
Open-spandrel arch analysis assuming
continuity of structure

Autor(en): Beaufoy, L.A.

Objekttyp: Article

Zeitschrift: IABSE publications = Mémoires AIPC = IVBH Abhandlungen

Band (Jahr): 13 (1953)

Persistenter Link: https://doi.org/10.5169/seals-13193

PDF erstellt am: 22.09.2024

Nutzungsbedingungen
Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an
den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern.
Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in
Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder
Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den
korrekten Herkunftsbezeichnungen weitergegeben werden.
Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung
der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots
auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

Haftungsausschluss
Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung
übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder
durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot
zugänglich sind.

Ein Dienst der ETH-Bibliothek
ETH Zürich, Rämistrasse 101, 8092 Zürich, Schweiz, www.library.ethz.ch

http://www.e-periodica.ch

https://doi.org/10.5169/seals-13193


Open-Spandrel Arch Analysis Assuming Continuity of Structure

Etüde des Ares ä Tympan ouvert dans Vhypothese de la continuite de Vouvrage

Berechnung des Bogens mit durchbrochenem Aufbau bei Annahme monolithischen
Zusammenhangs

Dr. L. A. Beaufoy, M. Sc. (Eng.), A.M.I.C.E., M. I. Mech. E., M. I. Struct. E.,
M. Am. Soc. C. E., Chartered Civil Engineer, London

Introduction

Because of the incomplete nature of our knowledge of the interaction
between the deck, the spandrel columns and the arch rib of a bridge which is

monolithic, proper consideration is not given to its effect when designing
open-spandrel arches. Designs are commonly based on the assumption that
loads are applied directly to the arch rib, whose behaviour is assumed to be

uninfluenced by the spandrel columns and deck. The many experiments which
have been carried out to study the effect of deck partieipation have not provi-
ded a füll picture of the nature of this partieipation, being limited to the deter-
mination of influence lines for the fixed-end reactions and the resultant lines
of thrust for temperature stresses. Information is lacking as to the manner in
which stresses are distributed quantitatively between the arch rib and the
deck, and, although it is known that the deck aids the arch rib, it is not known
to what extent this assisting role may be harmful to the deck.

The mathematical analysis of open-spandrel arches by the classical methods
is so tedious that it has been regarded by some engineers as virtually impossible
unless certain approximations are made. One approximation sometimes used
is to neglect the shear in the spandrel columns, or, in other words, to assume
these columns to be hinged at both ends. Although such an approximation
may seem to be reasonable, especially when the columns are comparatively
slender, it is, nevertheless, very misleading. The most important role in deck
partieipation is, as will be seen later, that of the shear resistance of the spandrel

columns, which is responsible for transferring a comparatively large
thrust to the deck. If there were no such shear resistance no thrust could be
transmitted. The near-impossibility of the classical methods of analysis has
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therefore led to extensive experimental studies, of which those of Wilson1)
and Finlay 2) may be especially cited.

The object of the present paper is to present a reasonably simple and
exact method of theoretical analysis for open-spandrel arch Systems, requiring
the expenditure of less time and effort than the experimental one. By avoiding
the formulation of simultaneous equations, all calculations may be performed
by slide-rule. This method of analysis is similar to that for Vierendeel trusses
described recently by the author3).

The difference between the two Systems is that open-spandrel arches are
externally statically indeterminate as well as being internally so. It therefore
becomes necessary to distinguish between the internal panels and the end

(or external) panels to which external moments are applied. The present paper
develops the necessary extension to the method of analysis of Vierendeel
trusses and carries the structural analysis further so that the elastic constants
and stiffness factors for the open-spandrel arch as a whole may be determined,
thereby making it possible to calculate the influence lines for the fixed-end
reactions. Once these are known, the computations for stresses produced any-
where in the System due to any given loading, temperature changes, or dis-
placements at a support follow readily.

The application of the method is illustrated in some detail by reference
to an example of a nine-panel open-spandrel arch4) which was the subject of
experimental analysis, so that an experimental check on some of the theoretical

results is available. It will be found that the agreement between the two
sets of results is of a high order.

The author is indebted to A. F. S. Diwan, formerly a research student in
civil engineering working under his direction, for assistance with the com-
putational work, and to C. C. Brearley, who prepared the illustrations for press.

Notation and Sign Convention

Symbols are defined when they are first used, but are collected here for
convenience of reference.

a denotes panel width.
b denotes difference in height between spandrel posts in a panel.

x) Wilson, "Tests of Reinforced Concrete Arch Bridges", Publications, I.A.B.S.E.,
vol. 5, 1938.

2) Finlay, "Deck Partieipation in Concrete Arch Bridges", Civil Engineering (N. Y.),
vol. 2, no. 11, 1932.

3) Beaufoy, "Vierendeel Truss Analysis using Equivalent Elastic Systems",
Publications, I.A.B.S.E., vol. 11, 1951.

4) Wilson and Kluge, "Laboratory Tests of Three-span Reinforced-concrete Arch
Bridges with Decks on Slender Piers", Bulletin No. 270, University of Illinois Engineering
Experiment Station, 1934.
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C denotes panel coefficient.
d denotes vertical distance between the elastic centre and the deck of

an open-spandrel arch.
d as suffix, denotes that the quantity refers to the deck.
c as suffix, denotes that the quantity refers to a Virtual equivalent

System.
E denotes Young's modulus.
h, H denote horizontal force; height of spandrel post.
I denotes a centroidal moment or product of inertia.
/ ' =1 -(I2 II
I ' =1 -(I2 II^y My \^xy\J-xi'
L denotes length of span.
m, M denote moment.
MX' =Mx-(Myljly).
My' =My-(MxlXy\lx).
0 as suffix, denotes that the quantity refers to the elastic centre.
P denotes normal elastic load on analogous column.
Q denotes shearing force.

r as suffix, denotes that the quantity refers to the arch rib.
S denotes elastic area.
T denotes thrust in deck.

v, V denote vertical force.

x, y denote horizontal and vertical co-ordinate distances respectively.
x, y denote horizontal and vertical co-ordinates respectively of the elastic

centre.

x.y,xy as suffixes, denote that the quantity is taken about the #-axis, the
i/-axis, or axes x, y.

cf>, A, A denote rotational, horizontal and vertical displacements respectively.
c/>, A,X as suffixes, denote that the quantity is in respect of applied rotational,

horizontal or vertical displacement respectively.

Sign Convention. Unless otherwise stated this is as follows: Moments and
rotational displacements are taken as positive when clockwise; horizontal and
vertical forces, displacements, and co-ordinate distances as positive when
measured to the right and upwards respectively.

The Single Closed Panel

Provided they are in equilibrium, and assuming that deformations due to
shear and axial thrust may be disregarded, any System ofexternal forces applied
to a closed panel through its Joints (Fig. 1) may be reduced to three horizontal
forces H1, H2, and (Ht-H2), plus two vertical forces V= ± (H^~H^\
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Fig. 1. Balanced set of external forces
applied to a closed panel through its

joints
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Fig. 3. Characteristic bending-moment
diagram for a single closed panel
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Fig. 2. Bending-moment diagrams for stati-
cally-determinate cases occurring with a
single panel according to the position of the

cut section

A cut section anywhere in the panel (Fig. 2) makes the System statically-
determinate and the bending-moment diagram may then be reduced to any one
of the forms shown in the figure by suitably choosing the position of the cut
section and proportioning the amount of the vertical force V between the upper
and lower panel points. If any one of these diagrams is selected, say Fig. 2 b,
and it is assumed that the moment M at the Joint B is unity, it may easily be

shown by column analogy, using the bending-moment diagram in the stati-
cally-determinate case as an elastic loading, that the bending-moment diagram
for the closed panel has the shape shown in the shaded diagram (Fig. 3). Since
the statical bending-moment diagram refers to any balanced set of external
forces applied at the joints, it follows that the form of the bending-moment
diagram for the closed panel must also refer to any such balanced set of forces;
in other words, the latter is what might be termed a characteristic bending-
moment diagram for the panel. As the values in this diagram are obtained on
the basis of unit M at the Joint B in the statically-determinate case, it is clear
that, by finding the actual value of M corresponding to any given set of
external forces, the true bending-moment diagram for the closed panel may
be obtained by proportion from the characteristic bending-moment diagram;
this characteristic bending-moment diagram should, therefore, always be
associated with the relevant statical bending-moment diagram, shown dotted
in Fig. 3. It follows from the above that points Fl9 F2, Fs and F± in the figure
are fixed points at which the bending moment due to any System of external
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forces applied at the joints will always be zero, it being understood that these
external forces are in equilibrium.

The elastic constants for a single closed panel may be readily found by
using the following equations5)

8 =^ + ^2 (la)
1 *^l ' 2 *^2

X

y

8

#1^1+ #2^2

8

(IXl + IX2) + (Siyi2 + S2y22)

+ h

(lb)

(lc)

(ld)
(le)

Ixy (Ixy1 + Jxy2) + (Sl xl Vi + S2X2y2) (1 f
which give the elastic constants for the resultant of any two members
connected together in series, in terms of those for the separate members.

Virtual and Partial Equivalent Systems

These are illustrated in Fig. 4b, where the Virtual equivalent System is

represented by an elastic area PQ having rigid arms PB and QD which link
it to joints B and D respectively; the elastic centre 0 of PQ is so located with
respect to joints B and D that the
relative displacements of these two points
are the same for the Virtual equivalent
Systems as for the panel. This Virtual
equivalent System may be used in repla-
cement of all the members of the open-
spandrel arch shown in dotted lines in
Fig. 4b, including the real member D B.

The above Virtual equivalent
System when connected to the real deck
member CD and the real arch rib member

A B, constitutes a partial equivalent

X

>-

-PdneK

X

*;

Fig. 4. (b) is a partial equivalent System for
the part of the open-spandrel arch to the
right of section XX (a); (c) is an equivalent
panel based on panel III

b)

C D

y A

C)

5) Beaufoy and Diwan, "Equivalent Elastic Systems in the Analysis of Continuous
Struktures", Concrete and Constructional Engineering, November and December, 1950.
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System based on panel III, and this may be used in replacement of all the
members of the arch System to the right of section XX (Fig. 4a). The elastic
constants of partial equivalent Systems, as for single closed panels, may be

obtained by applying equations (1).
Reference should be made to the earlier paper6) for fürther information

about the properties of Virtual and partial equivalent Systems.

Equivalent Panel

An equivalent panel is illustrated in Fig. 4c by ABCD, where AB and
CD are real members linked in a closed circuit to a Virtual equivalent System on
the left and one on the right, which replace the members shown in dotted lines.
The elastic constants for such a panel may be obtained as for a single closed

panel. In comparing the equivalent panel with the single closed panel it should
be realised that the external forces at the joints of the equivalent panel are
provided by the conjugate forces in the open-spandrel arch System, i.e., by
the interaction between the panel considered and those on either side of it.

A characteristic bending-moment diagram can also be obtained as for a

single closed panel; this gives the primary moments in the real members, i.e.,
the top and bottom chords. The primary moments in any equivalent panel
induce moments in all panels to either side and so create moments throughout
the structure. The determination of the induced moments follows from the
relative displacements of the upper and lower ends of the posts7).

The diagram of primary and induced moments gives what may be termed
a füll characteristic bending-moment diagram for the whole open-spandrel
arch System, based on the panel to which the primary moments refer. This
diagram would be produced by applying a tensile or compressive force along
the line of the diagonal of the equivalent panel of such a value that the force

multiplied by the perpendicular distance was unity.
An end panel of an open-spandrel arch is usually subject to an external

moment acting at one of the lower points so that the statical bending-moment
diagram is generally trapezoidal over the arch-rib segment. To deal with this
case, a second characteristic bending-moment diagram is necessary for the panel,
and this follows from a statical bending-moment diagram having a rectangular
part along the arch-rib segment similar to that shown in Fig. 5d. Each internal
panel therefore has only one characteristic bending-moment diagram, but each
end (or external) panel has two: the first of these is derived from a statical
bending-moment diagram similar to that for the internal panels and will be
referred to here as case A; the second arises when an external moment is

applied to one of the joints of the panel, usually that on the lower chord, and

6) Beaufoy, op. cit.
7) Ibid., step (6).
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Fig. 5. (a) Open-spandrel arch: determination of elastic constants; (b) conjugate forces
in internal equivalent panel II corresponding to unit M at end A; (c) statical bending-
moment diagram, internal equivalent panel II; (d) conjugate forces and statical bending-

moment diagram, external equivalent panel I

is derived from the statical beading-moment diagram for the case (case B).
Any shape of bending-moment diagram in the main System for the external
panels can then be readily obtained from the two conditions of loading, cases
A and B. When an expansion Joint is introduced in the deck the panels on
either side of that containing the expansion Joint must similarly be treated
as if they were external panels.

There will, therefore, be one füll characteristic bending-moment diagram
for each internal panel and two füll characteristic bending-moment diagrams
for each external panel. This Information is best collected together in tabular
form.

The Whole Arch System

Elastic Constants

First consider a fixed-ended arch member AB. Release the end A and
assume a unit moment M to be applied there; a reaction at B of M =1 will
result. It can then easily be shown8) that the end A moves through distances

cf> S (2a)
A=~<l>-y (2b)

and A cj>-x (2c)
from which the elastic constants 8, x and y, for the arch member may be found.

8) Beaufoy and Diwan, "Analysis of Continuous Structures by the Stiffness Factors
Method", Quarterly Journal of Mechanics and Applied Mathematics, vol. II, pt. 3, 1949.

3 Abhandlung XIII
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Next, apply only a horizontal force H 1 at the end 0 of a rigid arm A 0,
0 being at the elastic centre. Then, values of Ix and Ixy may be obtained from
the following equations

Ix=* (2d)

4*=-* (2e)

In the symmetrical case, Ixy 0. Similarly, by applying only 7=1 at 0,

ly A (2f)

Thus, the remaining elastic constants Ix, Iy, and 7^ for the arch member are
found.

Now, in the case of the open-spandrel arch, the deflection of a point P in
the arch rib (Fig. 5 a) may be obtained from the arch rib P B alone due to the
bending moments on it, or from the members B B, RQ, QP due to the bending
moments on them. Similarly, the deflection of the point C may be obtained

by considering only the arch rib BPC, rather than members BRQSC. Hence,
the deflections of points in the lower chord are obtained by considering the
arch rib only, subject to the moments acting thereon. Thus, the deflections
of end A may be found and subsequently transformed into elastic constants

by applying equations (2). In passing, it should be observed that vertical
deflections of corresponding points on the deck and arch rib are the same,
disregarding axial deformations, but that horizontal and rotational displacements

are not the same.
The above process will now be considered in more detail as it applies to the

open-spandrel arch shown in Fig. 5 a. Fix end B and apply unit moment at
end A. Then, for the equivalent panel II, the conjugate forces corresponding
to unit M at A are as shown in Fig. 5b. When the forces at the joints of the

upper chord are combined into one force, Fig. 5 c is obtained, and if the upper
chord is assumed to be cut, a statical bending-moment diagram results similar
to that shown in Fig. 2b but with a value for M of bjhx. The characteristic
bending-moment diagram for the panel was based on a unit value for M and
the moments induced on either side followed from the characteristic bending-
moment diagram. In the case of the equivalent panel, however, the value of
M is not unity but b\hx, viz., a coefficient C obtained from the proportions of
the panel; it follows that the values in the characteristic bending-moment
diagram and the moments induced to either side must all be multiplied by C.

For the special case of equivalent panel I, the conjugate forces are as shown
in Fig. 5d, which also shows the statical bending-moment diagram, from which
the characteristic bending-moment diagram may be derived. Thus, for unit
M applied at end A, the coefficient C b/h1 for all internal panels, but 0=1
for case B of the external panel (case A of the external panel does not arise).
Each füll characteristic bending-moment diagram is now multiplied by the
corresponding C value to give actual primary and induced moments. The
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£_ hz 0 ff-/
,d*£ß

</>2 h,J

~-jL

n'-f

Fig. 6. (a) Conjugate forces on internal equivalent panel corresponding to unit H at the
elastic centre 0 of an open-spandrel arch; (b) statical bending-moment diagram

Hh^fM H

M=fM=y-b

M=v a)M=y

M=-b

//-/

Fig. 7. (a) Conjugate forces and statical bending-moment diagram for external equivalent
panel corresponding to unit H at the elastic centre of an open-spandrel arch. The statical
bending-moment diagram may be broken down into the separate diagrams (b) and (c)

due to M and H respectively

x+a

V=

x+a
hr~s aüSt

H
_». (jl _ i+a

M^-xb+aht

m-,
Fig. 8. (a) Conjugate forces on internal equivalent panel corresponding to unit V at the

elastic centre 0; (b) statical bending-moment diagram
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summation of all values for the different panels will give the final bending-
moment diagram for unit M. From this final bending-moment diagram the
values of the elastic constants 8, x and y are found by Substitution in equations

(2). As this final bending-moment diagram for the whole structure must
always diminish towards the crown, it follows that, compared with the same
arch rib without the superstructure, the total elastic area 8 must be reduced,
and the elastic centre must drop towards the springing line, that is, y must be

smaller.
Next apply unit H only at the elastic centre O (Fig. 6 a). Considering any

internal equivalent panel, the conjugate forces and the statical bending-
moment diagram will be as shown in Fig. 6b, so that for all internal panels the
value of the coefficient C is —db\hx. Fig. 7a shows the conjugate forces for an
external equivalent panel (H is transferred to A through the rigid arm OA).
A cut section in the upper chord gives rise to the statical bending-moment
diagram indicated; this is compounded of Figs. 7 b and 7 c, which refer respectively

to the diagrams for M and H, and which are of forms already familiär,
Fig. 7 b being similar to Fig. 5d and Fig. 7 c to Fig 2 b. Thus, the coefficient
for the characteristic bending-moment diagram in case A (Fig 7 c) is C — 6,

while for case B (Fig. 7 b), C y. These values of C are now applied, as in the
case of unit M, to the füll characteristic bending-moment diagram to obtain
a final bending-moment diagram for unit H by summation. From this final
bending-moment diagram, the horizontal displacement A at point A is cal-
culated and hence the value Ix is known from equation (2d).

Finally, apply unit V at point 0 (Fig. 8 a). For an internal equivalent panel
(Fig. 8b) it can be shown that

xb — ah9M L2

K '

which may be plus or minus according to values. Hence the C value is

—xb+ah2

K

For an external equivalent panel the conjugate forces are as shown in Fig. 9.

The shape of the statical bending-moment diagram is illustrated in Fig. 7a,
and can similarly be reduced to forms corresponding to Figs. 7 b and 7 c, from
which values of C are

case A: C a,
case B: C -L/2.

Hence, from these values of C, the final bending-moment diagram for unit V
and the vertical displacement XA Iy are found, completing the determination
of the elastic constants for the whole structure. For convenience of reference,
the various values of C derived above are collected together in Table 1.
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Fig. 9. Conjugate forces and statical bending-moment diagram for external equivalent
panel corresponding to unit V at the elastic centre of an open-spandrel arch

Table 1. Values of the coefficient C for equivalent panels

Loading

Unit M

Unit H

Unit V

Internal panel
External panel

Case A

b_

K

K
-xb + ah2

-b

Case B

1.0

y

_ L_
2

Stiffness Factors for the End A of the Whole Structure

These may be obtained from the elastic constants by Substitution in the
following equations9) which refer to the case when the arch is symmetrical
and Ixy 0

1 y2 x2

h =TLl>mAi-

vt
— x

[= mx].

hA
1

V
v\

1

V
h 0.

VA 0.

(3 a)

(3b)

(3 c)

(3d)

(3e)

(3f)
(3g)

9) Beaufoy, op. cit.
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Influence Lines for the Fixed-end Reactions of the Whole Structure

A horizontal force of amount hj at the elastic centre will, by definition,
cause a unit horizontal movement only at A. The resulting deflection line is the
influence line for H, and can be found from the bending-moment diagram
corresponding to the force hj, which is obtained by proportion from that
already found for unit H. The influence line for V may be found similarly. To
get that for M, apply horizontal and vertical forces h^ and v± respectively at
the elastic centre 0, together with a moment \j8 to cause unit rotation only
at A. The influence line for M is then obtained as the summation of the
following deflection lines (I) that due to h^ at O, obtained by proportion from
the influence line for H, since h(f>=y.hA; (II) that due to v^ at 0, obtained by
proportion from the influence line for V, since v^ —Lv^\2; (III) that due to
M=ljS. The bending-moment diagram is obtained by proportion from that
for unit M previously derived and the deflection line follows.

Method of Analysis

Structural Analysis

1. Determination, for each of the partial equivalent Systems, of the bending-
moment diagrams corresponding to unit relative displacement imposed at
the cut ends.

2. Evaluation of the elastic constants for the Virtual equivalent Systems for
successive groupings of panels working from left to right, and also from
right to left if the open-spandrel arch is not symmetrical. In a symmetrical
case, the two sets of evaluations will be similar.

3. Determination, for each equivalent panel, of the elastic constants and the
primary moments, and the determination of all the moments induced both
to the right and to the left of each of the equivalent panels.

4. Evaluation, for the whole arch System, of the elastic constants, the stiffness
factors for the ends of the arch System at the springings, and the influence
lines for the fixed-end reactions M, H and V.

Stress Analysis

5. Determination of the fixed-end reactions for the given loading from the
influence lines for M, H, and V.

6. Evaluation, for each equivalent panel, of the conjugate forces, the statical
bending-moment diagram and the coefficient C.

7. Determination of the final bending-moment diagram by summation.
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Fig. 10. Reinforced-concrete high-deck arch: (a) main dimensions; (b) section of deck;
(c) section of arch rib; (d) section of post

Example

To illustrate the use of the method, it will now be applied to the Solution
of a 27-ft. span reinforced-concrete open-spandrel arch model10). The dimensions

of this model, a high-deck arch without expansion joints, are shown in
Fig. 10. For the purposes of the calculations, the effect of the joints will be

disregarded, the analysis being based on a consideration of centre lines; this
effect will not be of great importance owing to the absence of haunches.
Furthermore, the arch rib between any two spandrel columns will be assumed

prismatic with a constant cross section identical with that at the middle of its
length. It would be possible to take into account the Variation in the cross
section of the arch rib but the differences involved would be slight. On the
above basis, the values of the relative elastic areas (S • 100 • E) of all members
are as shown in Fig. 11.

Structurol Analysis

Step 1. The elastic constants for all partial equivalent Systems working
from right to left, found by using equations (1), are collected together in
Table 2, in which x and y are as measured from the upper left-hand end of the
System. Then, for each partial equivalent System in turn, considering the
lower left-hand end to be fixed, the forces required on the upper left-hand end
to produce unit displacements there (viz., the stiffness factors for the upper

Post 1

Panel

9 W

eJ m§\ jtS- 7 \e \m
0,185G

^F
V.

r.^£^0,034

Fig. 11. Relative elastic areas for all members, as used in calculations

10) Wilson and Kluge, op. cit.
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Table 2. Partial equivalent Systems: elastic constants

Panel II III IV V VI VII VIII IX

S
X

y

xy

1.62
1.84

-1.68
9.60
1.58
0.14

1.83
1.82

-1.40
5.24
1.77
0.19

2.04
1.80

-1.21
3.30
1.96
0.14

2.21
1.76

-1.20
3.04
2.08
0.05

1.98
1.77

-1.24
4.06
1.87

-0.16

1.76
1.78

-1.49
8.20
1.67

-0.35

1.54
1.78

-1.79
20.18

1.47
-0.46

8.97
2.37

-3.95
61.30

1.79
-2.67

Ix
V

9.59
1.58

5.22
1.76

3.29
1.96

3.04
2.08

4.04
1.86

8.13
1.66

20.03
1.45

57.30
1.67

ends relative to the lower ends) are found11); these values of nij, h^, v^ and

m±, hi, v± are shown in Table 3. The values me and he shown in this table are
found by transferring these forces to the elastic centre of the relevant Virtual
equivalent System and calculating the relative induced displacements (e. g.
cf>j,Aj) of the upper end with respect to the lower end of the partial equivalent
System12). Finally, for each partial equivalent System in turn, the bending-
moment diagram is found by statics; these diagrams are collected together in
Fig. 12.

253
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Fig. 12. Partial equivalent Systems: (a) bending-moment diagram producing unit relative
horizontal translation between upper and lower joints on left-hand side; (b) as for (a)

but in respect of unit relative rotation

n) Beaufoy, op. cit., equation (4).
12) Beaufoy, op. cit., equation (5).
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Step 2. Values of the relative elastic areas (S • 100 -E) and stiffness factors
for the upper ends of spandrel posts are given in Table 4. The stiffness factors
follow from the following relations

m± —; h± ——; hA -=

Each post in turn is then eombined with the partial equivalent System on its
right to give the corresponding Virtual equivalent System, and values of the
relative actual stiffness factors M^, H^, H^ (for the upper left-hand ends)
follow by definition from the combination. Substitution of these values in the
Table given in the earlier paper13) enables the elastic constants for the Virtual
equivalent Systems to be found.

Step 3. The elastic constants of equivalent panels are next determined
(Table 5). Then, assuming an arbitrary bending-moment diagram (ilf=100)
for the statically-determinate case, and applying column analogy, we get the
elastic loads on the analogous columns and the moments of these loads
(Table 6), from which the moment M and the forces H and V acting in each
case at the elastic centre of the equivalent panel are found. These are also
shown in Table 6, which includes cases A and B of the external panel I, and
which deals only with the left-hand half of the structure, the values in the other
half being symmetrical. From these values, the primary moments (Fig. 13)

are calculated.
Transferring moments to the elastic centre of the Virtual equivalent

System on the right of an equivalent panel, we get the values of me and he in
the first half of Table 7, from which follow the induced displacements cf> and A

2809 13,70 30,30 18.85 32.W 23J5 30,65 25,90^ 25,90

15,07

^-«sTflj

22.75 38,40

56.52 Panel
10.90

I(A)

1321 32.54

47.42

64.93

KB)

24. W
2*35 31.15 2kW

Fig. 13. Equivalent panels: primary moments

13) Beaufoy, op. cit.
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Table 8. Induced displacements of upper

Post
2 3 4

$ J <t> A * A

Panel I (A)

Panel I (B)

Panel II

-0.36

-0.88

-24.21

-23.61

-0.09

0.05

- 5.28

- 4.76

-10.84

-1.36 -90.20
i

0.73 -80.55
i

0.02-0.01 -75.03 -1.60 -52.30

Panel III
Panel IV

Panel V

-0.11

-0.01

i

-27.50

- 7.99

-0.09 -42.37 -0.96 -30.13

-0.11
i

-12.33 0.08 -24.27

-0.01 - 1.93 -0.00 - 2.93 -0.09 - 5.96

Table 9. Induced moments (C 1.0)

Loading 011

equiv. panel I II III IV
(Deck) NO ON OP PO PQ QP QR RQ

I (case B)

I (case A)

II
III
IV

V

1

17.77

13.12

-13.03

-15.49

4.69

6.38

-6.00

-6.01

-13.30

2.08

1.90

4.46

9.70

-1.61

-1.81

-3.70

-10.40

-13.21 -32.54
i

-10.79 -28.09

-5.43

-2.01

-0.58

-0.14

0.48

-0.16

0.02

-0.02

-13.70 -30.30 11.47

-4.66

-1.42

-0.32

2.33

0.44

0.18

-18.85 -32.40

-5.16

-1.32

3.52

0.59

-23.15 -30.65

-5.24 5.22

(Arch) CD DG DE ED EF FE FO GF

I (case B)

I (case A)

II
III
IV

V

33.16

41.38

-21.27

-21.15

12.29

11.70

26.70

-5.87

-6.64

-13.49

2.04

2.49

4.81

14.90

-1.71

-1.73

-3.74

-9.37

84.93 -47.42
i

-10.90 -56.52

-5.60

-2.06

-0.60

-0.14

7.32

3.05

0.81

0.22

-20.60 -46.70

-7.91

-2.22

-0.55

6.12

2.01

0.41

-22.75 -38.40

-6.80

-1.57

4.86

1.44

-24.35 -31.15

-6.09 3.90
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ends of posts relative to their lower ends

35

5 6 7 8 9

4> A <t> A <t> A <£ A * A

0.00 - 1.08 0.01 - 0.26 -0.00 -0.10 0.00 -0.05 -0.00 -0.03

-0.03 - 1.06 0.01 - 0.23 -0.00 -0.09 0.00 -0.04 -0.00 -0.03

-0.04 - 2.35 0.02 - 0.53 -0.01 -0.20 0.00 -0.10 -0.00 -0.06

0.12 - 5.94 0.01

0.22

- 1.46

- 4.35

-0.00

-0.05

-0.09

-0.53

-1.71

-5.96

-0.00

0.01

-0.00

-0.27

-0.81

-2.93

-0.00

-0.00

-0.01

-0.17

-0.54

-1.93

-0.40 -19.47
i

0.38 -15.98 0.38 -15.98
1 1

in deck members and arch rib

V VI VII VIII IX
RS SR ST TS TU UT UV VU VW WV

0.35 -0.41 0.10 -0.07 0.00 -0.02 0.00 -0.00 0.00 -0.00

0.45 0.42 0.09 -0.08 0.01 -0.02 0.00 -0.01 0.00 -0.00

0.86 -0.91 0.20 -0.17 0.01 -0.05 0.01 -0.01 0.00 -0.01

2.74 -2.28 0.43 -0.49 0.06 -0.12 0.01 -0.03 -0.00 -0.01

6.98 -7.59 1.72

5.22

-1.40

-5.24

0.10

0.59

-0.39

-1.32

0.06

0.18

-0.08

-0.32

-0.01

-0.02

-0.04

-0.14-25.90 -25.90
1

GH HG HJ JH JK KJ KL LK LM ML

0.40 -0.34 0.04 -0.10 0.03 -0.02 0.01 -0.01 0.00 -0.00

0.36 -0.39 0.06 -0.10 0.02 -0.02 0.01 -0.01 0.00 -0.00

0.84 -0.79 0.11 -0.22 0.06 -0.05 0.01 0.02 0.01 -0.01

1.79 -2.25 0.40 -0.54 0.12 -0.14 0.04 -0.05 0.02 -0.01

7.10 -6.48 0.85

3.90

-1.80

-6.09

0.47

1.44

-0.42

-1.57

0.10

0.41

-0.16

-0.55

0.06

0.22

-0.04

-0.14-24.10 -24.10
1



36 L. A. Beaufoy

of the upper relative to the lower ends of the Virtual equivalent Systems; these

displacements propagate to the right to the other panels. The second half of this
table similarly shows the displacements which propagate to the left. This
propagation is shown in Table 8, which gives the displacements of upper ends

of posts relative to their lower ends, as induced from the equivalent panels in
turn, the values being obtained by proportion from those for the partial
equivalent Systems (Table 3). These values are now used in conjunction with
the moments in Fig. 12 (which are for unit imposed relative rotations or trans-
lations) to prepare a table of induced moments (for unit C) in the deck members
and the arch rib (Table 9) due to the arbitrary loading condition on the
equivalent panel.

Step 4. Now assume two end moments M 100 applied at the abutments
in opposite directions. The values of the coefficient C for panels II, III and IV
are 0.329, 0.30 and 0.197 respectively; these values, applied to the relevant
figures in Table 9, give the actual primary and induced moments, which are

plotted in Fig. 14 a.

Table 10. Ghecks for statical equilibrium for the following loadings a) M 100;
b) 11 100; c) V 10

Section just left of Post No. 2 3 4 5 6

a) Shear Q in post on left 3.97 6.90 10.42 12.20 6.18
Thrust T in deck SQ 3.97 10.87 21.29 33.49 39.67
T-h 23.70 43.48 59.50 75.20 89.10
Moment Md in deck 32.42 22.22 19.42 12.60 5.74
Moment Mr in rib 43.95 34.46 21.03 12.22 5.17

Mr + Md + T-h 100.07 100.16 99.95 100.02 100.01
External moment 100.00 100.00 100.00 100.00 100.00

b) Shear Q in post on left + 1.72 -6.68 -28.11 -46.20 -26.75
Thrust T in deck ZQ + 1.72 -4.96 -33.07 -79.27 -106.03
T-h 10.10 -19.84 -92.70 -178.40 -238.50
Moment Md in deck 39.67 41.69 -63.50 -54.50 -24.85
Moment Mr in rib 36.28 -48.71 -73.84 -52.15 -21.89
Mr + Md + T-h 86.05 -110.24 -230.04 -285.05 -285.24
External moment -86.00 110.00 230.00 285.00 285.00

c) Shear Q in post on left 3.78 4.91 3.56 -2.21 -10.05
Thrust T in deck SQ 3.78 8.69 12.25 10.05 0

T-h 22.50 34.80 34.30 22.60 0
Moment Md in deck 35.10 14.78 5.41 -3.61 0
Moment Mr in rib 47.02 25.45 5.24 -4.00 0

Mr + Md + T-h 104.62 75.03 44.05 14.99 0
External moment -105.00 -75.00 -45.00 -15.00 0
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The deflection line for the arch rib, assuming a trapezoidal bending-moment
diagram in each arch segment between two spandrel posts, may be obtained
by the moment-area method; values of the horizontal and vertical displacements

A and A respectively of points on the arch rib relative to the tangent
to the rib at the crown are shown in Table IIa. Since the deflection line drawn
from these values is due to an end moment M 100, it follows from equation
(2 a) that the total elastic area 8 for the whole System wdth reference to A
and B is

^-¦•"-
while, from equation (2 b), the height y of the elastic centre above the springing
line A B is

19°-5
3.90ft.

48.77

The deflection line can also be obtained relative to the tangent to the rib at
the end B; the values are given in the Table.

Hence, from equation (2 c), the horizontal distance x of the elastic centre
from the end A is

1316.8
97.54

13.5 ft.

which conforms to the requirements of symmetry.
Now that the position of the elastic centre has been determined, consider

a horizontal load #=100 to act on the arch through its elastic centre and
through a rigid arm connected to end A. The coefficients C for the internal
panels, by which the moments in Table 9 have to be multiplied, are —1.63,
— 1.5, and — 1.005 for panels II, III and IV respectively. For external panel I,
the statical bending-moment diagram over CD is trapezoidal with values of
Jfc 330 and ^^ 86. The panel may, therefore, be considered as subject
to a case A loading with M — 244 or C — 2A4 plus a case B loading with
M 3S0 or (7 3.30. The resulting bending-moment diagram is shown in
Fig. 14b.

Deflections relative to the tangent at the crown are given in Table IIb.
Since the force H acts through the elastic centre, the inclination of the end
tangent relative to the tangent at the crown is zero. The displacement of end A
relative to end B is, therefore, a pure horizontal translation A of amount

2-279.2 558.4.
Hence, from equation (2d),

558.4
^'=-Iöo- 5-584-

Consider next a vertical load V 10 acting downwards on the System
through the elastic centre, which is rigidly connected to end A. The coefficients
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C for the loading of internal panels II, III, IV and V are 0.0453, -0.075,
— 0.212, and —0.30 respectively; the signs of these quantities for corresponding

panels on the right of the crown are reversed.
The statical bending-moment diagram for the external panels is trapezoidal

along the rib Segments CD and LM, and may be considered as subject to a
case B loading with Mc 130 or C 1.30, plus a case A loading with MD —25

or C —0.25. Fig. 14c shows the bending-moment diagram.
Deflections relative to the tangent at the fixed end B are shown in Table 11c.

At end A, the deflection A is —872.4 so that, from equation (2f), the vertical
displacement Iy due to V 1.0 at the elastic centre is 87.24. The elastic
constants for the open-spandrel arch are now determined. They are: 8 0.9754;
ir 13.5; y 3.90; 7^ 5.584; 7^ 87.24; from equation (2e) it can be seen that
Ixy 0. From these values, the stiffness factors for the end A are readily found,
by Substitution in equations (3), to be: m^ 5.846; A^ 0.70; ^ 0.155;
hA 0.179; ^A 0.0115.

Influence lines for the fixed-end reactions are calculated by proportion
from the deflection lines (Table 11). Thus, that for H is obtained as the deflection

line, relative to the fixed ends A and B, due to the application at the
elastic centre of a force hj =0.179 which will produce only a unit horizontal
translation at the end A. The ordinates of this influence line are given in the
Table at (b). Similarly, a vertical force of #A 0.0115 at the elastic centre pro-
duces a deflection line which is the influence line for V at the abutment
(Table 11c).

To produce a pure rotation of unit amount at the springing A, the necessary
forces at the elastic centre are:

ra0 — 1.026,
8

h0 =-f- 0.70, and

v0 =^ -0.155.

From the bending-moment diagrams and deflection lines obtained for the three
cases of loading M, H and V, the total bending-moment diagram and deflection

line due to m0, h0 and v0 applied simultaneously can be readily obtained
by summation. This deflection line is the influence line for the fixed-end moment
at the abutment A (Table lld). The bending-moment diagram due to an
imposed rotation <£ 10.0 at the end A is given in Fig. 15.

The influence lines calculated above are compared in Table 11 with those
obtained experimentally14); in Fig. 16 they are plotted, and the calculated
influence lines for the arch rib only, which are also shown, indicate the extent
of the partieipation of the deck.

14) Wilson and Kluge, op. eit.
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Stress Analysis

The effect of a particular case of loading on the structure, viz. a concen-
trated load of 100 tons at point P (Fig. 17) will now be considered.

Step 5. From the influence lines, the fixed-end reactions due to the applied
load are found, they are indicated on Fig. 17.

Step 6. For each equivalent panel, the statical bending-moment diagram is

determined from the loading condition under consideration and this fixes the
value of the coefficient G for the panel. For internal panels, if Mx and M2
(Fig. 18) are the moments of all forces to one side about the two lower joints,
M2 being about the Joint nearer to the centre of span and the signs being as

shown in the figure, the coefficient G is

M2h1-M1h2
100-^ '

in which the factor 100 appears in order to correct for the fact that the
characteristic bending-moment diagram previously obtained was for M 100. For
the two external panels the bending-moment diagram for the main System is
divided into a triangle and a rectangle, as previously stated. The values of G

for the different panels are listed in Table 12.

Step 7. These values of C are now applied in turn to the moments shown
in Table 9, which are for unit C, and the proportionate moments for each

Fig. 18. Signs used in derivmg the coefficient
G for an internal equivalent panel in the stress
analysis <^/f,

5J"



Open-Spandrel Arch Analysis Assuming Continuity of Structure 43

Table 12. Values of the coefficient C for the various equivalent panels when a load

of 100 tons is applied at point P

Panel c Panel C

I (case B) -1.072 VI 0.036

I (case A) 0.995 VII -0.304
II 1.635 VIII -0.512
III -0.516 IX (case B) 0.708
IV -0.567 IX (case A) -0.788
V -0.430

panel are then summed to give the total moments, shown graphically in
Fig. 17 a, which is the bending-moment diagram for the assumed loading case.
The resultanb line of thrust for the arch rib and deck and for the arch rib only
without a deck are shown in the figure, while the corresponding bending-
moment diagram for an arch rib only is also given for comparison in Fig. 17 b.

Checks and Comment on the Analysis

Checks will now be made on the calculations, which were all performed by
slide rule, in order to demonstrate their self-consistency. First consider the
bending-moment diagram for end moments of M 100 (Fig. 14a). For any
vertical section cutting both the deck and the arch rib the sum of the moments
of the internal stresses, including both forces and moments, in the two cut
sections about any point along the vertical section must be equal to the
moment M 100. Taking moments about the point of intersection of this
vertical section with the arch rib the following expression must apply

Mr + Md+T-h 100

where Mr is the moment in the rib, Md the moment in the deck, T the thrust
in the deck, and h the distance between the two points of intersection of the
vertical section with the arch rib and deck. Appropriate signs have to be
employed in this equation. The thrust T in the deck is readily obtained as the
sum of the shearing forces in the spandrel columns on either side. Taking the
vertical sections just to the left of the spandrel columns the sum of these
moments is as in Table 10 a, which reveals an interesting fact. A great part
of the externally-applied moment is resisted by the thrust transmitted to the
deck through the spandrel columns. As we move towards the centre of the
arch, this part becomes the most important one in resisting the moment, the
value it contributes increasing from 23.7% in the first panel up to nearly 90%
of the whole moment in the middle panel.

Next, consider the bending-moment diagram for H 100 (Fig. 14b), where
the moments of the internal forces on any vertical section about its intersection
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with the arch rib must balance the moment of the external force üf 100

(Table 10b). It will be seen that the greater part of the external moment is

balanced by the thrust transmitted to the deck through the spandrel columns;
at the central panel this part amounts to about 84% of the total moment. It
will also be seen that the moments produced in the spandrel columns are large;
in the internal panels they are of the same order of magnitude as the moments
produced in both the arch rib and the deck. The spandrel columns are, however,
of much smaller section. Furthermore, the thrust produced in the deck is very
high. In those panels in which the resultant line of thrust (that of the x-axis
through the elastic centre) falls inside the panel, the thrust in the deck reduces
the thrust in the arch rib and in that way assists the rib. Towards the centre,
however, where the resultant line of thrust falls outside the panels, this thrust
acts in the same direction as the external force H 100, and so the thrust in
the arch rib is increased. Thus, in the central panel, in which the deck is in
tension, T 106.03, a higher value even than that of the external force. It will
be seen that the thrust at the crown in the arch rib =100+106.03 206.03.
The thrust in the deck, then, does not always assist the rib; a fact which
becomes of importance in a consideration of shrinkage and temperature
stresses.

The check for statical equilibrium in the case of 7=10 is similarly given
in Table 10 c.

The effect of deck partieipation for this particular case of loading may
now be studied. First, it will be seen (Fig. 17) that the line of thrust has moved
closer to the springings A and B, thereby reducing the fixed-end moments by
as much as 40% at A and 36% at B. At these ends, the fixed-end moments
are totally resisted by the arch rib; the reduetion is therefore of great value.
In the external panels, also, the contribution of the deck to the resistance to
external moments is small, indeed almost negligible, owing to the very small
shearing forces in the columns; but these external moments are already reduced

by 40% and 36% by the deck partieipation which brought the line of thrust
nearer to the arch rib in these panels. On the other hand, this reduetion in the
fixed-end moments gives rise to an increase in both the positive and the negative

moments in the internal panels, where the resultant line of thrust is
moved further from the arch rib, as shown in Fig. 17 a. In these panels, however,
there is an important item to be taken into aecount, which, together with the
moments already transmitted to the deck, greatly relieves the moments in the
arch rib; this item is the thrust transmitted to the deck through the shear in
the spandrel columns. Thus, at J in the arch rib (Fig. 17b) the moment on the
arch rib only is 43. In the open-spandrel arch the moment in the deck is 17.6

(Table 13), the moment about J due to the thrust in the deck is 30.3, and the
moment in the arch rib is 20.7, giving a total of 68.6, which is greater than 43.

By comparison, the figure for the arch rib alone is only 20.7, which is less

than 43. The important item is evidently the thrust 11.2. It will be seen from
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Table 13. Check for statical equilibrium in the case of the applied loading of
100 tons at point P

Section just left of Post No. 2 3 4 5 6

Shear Q in post on left -0.76 -5.93 -10.26 7.55 18.60

Thrust T in deck EQ -0.76 -6.69 -16.95 -9.40 9.20

T-h -4.50 -26.70 -47.20 -21.00 20.90
Moment Md in deck 7.65 -52.42 - 6.77 14.37 16.24

Moment Mr in rib 4.62 -80.07 - 5.87 14.99 14.54

Mr + Md + T-h 7.77 -159.19 -59.84 8.36 51.68
External moment -7.5 158.3 58.9 -9.6 -52.5
% M resisted by T 17% 79% 40%

Section just right ofPost No. 5 6 7 8 9

Shear Q in post on right -8.10 6.00 7.71 3.06 0.43
Thrust T in deck ZQ 9.10 17.20 11.20 3.49 0.43
T-h -20.70 -38.80 -30.30 -14.98 -2.56
Moment Md in deck 6.38 -7.03 -17.60 -17.88 1.05

Moment Mr in rib 5.97 -4.47 -20.69 -24.06 -6.40
Mr + Md + T-h -8.35 -50.3 -68.59 -56.92 -7.90
External moment 9.6 52.0 69.80 56.2 7.6

% M resisted by T 77% 44% 26% 32%

Table 13 that the percentage of the moment resisted through the balancing
action of this thrust is considerable, amounting to 79% for the section just to
the left of post 4 and 77% for the section just to the right of post 6. Conse-

quently, moments in the arch rib in panels where the resultant line of thrust
has been moved further from the arch rib and where an increase in these
moments might have been expected are, in fact, less than the corresponding
moments produced by the same load in the same arch rib without a deck.
This reduetion is considerable and may amount to more than 60%, as will be

seen by a comparison of the bending-moment diagrams for the arch rib and
deck and the arch rib only (Fig. 17).

So far, the role played by the deck has been an assisting role, but it is of
interest to enquire into the stresses produced in the deck itself and the extent
to which the thrust in the arch rib has changed. Large moments have developed
in the deck, greater even than was suggested by Newmaek15) who claims a
moment distribution between the arch rib and deck in the ratio of the moments
of inertia of their cross sections. Furthermore, a comparatively large thrust
has been transmitted to the deck through the shear in the spandrel columns.

15) Newmaek, "Interaction between Rib and Superstructure in Concrete Arch
Bridges", Transactions, American Society of Civil Engineers, vol. 103, 1938.
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Table 14. Ratios of the thrust in the deck and the horizontal thrust in the rib to
the horizontal reaction at the abutments

Panel I II III IV V VI VII VIII IX

Thrust T in
deck -0.76 -6.69 -16.95 -9.40 9.20 17.20 11.20 3.49 0.43

Horizontal
thrust
Hr in rib 45.94 40.01 29.75 37.3 5.97 63.90 57.90 50.19 47.13

T/H (%) 1.65 14.4 36.3 20.2 -19.7 -36.9 -24.0 -7.5 -0.9
Hr/H (%) 98.35 85.6 63.7 79.8 119.7 136.9 124.0 107.5 100.9

As will be seen from Table 14 this thrust, which may be either tensile or com-
pressive, reaches 37% of the horizontal reaction at the springings in panels
III and VI. In panels where the deck is in compression, the arch rib is relieved
of a part of the thrust which would otherwise have existed. On the other hand,
where the deck is in tension, the arch rib carries a greater thrust than that
due to the füll external reaction alone. In panel VI, the horizontal pompressive
force H in the arch rib is as high as 137% of the horizontal reaction at the
springing owing to a tensile force, equal to 37% of this reaction, which has

developed in the deck. This is therefore a harmful contribution by the deck
to the arch rib. In general, this harmful contribution is to be expected where
the resultant line of thrust falls outside the open-spandrel arch panel.

Conclusions

A method has been evolved which provides an exact Solution without the
need for solving the considerable number of elastic equations necessary in the
classical methods. All computations are reduced to a form in which they may
be made by slide rule. Multiple open-spandrel arch Systems may equally be
solved as, by this method, the elastic constants for particular spans become
readily available.

Comparison with some experimental results shows exceedingly close

agreement. The shear resistance of the spandrel columns is shown to be an
important item in deck partieipation, enabling a large thrust to be transferred
to the deck.

Summary

Designers of arch bridges have long recognised the existence of inter-
actions between the arch rib, the spandrel columns and the deck in the case
of open spandrel struetures having füll continuity.
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The theoretical analysis of such a structure has, however, always been

regarded as so complicated that it has seldom been undertaken. Experimental
evidence has provided some indication of the effects of deck partieipation in
the stresses but there has been no Information as to the quantitative distri-
bution of stresses between the arch rib and the deck.

In this paper a method of theoretical analysis is developed which enables
the interactions between the arch rib, the spandrel columns and the deck to be

taken into aecount.
The elastic properties of the structure, valid for all conditions of loading,

are first evaluated; once this has been done the effects of any desired loading
conditions can be quite rapidly determined. In this method, elastically
equivalent closed panels are used in replacement of the whole structure. The pro-
cess employs only simple arithmetical Operations and no simultaneous equations

so that the whole Solution becomes a slide rule job.
The method is applied to a case for which experimental results are available

and, where comparison can be made, agreement is found to be very good. The
theoretical analysis, however, yields much information that was not available
from the experimental work.

The method can be used to investigate stresses due to particular loadings,
influence lines for desired stress components, effects of expansion joints,
temperature effects, etc., and can be applied equally to the Solution of multiple
arch Systems.

Resume

Les specialistes du calcul des ponts en are, ont depuis longtemps reconnu
l'existence d'influences reeiproques entre les membrures de l'arc, les colonnes
du tympan et le tablier, dans le cas des ouvrages a tympan ouvert presentant
une pleine continuite.

L'etude theorique d'un tel ouvrage a toutefois ete toujours consideree

comme si complexe qu'elle n'a ete qu'assez rarement entreprise. La pratique
experimentale a fourni quelques indications sur l'influence de la partieipation
du tablier aux contraintes; toutefois, nous ne disposons d'aucune information
sur la repartition quantitative des contraintes entre les membrures de l'arc
et le tablier.

L'auteur du present rapport expose une methode d'analyse theorique qui
permet de tenir compte des actions reeiproques entre la membrure de l'arc, les
colonnes du tympan et le tablier.

II determine tout d'abord les proprietes elastiques de 1'ouvrage, proprietes
valables pour toutes les conditions de charge; apres cette premiere etude, il est
possible de determiner tres rapidement l'influence de toutes les conditions de

charges voulues. Dans cette methode, Tensemble de Touvrage est remplace



48 L. A. Beaufoy

par des panneaux fermes elastiquement Äquivalents. Ce procede ne fait inter-
venir que des Operations arithmetiques simples, sans systemes d'equations,
de sorte que dans son ensemble la Solution ne constitute qu'un travail de

regle ä calcul.
Cette methode est appliquee ä im cas pour lequel nous disposons deja de

resultats experimentaux et oü les comparaisons revelent une excellente con-
cordance. Toutefois, l'etude theorique fournit de nombreuses informations
qu'il etait impossible de tirer de l'etude experimentale.

Cette methode peut etre utilisee pour les recherches importantes sur les

points suivants: contraintes dues ä des charges particulieres, lignes d'influence
relatives ä des composantes determinees, influence des joints de dilatation,
influence de la temperature, etc. La methode peut egalement etre appliquee
ä la Solution des systemes ä arcs multiples.

Zusammenfassung

Bei der Konstruktion von Bogenbrücken wurde das Vorhandensein von
Wechselwirkungen zwischen den Bogenrippen, den Stützen und der Fahrbahn
bei Tragwerken mit monolithischem Zusammenhang schon lange erkannt.

Die theoretische Berechnung solcher Tragwerke wurde jedoch immer als
so kompliziert angesehen, daß sie selten durchgeführt wurde. Versuche lieferten
die Anzeichen für das Mitwirken der Fahrbahn, aber sie gaben keinen
Aufschluß über die quantitative Verteilung der Spannungen auf Bogenrippen und
Fahrbahn.

Im vorliegenden Beitrag wird eine Berechnungsmethode entwickelt, welche
die Berücksichtigung des Zusammenwirkens von Bogen, Stützen und Fahrbahn

ermöglicht.
Die elastischen Eigenschaften, die für alle Belastungsfälle gültig sind, werden

zuerst berechnet; wenn das geschehen ist, kann die Wirkung jedes einzelnen
Belastungsfalls ziemlich rasch bestimmt werden. Die Konstruktion wird für
die Berechnung ersetzt durch elastisch äquivalente geschlossene Rahmenfelder.
Der Rechnungsgang erfordert nur einfache arithmetische Operationen und
keine Auflösung von Gleichungssystemen, so daß die ganze Berechnung mit
dem Rechenschieber durchgeführt werden kann.

Die Methode wird auf einen Fall angewendet, bei dem Versuchsresultate
verfügbar sind. Die Vergleiche zeigen eine gute Übereinstimmung der Resultate.

Die theoretische Berechnung liefert jedoch viele Aufschlüsse, die aus den
Versuchen nicht erhältlich waren.

Die Methode kann verwendet werden zur Untersuchung von Spannungen
infolge Teilbelastung, von Einflußlinien für bestimmte Spannungskomponenten,

der Wirkung von Dilatationsfugen, von TemperaturWirkungen, usw. Sie
kann auch zur Berechnung von Bogenteilen herangezogen werden.


	Open-spandrel arch analysis assuming continuity of structure

