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Dynamic Response of Beams to Moving Loads

Le comportement dynamique des poutres sous Vaction de charges en mouvement

Das dynamische Verhalten von Balken unter bewegter Last

HANS GESUND DANA YOUNG
M ASCE, Associate Professor of Struc- F ASCE, Dean, School of Engineering,
tural Engineering University of Ken- Yale University, New Haven, Con-

tucky, Lexington, Kentucky necticut

Introduction

The investigation reported in this paper is concerned with the problem of
the dynamic response of a beam to moving mass loads. A finite difference
procedure is developed which is suitable for Solution on a digital Computer. In
particular, the method includes the effect of modes of Vibration of the beam
higher than the first, and also includes the effect of several moving loads in
tandern.

The analysis is based upon the ordinary theory of flexural vibrations which
neglects the rotatory inertia of the beam element and also the effect of shearing
deflections. It is also assumed that the moving mass loads always remain in
contact with the beam. The derivation of the theory and the specific examples
are restricted to uniform simply supported beams and to concentrated loads
which move across the beam with constant velocity. However, the method
can readily be extended to eliminate these restrictions.

The Solution yields the deflection and bending moment as functions of
time and position along the beam. Results are given for several examples in
the form of curves of deflection and bending moment versus time at several
specific stations along the beam.

Previous work. The work previously done can be divided into several
categories: (a) experimental investigations, either of whole bridges or of beams,
with attempts at correlation with simplified theories or empirical formulas,
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(b) analytical investigations making simplifying assumptions regarding the
basic problem, (c) analytical investigations in which the differential equations
are simplified and solved only approximately, (d) analytical investigations in
which the differential equations are simplified and solved rigorously, and (e)

analytical investigations in which the differential equations are set up rigorously
(within the hmits of the Bernoulli-Euler assumptions) and are solved approximately.

A complete Solution of the rigorous equation does not yet exist.
As might be expected, the first attempts to discover the effects of a moving

load on a beam were of an experimental nature. The results of the very first
investigation, apparently, were published by Becker [1] in 1848. He measured
cast iron railroad bridge deflections for passages at various speeds, of a
locomotive. At almost the same time, a Royal Commission in England was also

looking into the problem, and in 1849 Willis [2], reported on its experiments.
He also wrote a simplified equation for the problem, omitting the mass of the
beam as being small in comparison with that of the load. Willis suggested a
successive approximation Solution for his equation. Stokes [4], in his paper
the same year, however, gave a power series Solution for Willis' equation,
which gave the trajectory of the load.

Stokes also mentioned the limitations implicit in neglecting the mass of
the beam, and tried to bracket the physical problem by obtaining a Solution
to the case of the constant force crossing a beam which has mass. He was
able to do this only approximately by simplifying the differential equation,
using the assumption that all the forces acting on the beam are uniformly
distributed.

In 1855, Phillips [5], wrote a more complete equation than his predeces-
sors, but was only able to solve it by successive approximations, similar to
Willis' [2]. His equations, however, still neglected the centrifugal and the
Coriolis accelerations of the load due to the curvature the load causes in the
beam. Phillips was followed by Bresse [6], and in 1883 by Saint-Venant [8],
and Boussinesq [9], who extended Phillips' work. Saint-Venant also
showed that the method of successive approximations used by his predecessors

may diverge. The last author to use Willis' method was Jeffcott [17] in
1929, who applied it to the equivalent of Eq. (1). In 1934, Steuding [19]
proved that this method of successive approximations must always diverge
for the case of a moving concentrated load on a beam.

Stokes' [4] Solution of the massless beam problem was rederived by
Zimmermann [11] in 1896 and elaborated by Steuding [19] in 1934. The
latter found the trajectories of 2 masses in succession in series form. The
problem was last discussed by Delpuech [25] in 1951, who pointed out that
the system can vibrate in as many modes as there are loads on the beam.

As was mentioned above, Stokes [4] attempted a Solution of the problem
of the constant force crossing a beam whose mass is considered. His Solution
was very approximate. In 1899, Lebert [12] was the first to attempt to use
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trigonometric series in the general problem and it is possible to isolate the
complete Solution for the constant force case from his approximate Solution
for Eq. (1). After him, Kryloff [13], Timoshenko [14], Schmidt [16], Inglis
[18] and Lowan [20] all presented the Solution to the constant force case,
obtaining it by a variety of methods.

The last big category of Solutions is that in which the differential equations
were written completely, but the Solutions were found approximately, by
means other than leaving out the mass of the beam or of the load. In 1937,
Schallenkamp [21] gave a complete Solution in series form for the trajectory
of a single concentrated load and indicated a Solution for two loads in tandem.
This was checked experimentally by Ayre, Jakobsen, and Hsu [27] in 1951.

Approximations to the complete Solution of Eq. (1) were made as early
as 1861 by Renaudot [7]. In his work, and in most of the work following him,
a shape was assumed for the deflected elastic curve of the beam, thus neglecting
higher modes of Vibration than the first. Saint-Venant [8] and Melan [10]
both mentioned this approach. In 1899, Lebert [12] used Fourier series for
the first time on the problem. Timoshenko [14] and Inglis [18] followed him,
using a sine curve for the deflection curve. Inglis was able to draw approximate

graphs of center deflection against time. In 1944, Looney [22] introduced
a step by step method for deflection with respect to time in combination with
an assumed deflection curve based on a sinusoidal representation of the
elastic curve. In 1948, Ödman [23] considered the problem quite generally
but was unable to solve the general equation. Next, Hillerborg [24,26] made
use of Looneys' method and also Inglis' method to find bending moments,
using the accelerations of the beam and the load. Regressing to a simpler
model, Stüssi [30], in 1953, reduced the system to a single degree of freedom.
In 1956, Biggs, Suer and Louw [33,35] also assumed a single degree of
freedom together with a sinusoidal deflection curve for the beam, but assumed
the concentrated load to be partially sprung. Tung, Goodman, Chen and
Newmark [34] studied the same problem but with more variables, including
damping. They partially followed Hillerborg's methods, but also used the
assumption that the dynamic moment diagram would have the same shape
as the static one, while its magnitude would be a function of time. The latest
refinements in this, and many numerical examples were carried out by Wen
[36] in 1957.

Notation

The notation used in this paper is as follows:

E modulus of elasticity of the beam material.
/ moment of inertia of the beam cross-section (assumed constant).
x distance from left support to any section of the beam.
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y lateral deflection of a point on the beam axis (taken positive down-
wards).

w weight per unit length of the beam.
W wL total weight of the beam.

L length of the beam.
F (x, t) moving distributed load per unit length.
P concentrated load.
t time, measured from the instant the first load crosses the left support.
v velocity of the moving load (assumed constant).
K 48 .EI/ZA
g acceleration of gravity.

Governing Equations

Based on the ordinary theory of flexure (the Bernoulli-Euler theory), the
governing differential equation is

„rPy wd2y _, T 1 d2y\

In this equation d2y\dt2 is the acceleration of a point on the beam axis, while
d2y\dt2 is the acceleration of the moving load. The latter is given by

d2y d2y /dx\2 d2y dx dy d2x d2y
dt2 dx2\dt) dxdt dt dx dt2 dt2' [)

where d xjd t is the velocity of the load. For d xjd t v const. Eq. (2) reduces to

d2y 0d2y ^ d2y d2y
dt2 cx1 dxdt dt2"

Assume a finite difference net as shown in Fig. 1 and let y^ be the deflection
at the ith Station along the beam at the jth time interval. The derivatives in
(1) and (3) can be approximated by the following finite difference Operators:

d*y ^ 1 d2y ^ 1

dx*~ (Axf ' dt2 " (At)2 '

(4)

dxdt 4AxAt ' dx2 '(Ax)2 '

where A y{i_2)j - 4 y{i_lh + 6 Vij - 4 y{i+1)j + yii+2)j,
B - yi(j_3) + 4 yi{j_2) - 5 yi{i_^ + 2 yi},
C ya+i)(j-2) ~ 42/(i+i)<i-i) + 3ya+Dj ~ ya-D(j-2) + ^ya-D(j-i) - Zya^,
D ya+i)j+y{i-i)j-2yir

In the above expressions, central difference Operators are used for derivatives
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in the ^-direction while backward difference Operators are used for derivatives
in the ^-direction. The magnitude of the error in each of the Operators is of
the order of the interval squared.

-j

j-z

J-3

-5 L.
-/

T-r
_1_

i+1

1

I

\Ab

Fig. 1. Finite Difference Net.

Substituting these Operators into (1) and (3) gives, after some rearrange-
ment,

K
48 W \Ax) [A]

1 x 1

-[*] +
g L(At)2

f 1 V2 1

F(xijtj)Ax\l t4-tö[D]\ u 37 ^ g (Ax)2L g

v
2AxAt [G]~g-m [B]

(6)

The factor F (xi ,tj)Ax may be interpreted as the total load between (a^ —^-\
&i+-ö~) a^ the time tj. Consider a concentrated load Pk which is moving

across the beam with velocity v so that at time tj its position is xk v tj. If,
at time tj, Pk is between xi and xi+1 (or ^_x) we wiU assume that Pk is divided
between xi and xi+1 (or ^_x) in proportion to its distance from the other
Station. That is, we take

Fix^Ax-StP*. (7)
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where Si l lf xk xi3

q xi+l ~ xk
{ Ax

11 Xj<Xk< xi+1,

q Xk~~ xi—l
* Ax il xi_1 <xk<x^,

(8)

/Sv 0 elsewhere.

Substituting (7) into (6) gives the following difference equation for the case
of a moving concentrated mass load,

I$W \ÄxJ ^-2b'-4^-i)^
Ax 1 1

17 ~g JJlxj2 ^'~3) ~ 4Vi{i-2) + 5 VW-* + 2 Vi^

84Pk S4Pk v2
r+ W +

~W~g (Ax)2 L~y(i+1)i+ ^~^-D;J (9)

SiPk v
+ "jjFT 2J^Jl ^ " ^+1)(*-2) + ^+i)0'-i) ~ 3 3fa+i) J

+ya-D(j-2) - 4 yu-iHj-i)+3 2/ci-D y]

$.p i

If there are several concentrated loads in tandern, it is only necessary to
superpose an equation of the above type for each load, with the proper shift
in the x coordinates.

For a simply supported beam, the boundary conditions expressed in the
finite difference form are

2Au °; ym *,?• °; Vu - y~i,j;
and y(L/A x-dj -y^A x+Dj -

Assuming that the beam is initially at rest, the initial conditions were
approximated by taking

y<,o y<,-i yi,-2 &,-8 °-

Due to storage space limitations in the IBM 650, it is necessary to make
A t much smaller than A xjv in order to achieve the greatest possible accuracy.
This means that it will take several j steps to move the load one i step, and
the load will therefore be between two net points a large part of the time.

Solution of the difference equations. It is now possible to proceed with the
computations outlined by Eq. (9). The computations are started at i l and

j 1. The expression for y31 has the form

2/31 ci 2/n + C2 2/21 + C3 5

where the cn are constants. Next, using i 2, j= 1, another expression will be
obtained



DYNAMIC RESPONSE OF BEAMS TO MOVING LOADS 101

2/41 / (2/ll 2/21 2/3l) •

Using the value of y31 already computed, this has the form

2/41 C4 2/n + c5 2/21 + c6-

Similarly, the other ^. x can be calculated up to

ViL/A a+D, 1 C7 2/ll + C8 2/21 + C9 •

The boundary conditions at the right end are

2/z/J,,i 0, (10)

~ ViL/A x-i\ 1 ViL/A x+i), 1 >

which can be expressed in terms of ylx, y21 and cn.
Eqs. (10) and (11) can be solved simultaneously to yield values of y1± and

y21 which can then be used to find the yix. After all the yix are found, the yi2
may be obtained similarly, and so on until all the yi j desired have been found.

Bending moments can be obtained at each net point after the deflections
have been calculated by using the central difference expression

V T
M JÄxf ^{i+1)j+ yii~1)j ~ 2 Vi^' (12)

These calculations were programmed for the IBM 650 in such a way that
up to six loads in succession may cross the beam, spaced any multiple of 2 A x
apart. Both loads and spacing may vary among the six, and the numerical
limit stems from the limitations of storage space on this particular machine.
Unfortunately, it takes a little more than three minutes per j step when
Ax/L 0.1 on the IBM 650, so that a complete run takes a long time. The
usual number of j steps required was 200, so that the whole run took about
12 hours of machine time.

Errors

1. General. The use of finite difference methods of solving differential
equations involves errors whose magnitude cannot always be determined
analytically. These errors are due to a variety of causes. In the analysis used
here, the main sources of errors are (a) the assumptions made in the choice
of initial and boundary conditions, (b) the use of the difference Operators in
place of derivatives, (c) the assumption that the load acts only at net points,
and (d) the truncation error in the machine arithmetic.

The magnitude of the errors due to the first three causes diminishes as

-j~ and j-j- are made smaller, and can, theoretically, be made as small as

desired. As these errors are diminished, however, the truncation error grows
in magnitude. Unless special programming is adopted, which is very wasteful
in terms of both storage space and time, the IBM 650 does not round off the
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results of numerical calculations, but instead, simply neglects all digits to the
right of the last one it can handle. In these calculations, since they have to be

performed in floating point arithmetic, only eight digits can be used, with all
digits beyond that, being lost. Double precision routines are available which
allow the use of eighteen digits, but the program written for the Solution of
Eq. (9) is too long to permit the use of these routines with it on the IBM 650.

Ax AtIt is necessary to choose values of ~^- and yy- which are so small that the

first three causes of error are negligible, and yet not so small that the truncation
error is appreciable. Since it was not possible to determine the best values of
the differences analytically, the method was checked against two known
Solutions, the case of very slowly moving loads, and the case of moving
constant forces.

Slowly moving loads. The computations were carried out for a very small
velocity. The case chosen consisted of two concentrated loads, each half the
weight of the beam and spaced 0.4 L apart, crossing a 360 inch long beam for
which KfW 3.6545472 per inch, at a crawl speed of 0.01 inches per second.

-=r- was taken as 0.1, and 1r7- was 0.005. The bending moment obtained atL L/v °
each tenth point of the beam at each time step was divided by the bending
moment at that point and time, due to the same loads applied statically. The
largest quotient obtained was 1.00082 and the smallest was 0.99956. This
indicates that the moments obtained were correct to at least three significant
figures. By reference to Eq. (9), it can be seen that the magnitudes of v and
of A t represented in this case are such that this is essentially a test of (a) the
accuracy of the central difference Operator in representing the fourth
derivative, (b) the magnitude of the truncation error, and (c) the accuracy of the
central difference Operator in representing the second derivative.

Constant force series Solutions. To check against the constant force case, the
equation obtained by A. N. Kryloff [13], (see also Eq. (145), Reference [32]),
was programmed for the IBM 650 both in the form given by Kryloff, as
well as differentiated twice with respect to x to give bending moments.

These equations are

oo • 'l7TX
P y ^n~L~ [ JTTvt L v i27r2bt~\

wLiip^b2-v2L2)i2 [sm L i7rbSm L2 y (13)* tt2 W^1(i27r2b2-v2L2)i2

oo * ^7TX

IM OTDA2V Sm~tT [. iTTVt LV. i27T2bt]M 2LPb%(i2„2b2-v2L2)[^ <14>

Tp J rt T
where b2 —^—. For deflections, 30 terms were taken for the series, and for

bending moments, 60 terms were used. The case of multiple loads was handled
by superposition, which is valid here. Thus, for two loads on the beam, y and
M are found by adding the deflection or bending moment for the two vtjL.
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The results were obtained in such a form, that for any given set of force and
beam characteristics, deflection and bending moment curves could be drawn
at any instant, or the Variation of deflection or bending moment at any point
on the beam could be plotted against time.

To obtain constant force Solutions from Eq. (9), the terms containing Pk\g
are omitted from the calculations, which could be done by changing just one
Instruction in the main program. Comparisons between the results obtained
from the two methods are discussed below.

Comparison of constant force Solutions. For the great number of terms used
in the series Solution, the results are quite accurate, and so it would be expected
that the results of the difference equation method should converge toward
them as -T1- and -p- are made smaller. As a first trial, the values chosen wereL/v L

-^- 0.1 and ^—- 0.01, and for the second trial -— 0.1 and tt- 0.005.L L/v L L/v
The results obtained for the record of center bending moment against time
for a case where £ 360 in., ^ 803.019 in./sec, -==r 3.6545472/inch with a

P
single force ^ 0.5, are shown in Fig. 2. As can be seen, the difference equation

{PfL

Static
Series So/ut/c~

lh-0005
001

Fig. 2. Bending Moment at x/L 0.5 (plotted against time).

L 360 in., v 803.019 in./sec, K/W 3.6545472/in., P/W= 0.5.

Comparison of constant force series Solution with Solutions obtained from the difference
equation for constant force.

Solutions converge toward the series Solution. Similar results were obtained
with two forces in tandem. Complete bending moment diagrams and deflection
curves drawn for various instants using the two methods, showed similar good

agreement and convergence. Attempts to use intervals smaller than -— 0.1

and yy- 0.005 gave very erratic results, indicating that they had been affected

by the truncation error. The above intervals were therefore chosen as Standard
for the investigation.
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Experimental check. As a check against an experimental result (which is
the only check available for the moving mass load), the physical constants
used in an experiment by Tung, Goodman, Chen and Newmark, Reference

[34], Fig. 4, were used in a run on the Computer. The computed results, check-

ing a center bending moment versus time diagram, were so close to their
experimental curve, that the two curves could not be separated in a figure of
the size possible in this publication. They are shown, however, in Fig. 19 of
Reference [37].

Results

General. As was previously shown, the successive Solutions of Eq. (9) give
the deflection at every net point and, using Eq. (12), the bending moment
at the same time and place. The program was written so that all these deflections

and bending moments were printed out as answers.
One method of presenting the results is to plot the deflection and bending

± ±

4i
~- OU55

-P<L

XX

ki
10 —

Fig. 3. Successive Instantaneous Bending Moment Diagrams and Deflection
Curves (obtained from the difference equations)

£=360 in., v 803.019 in./sec, K/W= 3.6545472/in., Pi/W= P2/W 0.5.
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moment for all stations along the beam at a given time. Samples of this method
of plotting are shown in Fig. 3 which gives the curves for the case of two loads
a distance OAL apart and at four successive times beginning at vt/L 0A5.

One of the most interesting phenomena observed from the results is how
closely the shape of both the instantaneous elastic curve and the instantaneous
bending moment diagram resemble those due to static loading (see Fig. 3).
For loads greater than or equal to 1/2 the weight of the beam, the mass of the
beam seems to have negligible effect on the shape of these curves.

Fundamental mode of Vibration. Fig. 4 is the record of center bending moment

WL

Fig. 4. Bending Moment at x/L 0.5 (plotted against time).
£=1127.5 in., v= 960 in./sec, P/W =0.5, K/W= 3.6545472/in.

versus time for a case of a single concentrated load in which £ 1127.5 in.,
v 960 in./sec, P/W 0.5, K/W 3.6545472/inch. This figure shows the
change in the period of Vibration of the beam as the load proceeds across it.
When the load is at the beginning and at the end of the beam, the period is

0.105— (the calculated value for the unloaded beam is 0.100) whereas when

the load is near the center, the period is 0.145 —.

Higher modes. A beam traversed by two concentrated loads spaced a
significant portion of the length of the beam apart, may undergo vibrations
in which the second mode predominates. One of the main purposes of this
investigation was to develop a method of obtaining these higher mode vibrations

for such a case. It was found, that a good way of picturing the second
mode, was to plot bending moment versus time diagrams for the points
x/L 0.3 and x/L 0.1 on the beam. Fig. 5 shows such plots for the case of
£ 360 in., ^ 850 in./sec, KjW 3.6545472 in., PJW P2/W 0.5 and
distance between loads 0.4 £ and Fig. 6 for the same beam and loads with
v 803.019 in./sec. and distance between loads 0.6 £. Fig. 7 shows the
center bending moments for these two cases.
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Fig. 5 and 6 clearly show the presence of the second mode superimposed
on the first, and using Fig. 7, some idea of its amplitude may be gained. The
effect of the second mode apparently is to increase the curvature first near
one end of the beam, and then near the other end.

P1L

Stat

08

Fig. 5. Bending Moment at #/.L 0.3 and x/L 0.1 (plotted against time).
L= 360 in., v= 850 in./sec, K/W 3.6545472/in., P±/W P2/W= 0.5, Distance between

Loads 0.4 £.

ipfL

12

W

08

- 06

^ oe 08

06

Fig. 6. Bending Moment at x/L= 0.3 and x/L= 0.7 (plotted against time).
£=360 in., v= 803.019 in./sec, K/W= 3.6545472/in., P1/W P2/W= 0.5, Distance

between Loads 0.6 £.
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Resonance. It is conceivable, that for certain velocities, magnitudes and
spacing of the two loads, quasi resonance conditions may occur. Indeed, the
results of one case, £ 360 in., v 803.019 in./sec, K/W 3.6545472, P1/W

P2/W 0.5 and distance between loads 0.4£, showed very large second
mode effects. The bending moments at the #/£ 0.3 and x/L 0.1 points
became twice as large as the static center bending moment. However, this
condition of resonance was incredibly sensitive to the velocity, occurring only
within a ränge of 0.1 % velocity change about the 803.019 in./sec. Investigations
using the series Solution for the constant force case, also showed that this
resonance would be very sensitive to the spacing of the loads.

Resonance effects in the first mode have been obtained by numerous other
investigators. In the constant force case, where superposition applies, it is
evident that a succession of forces crossing a beam may produce very large
dynamic effects. When the mass of the load is taken into account,
superposition can no longer be used, but a successive buildup in amplitude is still
possible and was actually found to occur in some cases. Here again, resonance
was very sensitive to changes in the physical characteristics of the system.

PiL PfL

OU-

^
08

Fig. 7. Bending Moment at x/L= 0.5 (plotted against time).
For the cases of Figs. 5 and 6.

Conclusions

A method has been presented for calculating the behavior of a beam under
a moving load system. It is possible to include in Eq. (9), if necessary, additional
terms to take into account any spring action and damping of the loads, as
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well as surface roughness of the beam, and terms which will take into account
the damping, shear and rotatory inertia of the beam. It would not be wise to
attempt to do this on an IBM 650, which took about 12 hours per Standard

run for the calculations made so far, but would be quite feasible on a larger
and faster machine such as the IBM 704. Also, on the larger machine, the
errors could be reduced. In particular, (a) the truncation error could be reduced

with a double precision routine, giving 18 digit accuracy, (b) the -yy could be

made small enough so that the loads would always be on the net points, and

(c) the accuracy of the difference representation of the differential equation
and the boundary and initial conditions could be improved with smaller intervals.

Alternatively, more accurate difference Operators and initial and boundary

conditions could be used.

The results of the examples which were solved indicate that neglecting
modes of Vibration higher than the first may be dangerous under certain
conditions. The results also indicate that the dynamic effect of two loads in
tandem may be greater than that of a single load, depending on the spacing.
In the time available for the study reported here and using only the IBM 650

Computer, it was not possible to calculate enough cases to determine the

ränge of the variables for which these effects become significant. It is hoped
that further studies can be made, using a higher speed Computer, to extend
the present data.
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Summary

A finite difference procedure is developed for solving the problem of the
dynamic response of a beam to moving mass loads. In particular, the method
includes the effect of the higher modes of Vibration, and also the effect of
several moving concentrated loads in tandem.

Resume

A l'aide de la methode aux differences finies, les auteurs resolvent le
probleme du comportement dynamique d'une poutre sous l'action de forces mas-
siques en mouvement. En partieulier, ils tiennent compte de l'influence des

modes de Vibration superieurs et de celle d'une paire de charges concentrees.

Zusammenfassung

Zur Lösung des Problems von Trägerschwingungen unter bewegter Last
wurde eine mit endlichen Differenzen arbeitende Methode entwickelt.
Insbesondere wurde mit dieser Methode der Einfluß der Oberschwingungen sowie
das Verhalten des Trägers bei Durchfahrt von zwei gekoppelten Einzellasten
untersucht.
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