the residual force at each joit was determined,
and wherever it exceeded 0.1 gram, the calculation was repeated, using the
new coordinates and with the residuals as loads. Each cycle was continued until
all residuals were less than 0.1 gram, when loads were increased or the point of
application changed and the same procedure was re-applied. It should be noted
that each cycle required about 4.4 seconds, including iterations.

Experiment vs. Theory

Test results show excellent agreement between deflections which should be
equal. The deflections of points 0, 1, 10, 11 due to loads at the same points are
given in Table 1. It is seen that the difference between deflections on loading
and unloading are of the order of measurement accuracy. There was no hyster-
esis, and on complete unloading, the system resumed its initial shape. The dif-
ference between deflections is so small, that all 8 graphs would practically
coincide. The same situation was encountered in all other deflections and justi-
fies complete confidence in the test technique. Computed results showed larger
deflections than the measured ones. The difference in percentage was smaller
for the large deflections and larger for the small deflections. Except where de-
flections are negligible (i. e. of the order of accuracy) discrepancies between
experiment and theory ranged from 29, to 309, (mostly 2—109,), and although
such error may be permissible, steps were taken to reduce it, as will be ex-
plained later.

Sources of Error

The sources of error may be summarized as:

a) Inaccuracy in determining the prestress force 7" and the rigidities £ A.

b) Inaccuracy in system geometry.

c) Neglected joint rigidity due to soldering, and bending rigidity of the wires.

d) Yielding of anchorage joints due to deflections in the @ 4" pipe frame.

e) Inaccuracy in the assumed ratio of 7' or £ 4 between the small (0.5 mm)
and larger diameter wire (1.0 mm).

f) Inaccuracy of the theory.

It is improbable that temperature changes should be a source of error,
since the tests were carried out in a closed hall where both frame and wires
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should be equally affected. Moreover, such a factor should be reflected in the
comparison of theoretically equal deflections. The negligible scatterin the results
rules out source b). Source f) is similarly unlikely, since the theory is based on
the first principles of equilibrium, the only assumption being absence of flexural
stiffness in the wires, i. e. they are moment free, and that the system is
weightless.

The likeliest sources are a) and e).

The method of determining the tension and rigidities could easily introduce
an error of several percent. The effect of the soldering on rigidity is also uncer-
tain.

Reducing the Discrepancy

In order to reduce the number of combinations, it was decided to disregard
source e) and examine the effect of varying 7" and EA. This was done by
increasing each parameter by 2.59, increments and computing all deflections
under 2.0kg for each of the combinations. Using a slightly modified computer
program, a diagram as in Fig. 6 was plotted for each of the vertical deflections.
Thus, for the original assumption the deflection was 0.614cm, while for an
increase of 5% in B A and 2.59, in 7'. The deflection is 0.60 cm. For small
loads the principal effect was due to variation of tension, while that of rigidity
was small; for higher loads the picture is reversed. Isopleths of equal deflections
were traced and transferred to Fig. 7. Had the discrepancy been solely due to
errors in H 4 and T, all isopleths would have been concurrent, and their
common point of intersection would determine the correction percentage;
this was not the case, but most lines indicated an increase of 8%, in 7' and 69,
in £ A. (See Table 2 and Fig. 8.)

0549 0547 0545 0.5425
L] L] L

I_ISB1
W

/0.559 to be transferred

Sy o TR / ;

0.570 0.568 0.566 0.563
L] L]

1103
0.570

107740580 0579 0578 077
® 0550 ®

0590 (589
0.530 9 1588

0.587 0.584
° [

0600 0600 9599

Fig. 6. Lines of equal deflections
0610 0609 Sihe as a function of £4 and T

063 g 0610

1.000 1.025 1.050

1.077 1.103 1.158 (EA/EA,)
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Fig. 7. Lines of the deflections as
a function of 7" and 4.
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Table 2. Differences betieen measured and computed deflections

P=20kg, BA=1.06EA4,, T=1.08T1

No. of Percentage Average of absolute value
cases difference of deflection in cm
L7 0— 5 0.61
5 5—10 0.25
6 10—35 0.14
7 Deflections too small 0.02

to be measured

Supplementary Computations

With the program ready and debugged, it seemed worthwhile to study the
behaviour under higher concentrated single loads, as well as under equal verti-
cal and equal horizontal loads at all joints. The original series comprised con-
centrated loads of 0 to 10kg at 1kg increments but, due to an error in the
program, the case of a concentrated load at 1, up to 90kg was also computed.
Results were found of interest, and part of them is presented. The stresses in
some of the wires were above ultimate strength, but the impracticability of the
pattern is disregarded and certain curious features of non-linear behaviour of a
structure of this kind are pointed out.

In the case of the load at point 3, calculations showed negative tension
(i. e. compression) in two wires. As the wires are only capable of resisting ten-
sion, the program was modified, converting compression into zero and iterations
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Fig. 9. A computer sheet for P, = 0.2 kg at
all joints (horizontal load in the a direction).

as before. Incidentally, it was found that 5kg increments did not save time. as
convergence was slow.

Additional computations were carried out for horizontal loads of 0.2kg and
1.0kg on all joints in the z-direction. Fig. 9 and Fig. 10 are photographs of the
output sheets from the computer. The first 3 rows show the coordinates of the
joints after deformation, and the next three — the loads. Joints 12, 13, 14 and
15 are fixed anchorages unaffected by load. Next come the three components
of the deflections. The two lowermost give the length and tension for each
section.

The same procedure was applied for vertical loas at all points.

Pin checks were carried to varify the computations. With coordinates and
section lengths available, the direction cosines and equilibrium in each direc-
tion were calculated on a desk calculator. An additional check was effected by
running a set of calculations for negative loads and comparing symmetrical
and antisymmetrical results.

Non-linear Behaviour of the System

Part of the results, representing the most interesting features of the struc-
ture, are reported below:




0.2428 0.3035 .2007 0.2037
0.0004 0.0019 -0153 0.0513
0.566¢ -0.7174 .3375 0.2503

Fig. 10. A computer sheet for
P, =1.0 kg at all joints.

Loading of Joint 1

Fig. 11 shows the vertical deflection of joint 1 — U, ,; due to a vertical
load on it (F; ;) in the range —10kg to +90kg?).

The same may also represent the deflection of point 2 in the range —90kg to
+10kg. The curve shows smaller deflection increments with increase of load:

Kg

Us i
cm

Fig. 11. Curve of Usg 1,1 versus P3 1. Uz 1,1 means deflection in X3 (vertical) direction,
force application and observation at point 1. Same refers to I°.
1) The first subscript refers to direction, i. e. X3 or Z axis; the second to the point
of application.
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under high loads the deflection curve becomes less and less steep and tends to a
straight line. This behaviour (common to all displacements and all directions)
is due to the load resistance being a combination of a change in shape (referred
to later as “bending’’) and variation of tension in the cables. If small loads act
on a plane net, most of the resistance takes the form of “bending’’; and the
difference in length between the straight and the slightly bent wire being negli-
gible, the variation of tension is also negligible. In a three-dimensional net the
situation is different, and variation of tension takes place even with the smal-
lest load. This composite behaviour is the reason for the non-linearity of the
graphs. However, as the load increases the net tends to the ‘“funicular’’ of the
applied loads, and further loading of the same mode will no longer cause
“bending”’, except as permitted by the strain in the cables. At this stage
additional load may be directly resolved into its components in the net. The
non-linearity is of the same order as in an ordinary truss, and deflections are
relatively small. The deflection increments at this stage are almost independent
of the initial pretension, in contrast to the case of small loads, as explained
before (see Fig. 6). In other words: the curve will have the same general shape
whatever the rigidity of the cables or the pretension forces. However, for higher
rigidities, the slope of the asymptote to the curve will be smaller. In the hypo-
thetical case of /4 = o0 the asymptote will be horizontal, since the deflections
cannot continue to grow after a certain “bending’’ level of the net has been
reached. If the prestress is increased, the range of transition or non-linear be-
haviour will increase (Fig. 12). It is of interest that the graph in Fig. 11 is not
antisymmetrical, and that deflections are larger for negative loads. This is due
to the fact for positive load at point 1, the slope of section 0 increases, while

Py,

Fig. 12. The effect of varying 7' or EA on the deflection curve.

T3 Kg
140
130
120
110
100
S0
80
70
60
50
40

20

10 20 30 40 50 60 70 80 Pi,
Kg

Fig. 13. Curve of 7T's versus Pj 1.
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that of sections 3 and 7 tends to the horizontal. The vertical component in
section 0 is the dominant reaction to the load. For negative loads, the slope of
section 0 tends to the horizontal, and most of the load is transmittesl to an-
chorage 15. As the distance 1-—15 exceeds 1-—12, the deflections under negative
loads are larger.

A study of 7} (variation of tension in section 3) versus the load at joint 1
(Fig. 13) shows that it increases for both nagetive and positive loads. The slope
of the curve is steeper for negative loads, since for that case the slope of section
3 increases, and the load is transmitted through it to point 15. Fig. 14 shows a
blow-up of the curve in the neighborhood of zero load. Minimum tension is
obtained at +0.4kg. Near this point variation of tension is small, and the domi-
nant resistance to the load is by “bending’’. This is why the curve in Fig. 11 is
linear and of maximum slope in this interval. This may only be regarded as a
general trend, since not all sections have minimum tension simultaneously.

Close inspection of Fig. 13 shows that for high loads the curve is convex
while for small loads it is concave. The inflexion point is at about the 8 kg level.
The reason for the convexity is that £ 4 is finite, the net continues to deflect,
and the change in geometry reduces the deflection increments.

Another interesting curve is that of the vertical deflection of point 3 versus
the vertical load at joint 1 (Fig. 15). The curve shows a small negative deflection
with a minimum, beyond which the slope becomes positive; above the 77 kg
level it deflects beyond its original position. (Note that this graph is drawn on a
bigger scale for deflections.)

This behaviour is attributable to the mutually opposite deflections of joints

T3 Kg
27
26
- 25
Fig. 14. Blowup of curve 13 near zero load. ] B
% -20 -1.0 -0.2 02 04 1.0 20 Kg
-06
-0.5
-0.4
-03
-02
-0.
. I ; P3,
0 10 20 30 40 S50 60 70 w
+0.1
: 7 el A +02
Fig. 15. Curve of Usg.1,3 versus I’3,1. +03
Uspa
Cm
Tis Kg
7.0

Y
30
2.0

1.0

Py,

Fig. 16. Curve of T';5 versus P3,1.
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3 and 1 under small loads. As the load inereases the geometry of the system
changes, and joint 1 becomes lower than 3 and pulls down the latter.

The next curve (Fig. 16) shows section 15 which tends to least tension under
vertical loading of joint 1. Complete elimination was not observed anywhere.

Loading of Joint 2

As already mentioned, this loading is identical with negative loading of 1.

Loading of Joint 3

Essentially, most of the graphs resemble those shown earlier. However, for
this loading, negative tension was obtained in section 2 at 7.25 kg. Fig. 17 shows
the deflection of joint 3 under loads up to 15kg. A dotted line from the load of
7.25kg shows the theoretical deflection, had the section 2 been capable of
withstanding compression. This graph shows that the system is stable even

50 100 5.0
} + } + + + " i1 F},! T!

Kg

45+

Actual line, when

Theoreticol line hod :
section 2 is neglected

501
section 2 been copable
1 4 /uf withstanding compression
=+ Tension at section

2 becomes zero 7.25Kg

40+

Actual line, when

100—+ section 2 is neglected
Uz 354
Cm -1

/% ———Theoretical fine hod
section 2 been copoble
of withstanding
compression.

Fig. 17. Curve of Us, 3,3 versus Py 3.

Tension ot section
2 becomes zero at
7.25 Kg.

30+

Fig. 18. Curve of 7’5 versus Pj3 3. 250

50 100 150  Kg

after some of its members cease to act. Moreover, the discontinuity is negligible.
This fact should be emphasized, as it is common practice to believe that
prestress should suffice to preclude slackening of the cables under maximum
load. In reality, the load has a stabilizing effect on the net with regard to rela-
tively small additional loads. The increased tension in part of the sections
compensates for the loss in the others.

As joint 3 is on an antisymmetrical axis, the curve is also antisymmetric,
with a point of inflexion at zero load. The tension curve in section 3 (Fig. 18) is
also dictated by laws of symmetry. The identical variation of the tension should
result both from a negative and a positive load, hence the curve is symmetric
with a horizontal tangent for zero load. It should be expected that for higher
loads the curve will assume a shape similar to that in Fig. 12, but with a sym-
metrical curve.
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Conclusions

A suspended net may be analyzed by the aid of a computer for any mode of
loading, with non-linearity and neutralization of the cables taken into account.
The study has shown good agreement between theory and experiment. Lower
deflections may be obtained for small concentrated loads by increasing the
prestressing forces, and for higher loads by increasing cable rigidity. Deformation
of the net may be studied by computer at all stages of construction, and the
optimum sequence of applying the roofing may be established. Deformation
under the worst combination of suction and pressure wind forces may also be
determined. The solution is exact, the only assumption being a weightless net
with no moments in the cables. The worked examples have shown that the ge-
neral method converges rapidly, and is an excellent tool for solving prestressed
nets.

The same iterative solution, with a new geometry each time, may be applied
to any non-linear problem, including buckling. In the latter case, the denomi-
nator determinant must be determined each time. Buckling sets in when deter-
minant vanishes.
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Summary

A simple model of a hypar net bounded by parabolic cables was tested under
load, one point at a time, up to 2.0kg in 200 g increments. Discrepancies be-
tween theoretically identical deflections were negligible, and no significant
hysteresis effects were observed.

A solution obtained by computer was in close agreement. The program was
also utilized for higher single loads (including a case of a wire section under zero
tension) and for vertical and horizontal loads resp. at all joints.

The study proves the effectiveness and possibilities of computer solution of
non-linear problems.

Résumé

Un modele, simple, de réseau en paraboloide hyperbolique limité par des
cables paraboliques a été éprouvé sous une charge appliquée séparément a
chaque nceud et atteignant progressivement 2,0 kg par augmentations succes-
sives de 200 g. Les différences entre les déformations données comme identiques
par la théorie se sont révélées négligeables, et 1'on n’a pas observé d’effet
d ' hystérésis significatif.

Une solution a été obtenue en utilisant un ordinateur, et celle-ci est en étroite
concordance avec les autres résultats. Le programme mis en ceuvre a cet effet
a également été appliqué au cas de charges individuelles plus élevées (y compris
celui d'un fil supportant une tension nulle) et de charges verticales et horizon-
tales respectivement appliquées a tous les neeuds.

Cette étude met en lumiere 1’efficacité et les possibilités de I’ordinateur pour
la résolution des problemes non linéaires.

Zusammenfassung

Das untersuchte Modell stellt ein Hyperboloid-Kabeldach dar. Es besteht
aus einem Netz sich rechtwinklig kreuzender Drahte, das durch Randdrédhte
parabolisch begrenzt ist. Jeder Kreuzungspunkt wurde bis zu 2,0 kg belastet
mit jeweilicen Laststeigerungen von 200 g. Die gemessenen vertikalen Durch-
biegungen zeigen gegeniiber den entsprechenden theoretisch ermittelten Wer-
ten vernachldssigbar kleine Abweichungen. Hysteresiserscheinungen wurden
nicht festgestellt. Die gemessenen Werte sind auch in guter Ubereinstimmung
mit den KErgebnissen einer Computerberechnung. Das Computerprogramm
wurde ferner fiir hohere Einzelbelastungen (einschlieB3lich eines Falles mit span-
nungslosem Drahtquerschnitt) und fiir vertikale und horizontale Lasten
benutzt. Dieser Beitrag zeigt die Moglichkeit der Behandlung nichtlinearer
Probleme mit Hilfe von Computern.
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