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The Effect of Variable Repeated Loads in Building Structures Designed
by the Plastic Theory

Influenae, des charges variables et repetees sur les ouvrages calcules d'apres
la theorie de la plasticite

Der Einfluß von veränderlichen und mehrmals aufgebrachten Lasten auf
Bauwerke, welche nach der Plastizitäts-Theorie berechnet wurden

M. R. Hohne, M. A., Ph. D., A.M.I.C.E., Assistant Director of Research,
Department of Engineering, University of Cambridge

1. Introduction

The behaviour of mild steel structures beyond the elastic limit has been the
subjeet of a long series of investigations [1] which have resulted in the evolution
of the plastic theory. A number of techniques have been evolved for applying
the plastic theory to the calculation of the static collapse loads of given structures,

and to the design of structures to support given static loads [2—5]. The
design procedure is so to proportion a structure that it will just support the

"working loads" multiplied by a "load factor" greater than unity. It is then
supposed that the probability of such loads occurring is so small as to be
nonexistent for all practical purposes.

While the ability of a structure to withstand these factored loads will nor-
mally ensure satisfactory behaviour at the working level, it may also be

necessary to check the Performance of the structure with respect to excessive

deflections and repeated loading. The purpose of the present paper is to inves-

tigate the probability that a structure which has been designed for a certain
static collapse load according to the plastic theory would actually prove
unsuitable as a result of the action of repeated loads. The repeated loads

envisaged are such that, if the structure were being designed by elastic methods,
stresses would not be restricted by considerations of ordinary fatigue. Where

fatigue conditions operate, stresses under working loads must be limited as in
orthodox design, although the structure as a whole may still be designed
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according to the plastic theory. Excluding such conditions, it is nevertheless

necessary to. consider repeated loads which are not frequent enough to cause
failure due to fatigue, since such loads may still cause trouble if they persis-
tently produce small amounts of plastic deformation. These repeated loads may
or may not be of greater intensity than the working loads, but are of less inten-
sity than the collapse load.

The effect of variable repeated loads on structures in the plastic ränge has
been fully described elsewhere [6—9]. A structure may be embarrassed by
certain fibres being subjected alternately to plastic deformation in tension and

compression. This is a condition known as "alternating yield". A structure may
also be embarrassed due to the progressive growth of large deflections, leading
to collapse, after various alternate loading combinations have been repeated
a sufficient number of times. This condition is known as "incremental collapse".
Both these dangerous conditions are avoided if the structure is able to "shake
down", that is, reach such a state that all subsequent changes of stress can take
place elastically. The maximum load factor at which a structure can "shake
down" is termed the "shake-down load factor" and is denoted by As. Trouble

may therefore be expected if a structure is subjected successively to a number
of loading combinations in which the loads are more than As times the working
loads. Methods of calculating As are available in the literature and will not be

dealt with here. A further discussion of the nature of alternating yield and
incremental collapse is contained in sections 3 and 4 below.

Let it be supposed that a structure has been designed to collapse under the
most critical combination of static loads at a load factor of Ac. The load factor
Ae is so chosen that there is only a completely neghgible probability that the
corresponding loads will be reached during the expected life of the structure.
The value of this probability is not in general calculable, but for the purposes
of the present treatment, it is expedient to assume that it has some known
value, which will be denoted by Pc. Consider now the probability that loads

having load factors less than Ac but greater than As will occur a sufficient number
of times to embarrass the structure as a result either of alternating yield or
incremental collapse. Let P be the probability that the structure will cease to
support the loads effectively due to t his cause. Then the structure will be at
least as safe against the effect of variable repeated loads as against that of static
loads provided P<PC. Under such circumstances, no consideration need be

given to the effect of repeated loads in choosing the design. Let As' be the value
of As for a structure for which P Pc, i. e. for a structure in which failure due

to repeated loads and failure due to a simple static overload are equally probable.
Then it is to be expected that any structure in which As > A/ (and hence P < Pc)
would automatically be safe against repeated loads when designed to collapse
under a static load factor of Ac. Structures in which As < A/ would have to be

designed for resistance to repeated loads. The aim of the present paper is to
determine suitable values for A/ for practical loading conditions.
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It will be reahsed that a discussion of the probable importance of repeated
loads necessitates a knowledge of the relative probabilities of loads of various
magnitudes occurring in actual structures. There is unfortunately very httle
data available on this subject. An investigation of live floor loads in buildings
was made by the author [10] rn the course of a study of the effect of area on
mean loading intensity. The relative frequencies of various wind loads on
buildings have been studied in another paper [11]. These papers have been used to
provide data on floor and wind loads for the present investigation, and this
information is described in section 2 below. The determination of the shake-
down load factor A/ for alternating yield is considered in section 3, and for
incremental collapse in section 4. The results are discussed in section 5.

2. Variations in the Loads on Building Structures

The loads to which a building structure is subjected are usually classified
as either "dead" or "live" loads. The former, due to the weight of the building
itself, including permanent partitions, are known within close limits when the
building is designed, and do not vary from time to time. The live loads consist
of superimposed floor loads, and loads on the outside walls and roof due to wind
and snow. The nature and variability of the superimposed floor loads differs
widely from one type of building to another; thus the floor of the records room
of an office carries a load which varies only very slowly, while a place ofassembly
may carry a very heavy floor load for a few hours and then virtually nothing
for a period of days or even weeks. There is also considerable Variation in the
certainty with which the maximum load ever likely to be experienced is known.
In the case of wind loads, there is a large Variation from time to time, but
records of wind velocities enable reasonably close estimates to be made of the
probable frequency of winds of various intensities over long periods.

It is apparent that no general treatment can cover all the widely varying
types of loading to be expected in building structures. Attention is therefore
confined in this paper to data which is available for wind loading, and for a
certain type of floor loading. It is beheved that these examples provide repre-
sentative information on the relative frequencies of loads of different intensities
on building structures in general.

Floor Loading Data

Data on the subject of live floor loads in office buildings has been given by
White [12] and Dunham [13], and appears to be the type of live floor loading on
which most information is available. This data has been subjected to Statistical
analysis [10] with the following results.

Suppose observations be made of the actual live floor loads on random
occasions in a large number of offices. Consider the mean floor loads over floor
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areas of constant magnitude A, these areas being continuous and embracing if
necessary several adjacent rooms. Then the probability S p of obtaining a mean
floor load lying between w and w + 8w lb./ft.2 on any given area A is

8p fr 8x

where

w Cll + C'
U

(i)

(2)

and Sa: is the increment of x corresponding to an increment of 8w in w. G and
G' are constants. Equations (1) and (2) correspond to the Normal Probabihty
Distribution

m
shown in Fig. 1, the probabihty 8 p being given by the shaded area. The curve
is found to give satisfactory agreement with the observed data for values of w
above the mean floor load. The mean floor load (for all the offices taken together)
is represented by the quantity G.

The probabihty p that a load of w per square foot will be exceeded on any
given floor area A on any one occasion is given by the area under the curve to
the right of the ordinate w, i. e.

* m\ dx

(see inset, Fig. 1). This probabihty p may be obtained from tables of the Normal
Probabihty Function by entering with the corresponding value of the deviation
x (equation (2)).

area - p

W * ÖUJ

Fig. 1

The paper [10] from which equations (1) and (2) are taken was concerned with
the effect of the area A on mean floor loads. The Variation of w with A is
irrelevant in the present investigation, and a constant value may be taken.
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Since consideration is here being given to critical loads in a building as a whole,
the value of A should certainly be taken greater than the average area of a
Single room — say greater than 200 sq. ft. — but it is difficult to decide the
actual value which should be adopted. Fortunately the final results are not
particularly sensitive to the precise value of A, and the value A 1000 sq. ft.
will be adopted. In the case of a large variety of office buildings in Britain it is
found that C" 30. Hence equation (2) becomes approximately

w C(l+x) (3)

Now let the "working floor load" (as given in the relevant code of practise)
be w0, and let wc Xcw0 and ws Xsw0. Hence wc and ws are respectively the
"collapse" and "shake down" floor loads. Let p0, pc and ps be the probabilities
of observing load intensities of w0, wc and ws on any one occasion, and let
these same probabilities correspond to deviations in the Normal Law of x0, xc
and xs respectively. Then from equation (3)

w0=G(l+x0)
wc C(l+xc)
ws G(l+xs)

_

Hence Ac

A0

1+^c
1+X0
1 +xs
l+x0

(4)

(5)

In general, if A is any load factor, the deviation x in the Normal Law
corresponding to this load factor is given by

A J^- (6)
l+x0 v ;

Hence the frequency distribution for load factors due to floor loads is a

Normal Curve with mean value and Standard deviation each equal to i + x0

Wind Loading Data

The frequencies of winds of varying velocities have been discussed in a pre-
vious paper [11]. During a Single gale, gusts will cause repeated loads on a

structure, but these loads will he in an almost constant direction. Repeated
loads only cause alternating yield or incremental collapse in a structure either
when they act first in one sense and then in the opposite, or when they act alter-

nately with different load combinations. Hence successive gusts within the
same gale need only be treated as a Single load application when considering
shakedown effects. The frequencies of gales of various intensities are thus of
greater relevance to the present problem.

5 Abhandlang XIV
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Table 1. Highest mean hourly winds at Gardington, 1932—1944

Highest mean
hourly wind:

Miles per hour

Number
of

Months

Highest mean
hourly wind:

Miles per hour

Number
of

Months

Highest mean
hourly wind:

Miles per hour

Number
of

Months

15—19
20—24
25—29
30—34
35—39

1

12

31

35
35

40 44
45—46
47—48
49—50
51—52

19

8

6
1

1

53—54
55—56
57—58

59
60

2

0
0
1

0

The highest hourly mean winds at Cardington (England) monthly from 1932

to 1944 inclusive (complete monthly records only considered) are summarised
in Table 1. These same results are shown by the histogram in Fig. 2, which also

Best fitting normal curve
mean re/oc/fj 34 s MPH
Standard t/enation 7 63 MPH

Fig. 2

shows the best fitting Normal Curve (mean velocity 34.5 miles per hour, Standard

deviation 7.83 m. p. h.). Assuming that the Normal Curve represents the
"smoothed" results with sufficient accuracy, then the frequency of any maximum

monthly velocity V m. p. h. is p where, if x is the corresponding deviation,

7 34.5 +7.83 a; (7)

The maximum monthly velocities for sites other than Cardington would
differ from the above, but it is reasonable to assume that the ratio of Standard
deviation to mean velocity would remain nearly the same. Hence in the general
case,

V D(\+0.2%x) (8)

where D is a constant. This formula may be used to give the Variation of inten-

sity of maximum wind loads at intervals of a month during the hfe of a structure.

Thus let the "working" value of the wind load (as defined in the codes)

correspond to a wind velocity V0, the collapse load to a velocity Vc, and the
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shake down load to a velocity Vs. Let the corresponding probabihties that these
velocities will be reached in any one month be p0, % and ps, the corresponding
deviations in the Normal Law being x0, xc and xs. Then

F0 D(l + 0.23x0)
Vc D(l+0.23xc)
Vs D(l+0.23xs)

(9)

Since wind pressures are proportional to the Square of the velocity, it follows
from equation (9) that

a \M- fi+o-23*<a2
Ae JM 11+0.23*0!

A _ )M*- /l+0.23^s)2
(10)

\%l ~ \l+0.23*0j

In general, if A is any load factor and x the corresponding deviation,

ri+0.23*]2A - (1+0.234 (11)

Hence VA has a Normal Frequency Distribution of mean value — and

Standard deviation *

„—.1 + 0.23 x0
The frequency distribution represented by equation (11) gives the

distribution of load factors for the maximum monthly wind, whereas it is required
to ascertain the frequency distribution for individual gales. In the present
paper, it will be assumed that the same frequency distribution holds — an
assumption which is equivalent to the approximation that during any one
month, all the gales have an intensity equal to that of the maximum gale for
that month. Any error that is involved in this approximation will be on the
safe side, leading to an over-estimate of the damage caused to a structure by
repeated loads.

3. Load Factors for Alternating Yield

A building structure will be subjected during its life to a large number of
different load combinations. One load combination is in general found to be

more critical than any other when considering collapse under static loading,
and this combination of loads is used as the basis for design. Loads of less

intensity than the loads causing collapse may produce some yielding and plastic
deformation of the material, and different combinations of loads may cause

yield to occur in the same fibres first in one sense and then in the other.
Consider a structure in which alternating yield of this nature occurs for loads above
the load factor Xs, so that the structure will only support a hmited number of
load reversals above this level. The question arises as to the number of reversals
which may be expected to cause fracture. Unfortunately the behaviour of
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structural assemblies under slowly alternating loads in the plastic ränge has

scarcely been investigated at all expex'imentaUy, and no definite conclusions
can be reached regarding the allowable number of stress reversals. It seems
certain, however, that one could allow at least 10 over the ränge between yield
in tension and yield in compression. This conservative figure is adopted in the
calculations which follow.

As might be expected, it is found that alternating yield is only likely to be
of importance in structures subjected to loads acting first in one direction, and
then in the opposite. Since floor loads are necessarily unidirectional, conside-
ration need only be given to the effects of wind. It will be assumed for the sake
of simphcity that wind loads are the only loads acting on the structure — an
assumption which will lead to a higher probabihty of alternating yield than can
actually occur. A "safe" answer will thus be obtained.

Let ps denote the probability that a load factor of As will be exceeded during
any one gale, and let the number of gales to be expected during the life of the
structure be n. Then the expected number of gales giving a load factor greater
than As will henps. Since n will be numerically large and ps small, the probabihty
of obtaining t gales with a load factor greater than As may be calculated from
the Poisson Distribution. The value of the probability is

e-nPs(npsy
t\

Hence the probability of obtaining at least t gales of this intensity is P where

y=n p-np, (nn \y
p y -—^jzL (12)

It is now possible to compute the load factor As' at which a structure must
be required to shake down in order to avoid trouble due to alternating yield.
Suppose the structure has been designed so that there is a probability Pc that
it will coUapse under static loads at a load factor of Ac. If pc is the probabihty
of the load factor Ac being reached during any one of the n gales during the hfe
of the structure, then since pc is small,

Pc npc (13)

The value of the deviation xc in the Normal Law corresponding to probability
pc may be determined

(A=yfc/«"''*)¦

Hence, from equations (10), the value of x0 is obtained. Taking any arbitrary
value of xs where xs<xc, the corresponding probabihty ps is known, and also

the value of As (equations (10)). The probabihty P that the load factor As will be
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exceeding during at least t out of the total of n gales is then given by equation
(12). The value of P obtained will depend upon the value assumed for xs and
hence on the value of As. That value of As for which P Pc is the required shake-
down load factor As'.

Calculations have been performed for t= 10 and n= 1000 and 10,000. The
latter figures represent lower and upper estimates of the number of gales to
which a structure may be subjected during its life. To perform the calculations
it is also necessary to defme the probabihty Pc of collapse under static loading.
The choice of a specific value for Pc is somewhat arbitrary, but fortunately
it is found that the value chosen has, within wide limits, very httle effect on
the final results. A value for Pc of 1.0- IO-8 has been adopted in the calculations.

s 0
es

-2

- NT3"

TT " Shake&qtvn load Facf-or - Sr^ic Collapse Load Factor
048

i

aas.
i X

0S2 0S4
1 1 \ 0S6 OS8 060

N.I i i

~rc - 0508 - 0S5?\.

Fig. 3

The results are summarised in Fig. 3, in which log10 (-p-) is plotted verti-
A / P \ A '

cally against ¦£ horizontahy. When P PC, log10 1-^-j 0, and hence -y- 0.508

whenn 1000 and 0.557 when n 10,000. IfAc= 1.751), the values of \s' become
0.890 and 0.975 respectively.

The conclusion may therefore be drawn that provided the shakedown load
factor As ofa structure is greater than 1.0, no complications due to the effects of
alternating yield are to be expected. Experience has so far shown that shakedown

load factors are considerably greater than unity for practical structures
designed to collapse at a static load factor of 1.75. Hence the danger of
alternating yield is of no importance in design, and may be entirely ignored.

*) This load factor is commonly used in Britain when designing structures by the
plastic theory.
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4. Load Factors for Incremental Collapse

The Phenomenon of Incremental Collapse

The phenomenon of incremental collapse is ofgreater importance, and more
difficult to understand than that of alternating yield. It is best illustrated by
reference to an example. The example chosen is rather artificial, and of little
practical importance, but its simplicity is an advantage for the purpose of
exposition.

A uniform beam AB, of length l, is fixed in position and direction at each
end (Fig. 4 (I)). The beam carries either a load Wc at point G, distance Z/3 from
end A, or a load WD at point D, distance Z/3 from end B. The loads Wc and WD

are applied alternately, each having the maximum value W. The problem is to
determine the behaviour of the beam when each individual application of load
is sufficient to cause yield, but insufficient to cause static collapse.

The maximum elastic moment due to a load W applied at C oceurs at A and

has the value i^Wl. Let this moment be equal to the yield moment My, and
1

let the corresponding load W be denoted by Wy. Then since My — Mpwhere
27 M.

v is the shape factor for the beam and Mp the füll plastic moment, Wy -r—^.
The single load, apphed at either G or D, which would be just sufficient to cause

complete coUapse (plastic hinges at A, B and under the load) has the value

9—=^-, and is denoted by Wp. If v= 1.15 (being a typical value for arolled steel
W 27

ioist) it follows that^j/- ^r- 0.652. Interest therefore centres on loads W
4 ' Wp iov
which he within the ränge Wy<W<WP or 0.652 Wp<W<Wp.

A complete analysis has been made of the cases 1F 0.85 Wp and IT 0.95

Wp, and the results are presented in Figs. 4 and 5 respectively. Considering
first the load W 0.85 Wp, the horizontal axes in the graphs in Figs. 4 (II) to
(V) may be regarded as identical axes of time, although not to any specific (or
necessarily linear) scale. The loads Wc and WD are shown in Fig. (II), the
bending moments at A and C (MA and Mc respectively) in Fig. (III), and the
moments at B and D (MB and MD) in Fig. (IV). Under the first application of
the load WG, füll plastic moment is reached at A (point j in Fig. (III)) before
the füll load (Wo 0.85 Wp) has been reached. Certain residual moments are
left in the beam after the removal of the load (see points c in Figs. (III) and (IV)).
The subsequent application of the load at D similarly causes füll plasticity at B
before WD has reached its maximum value (see point k, Fig. (IV)). A certain
amount of hinge rotation oceurs at A when the load is apphed at G, and at B
when it is applied at D, and this continues to take place under subsequent
applications of load. The central deflection of the beam is recorded in Fig. 4 (V),
and it will be seen that after the load Wc has been removed for the first time

M l2
(point c) there is a residual deflection of • 0037 -=^r- where I is the moment of
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+^B ^—^
Wp

Ji_

aas wp. ^\

(0

(s)
a b c d e

Wp • Stehe collapse load /oc?d
A

Wc
J k

¦ fange orer wMc-J? fu/1
plaslicily oceurs at
one or more secl/ons

Ma /^ (/losging). (iii)

Mc^y
i Mp (SaggingJ s
i t

Bending moments at A and C

Mp(Hoggmg)Mb

Cs^ i

N]\ ,'' Mp (Saggingj
l.1 i

(IV)

Bending moments at B and D Mb

¦os asymprohe ro ¦ 0148 yjEl

(V)

bcdeFghijkMp ¦ Füll plashc moment Qenj-paj detlectlOP Wp " Stah° c0,lapse /o3d

Fig. 4

inertia of the beam about the axis of bending. After the first application of the

load WD, the residual central deflection rises to • 0093 -=^.
As the loads are repeated the ränge of load over which füll plasticity oceurs

at any section decreases (see heavy lines in Fig. (II)), and the residual deflec-
tions increase more and more slowly (Fig. (V)). Ultimately all the changes of
stress in the beam oeeur elasticaUy and the residual central deflection reaches

a constant value of -0148 *¦.
Consider now the case when the loads Wc and WD alternately reach the

maximum value of 0.95 Wp (see Fig. 5). Except on the first application of load
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K\ ¦/*.0 35 K
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(Sagging) >
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Bending moments at A and C — Ma Mc

(ff)

Mp(Hogging),

Mo —--_/-
(iii)

Mb Md

Residual deflection increases by
M.I0278 -fjr- per load application

M„L

FIL IV

ab c d e F g
Mp ¦ Füll plastic moment fg/?Ar<?/ deftecrJon

h i j k
Wp - Stalle collapse load

Fig. 5

Wc, füll plasticity is reached under this load at both A and G (Fig. (II)). Under
each application of the load WD, füll plasticity is reached at both B and D
(Fig. (III)). There is no tendency for the ränge of load over which füll plasticity
oceurs to decrease, and the residual deflections increase progressively (Fig. (IV)).

After a few applications of load, the rate of
increase of residual deflection assumes a uniform

M P
value of -0278 -^- per load application, and

the structure reaches a deformed state as shown
in Fig. 6.

C D

Plashc deformahon

Fig. 6
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There is thus a fundamental difference in the behaviour of the beam under

alternating loads at the two load levels of W 0.85 Wp and W 0.95 Wp. Under
the former load the beam "shakes down", or reaches such a state that all
changes of bending moments and deflection occur as in an elastic structure.
Under alternating loads at the level W 0.95 Wp, incremental collapse takes
place, the deflections building up to indefinitely large values. The "shake down"
load for incremental collapse is the largest load at which behaviour of the type
shown in Fig. 4 can occur, and for the beam under consideration is found to
have the value 0.90 Wp. Methods of calculating shake-down loads are given in
the literature [6—9].

In an actual structure, the successive maximum values of the various loads
will differ. It is therefore necessary, in order to assess the danger of increment
collapse, to find the increase of permanent deflection for a load apphcation of
any given intensity for the general case. Only an approximate Solution is

possible, since accurate calculations involve tracing the behaviour of particular
structures through particular loading histories. A safe approximate rule will
therefore be given, and its use justified by reference to the beam problem con-
sidered above.

Let the deflection of a certain point in a structure under static loads which
are just sufficient to cause yield be denoted by Sy. Let static collapse be defined
as the attainment of a corresponding permanent deflection of 8C, and let the
load factor at collapse be Ac. Let the shake down load factor be As. Then a single
load application at a load factor level of A may be assumed to produce an

increase in permanent deflection of j
_

s\ 8C. If q denotes the proportion of

the permanent deflection at collapse produced by a single load application, then

it follows that

q ^\ (14)
ÄC~AS

When A is equal to Ac, equation (14) shows that q=l, thus agreeing with the
definition of static collapse which has been adopted.

The safety of equation (14) with reference to the beam already considered

may be demonstrated. The complete history of the beam has been computed
for alternate apphcations of loads at a number of constant load factors, and the
load apphcations (N) required to produce critical permanent deflections 8C of

2Sy,4 8y and 8 Sy are shown in Fig. 7 (the deflection at yield S^.has the value

0.0214 ^^). None of these values of Sc can be produced by loads of less than
EI

the shake down value 0.900 Wp. The reciprocal of N is shown plotted in Fig. .8,

and gives q, the mean proportion of the critical deflection 8C produced per
application of load. Equation (14) corresponds to the straight line OA, which is seen

to give high (that is, safe) values of q except for low values of the load ratio

— when S„ 2 S„. Even in the latter case, the deflection is underestimated
Wp c v
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when using the approximate formula by less than 5%. Judging therefore from
this particular example, equation (14) appears to give safe results except when
the permanent deflection at collapse is assumed to be less than about twice the
elastic deflection at yield. Provided deflections in the elastic ränge are not so

large that the design has to be based on limiting deflections at working loads,
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deflections at "collapse" (as usually conceived) will be at least three or four
times the deflection at yield. Equation (14) has also been tested by applying it
to results (both experimental and theoretical) obtained for the shake down
behaviour of a fixed base portal frame subjected to the loading cycle shown in
Fig. 9. The approximate expression is again found to give safe results, and will

t W w

I

21 — 2L —

T&59 X X X X w

Fig. 9

therefore be assumed to be satisfactory for all structures except for those in
which limiting deflections at working loads are a Controlling factor in choosing
the design.

An expression having been obtained for the mean proportion of critical
deflection produced per application of load for loads apphed at any constant
load factor, the further approximation wiU be made that the permanent deflections

are simply additive when loads of varying load factors are applied suc-
cessively. According to this assumption, the resultant value of q after a given
number of load apphcations may be derived by simple addition of the values
for the individual loads. This has been tested by performing detailed
calculations for the sequence of loading shown at the foot of Fig. 10 for the beam
shown in Fig. 4 (I). The resultant values of q for the three cases 8c 2 8y,
Sc 4 8y and 8c=8 8y are shown graphically in Fig. 10. The correctly calcu-
lated values (continuous hnes) are compared with those obtained from the
curves in Fig. 8. It wiU be seen that the assumption that permanent deflections
are simply additive leads to a close estimate of the residual deflections. Hence,
if equation (14) is used in place of the curves in Fig. 8, again with the assumption

that the deflections are additive, safe results will be obtained.
A complete study of the effect of variable repeated loads in producing

incremental collapse would involve a consideration of the combined effect of
floor and wind loads. The simultaneous use of two different load frequency
curves leads however to unmanageable calculations, and it will therefore be
assumed in turn:

1. That wind loads have the same frequency distribution as floor loads.
2. That floor loads have the same frequency distribution as wind loads.

Whichever procedure gives the more critical result will then be accepted as

"safe".
Load Factors Calculated from Floor Loading Data

Let a structure be designed to collapse under static loads at a load factor
of Ac, and let its shake down load factor (for incremental coUapse) be As. The
frequency curve of load factors derived from floor loading data (see equation (6))
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is given in Fig. 11 (a). The probabihty that a single load apphcation will have

a load factor lying between A and A + 8 A is given by the shaded area, the area
under the whole curve being unity. Let the load factor ränge from AÄ to Ac be

divided into r equal intervals, and let the area under the curve contained

between the ordinates A — A. + A„ and AQ H— A„ be denoted by

pu. The symbol u denotes any integar from 1 to r inclusive.
Consider now the increase in permanent deflection produced by a single

load application. The horizontal scale in Fig. 11 (b) is identical with that in
Fig. 11 (a), while the vertical scale gives the proportion (q) of the critical
deflection produced per load application. It is zero for load factors less than As,

and varies uniformly with load factor up to a value of unity when A Ac (equation

(14)). Above a load factor of Ae a single load apphcation is sufficient to
produce the critical permanent deflection (since there is no interest in deflections

greater than the critical, q is given the value unity when A> Ae). A load with a

load factor between — A„ + A„ and A„ H— A„ will have a mean

value of q of -—-.
After some number n of load apphcations there will be a certain probability

of getting a resultant value of q equal to or greater than unity, i. e. a certain
probability, to be denoted by P, that the structure will collapse. This
probabihty may be calculated by using a direct extension of the Binomial
Distribution as dealt with in the theory of probabihty.

Let
(u-j)u=r

(i-p«)+ 2 Puz r
=i

h=C2r-l)n -x-
2 Chzir (15)

h=0

where ps is the probability of a single load apphcation producing a load factor
greater than As, and h is any integer. The coefficients Gh may be determined

by expanding the expression on the left.
Then

A=(2r-1).
P= 2 Ch (16)

h=2r

The probabihty of static collapse Pe is given by Pc n pc where <pc is the probability

of the collapse load factor Ac being exceeded on a single application of
load. The values of P and Pc may be calculated for any given values of Ac, Ag

and n. For given values of Ac and n, that value of As for which P PC is the

required shake down load factor A/. Structures in which AS>AS' will have a

lower probabihty of collapse under repeated loads than under a single load

apphcation.
The value of -=- has been calculated for a continuous ränge of values of t5

"e Ao

both for %= 1000 and n= 100,000, the value of Pe being kept constant at 1.0-

• IO-6. This value of Pc has been chosen somewhat arbitrarily, but as in the case
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of failure due to alternating yield, a large Variation in Pc has little effect on the
final result. The symbol n denotes the number of occasions on which a structure
suffers a critical combination of loads, and is difficult to determine. The lower
limit of 1000 might represent a critical load combination once a month for
80 years, while the upper hmit of 100,000 might correspond to an average of
two critical combinations per day for 150 years. The results are shown in Fig. 12,

746

?.|q:

OS 09 10

-
jltS 660

-3

-4

Fig. 12

in which log10 / p-1 is plotted against y. The condition P PC (i. e. log101^-) 0)

gives^-' 0.660 when n= 1000 and^ 0.746, when n= 100,000. If Ac= 1.75, the
Ik Ac

values of Ag' become 1.15 and 1.31 respectively, and incremental collapse will
not be of importance unless a structure has a shake down load factor lower than
these figures.

Load Factors Calculated from Wind Loading Data

The frequency distribution for load factors obtained from wind loading data
is a normal curve with VA as the variate (see equation (11)), and may be repre-
sented as shown in Fig. 13 (a). The proportion (q) of critical permanent deflection

due to each load apphcation is shown to the same horizontal scale in Fig. 13

(b), the curve ABC being obtained on the assumption of a linear relationship
between q and A in the ränge As to Ac (see equation (14)). The assumption that
within the latter ränge there is a linear relationship between q and VA is repre-
sented by the straight line A B' C. The error involved in making this approximation

is small, and is in any case on the safe side. When ^ 0.5 the maximum
a0

error is 9% and when y- 0.8 the maximum error is only 3%.
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The above simplification enables the analysis already given for the case of
floor loading data to be used (equations (15 and (16)), the only modification

required being the replacement of A by VA. The relations between Ac, As and x0,
xc and xs are obtained from equations (10). Calculations have been performed on
the assumption that Pc= IO-6, and that n, the number of gales during the hfe
of the structure, is either 1000 or 10,000. The results are presented in Fig. 14.

The probabihty of incremental collapse is equal to that of static collapse when

^ 0.598 (« 1000) or ^-' =0.638 (« 10,000). Hence if A„=1.75, the shake

down load factor has the value 1.05 when n 1000 and 1.12 when n= 10,000.
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5. Conclusions

Calculations have been made of the minimum shake down load factor which

may be tolerated in a structure which has been designed on the basis of the
plastic theory to collapse at a static load factor of 1.75. The results are summa-
rised in Table 2, lower and upper estimates being given in each case. It has been

Table 2. Minimum allowable shake-down load factors assuming a static load

factor at collapse of 1.75

Alternating
yield

Incremental Collapse

Floor Load Data Wind Load Data

Lower limit
Upper limit

0.89
0.98

1.15
1.31

1.05
1.12

assumed in the analysis for incremental collapse that deflections at working
loads are not the ruling factor in the choice of a design. When the static load
factor at collapse is some value Ac other than 1.75, the corresponding shake
down load factors may be obtained by multiplying the values in the table by

1-75
Throughout the analysis leading to these results, numerous approximations

are made. Care has been taken, however, that all approximations are on the safe

side, and for this reason it is probably satisfactory to accept the lower shake down
load factors quoted in Table 2. If this course is adopted, collapse due to
alternating yield is seen to be a most unlikely occurrence (As' 0.89), while incremental
collapse is only liable to occur if the shake down load factor is less than 1.15.

Even when the higher values in Table 2 are taken the critical load factor for
alternating yield is as low as 0.98, and for incremental collapse, 1.31. The
lowest calculated shake down load factor (corresponding to A0= 1.75) for
alternating yield reported in the literature is 1.22 (see example of portal frame with
wind load in either direction, Fig. 24 and equations (15) and (16), reference (14)).
The lowest reported load factor for incremental collapse is 1.56 (see example
of double bay portal frame, reference (8)). While lower values than these could
undoubtedly be obtained, particularly for structures containing members of
highly unequal stiffness, there appears to be sufficient grounds for stating that
variable repeated loads are most unlikely to be of importance in the design of
structures by the plastic theory.

The results of the analysis contained in this paper may be summarised as

follows. It is necessary to distinguish between two types of repeated loading.
The first type refers to loads which would be dealt with, when designing struc-
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tural components by orthodox elastic methods, by specifying safe ranges of
stress determined by endurance under fatigue. Crane rails subjected to heavy
duty afford an example. When such components occur in structures designed
by the plastic theory, they should still be checked for fatigue conditions by
hmiting the elastic ränge of stress under working conditions. Excluding such
structures or structural components, the analysis shows that the effect of
repeated loads on behaviour in the plastic ränge is most unhkely to be of importance

in design. For all practical purposes therefore it is unnecessary to perform
a shakedown analysis (6), (7) — a most valuable conclusion in view of the com-
plexity of such calculations.

The work described in this report was carried out at the Engineering Labo-
ratory, Cambridge University, under the direction of Professor J. F. Baker,
Head of the Department of Engineering. It forms part of a general investigation
into the behaviour of steel structures in the plastic ränge being carried out at
Cambridge with the assistance of the British Welding Research Association.
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Summary

The plastic theory of structures has been evolved with reference to loads
which are only applied once. It has nevertheless been reahsed that repeated
loads may cause collapse at a lower intensity of loading than a single load
application, even when fatigue effects are entirely absent. The importance of
such an effect can only be assessed by a study of the relative frequencies of
loads of various intensities, and the theory of probability thus has to be intro-
duced. The paper applies the theory of probability to the derivation of design
load factors for repeated loads in structures which are to be designed by the
plastic theory.

Resume

La theorie de la plasticite des ouvrages a ete mise au point en tablant sur
des charges qui ne fönt l'objet que d'une seule apphcation. L'on s'est nean-
moins rendu compte qu'une charge repetee peut provoquer la deformation ou
la rupture sous des efforts plus faibles que dans le cas d'une application unique
de la charge, meme lorsque les effets de fatigue sont entierement absents.

L'importance d'un tel effet ne peut etre determinee que par une etude des

frequences relatives de charges de differentes intensites et par introduction
de la theorie des probabilites. L'auteur applique cette derniere theorie au
calcul des coefficients de charge theorique, pour des charges repetees apphquees
ä des ouvrages qui doivent etre calcules d'apres la theorie de la plasticite.

Zusammenfassung

Die Theorie über das plastische Verhalten der Bauwerke wurde für
Belastungen entwickelt, die nur ein einziges Mal zur Wirkung gelangten. Man gab
sich aber Rechenschaft, daß bei einer mehrmals aufgebrachten Last
Formänderung oder Bruch für kleinere Belastungswerte auftreten, als wenn die
gleiche Last nur einmal wirkt, selbst wenn keine Ermüdung des Materials
eintritt. Die Bedeutung einer solchen Wirkung kann nur durch eine Untersuchung
über das Verhalten bei der in verschiedenen Abständen wiederholten Belastung,
deren Größe ebenfalls variiert wird, erfaßt werden; ferner unter Anwendung
der Wahrscheinhchkeitsrechnung.

Der Verfasser wendet diese Theorie für die Bestimmung der Koeffizienten
der theoretischen Last auf die Fälle von wiederholter Belastung bei Bauwerken
an, welche nach der Plastizitätstheorie zu berechnen sind.
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