Zeitschrift: Wasser Energie Luft = Eau énergie air = Acqua energia aria

Herausgeber: Schweizerischer Wasserwirtschaftsverband

Band: 114 (2022)

Heft: 2

Artikel: Wasserhaushalt der Schweiz 2021 : Einordnung und Besonderheiten,

Einführung der Normperiode 1991 bis 2020

Autor: Lustenberger, Florian / Liechti, Katharina / Barben, Martin

DOI: https://doi.org/10.5169/seals-990520

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 20.10.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Wasserhaushalt der Schweiz 2021

Einordnung und Besonderheiten, Einführung der Normperiode 1991 bis 2020

Florian Lustenberger, Katharina Liechti, Martin Barben, Massimiliano Zappa

Wasserhaushalt der Schweiz

Das Jahr 2021 begann mit einem milden, niederschlagsreichen Winter, gefolgt von einem kalten und gegen Ende hin nassen Frühling. Der Sommer brachte nördlich der Alpen sehr viel Niederschlag, der vielerorts zu Hochwasser führte. Der Herbst war dann vermehrt niederschlagsarm (MeteoSchweiz, 2022). Der Jahresniederschlag war 9 Prozent höher als während der Normperiode 1991 bis 2020 (die Normperiode wird im Folgenden auch als langjähriges Mittel oder Durchschnitt bezeichnet). Die Verdunstung war um rund 6 Prozent höher. Der Abfluss überstieg den Normwert um rund 8 Prozent (Tabelle 1). Die Speicheränderung im Vergleich zum Vorjahr war nur leicht negativ, und somit war der Verlust geringer als in der Normperiode. Der Anteil der Eisschmelze am gesamtschweizerischen Jahresabfluss lag bei rund 2 Prozent.

Regionale Unterschiede

Der Jahresniederschlag fiel in den meisten Regionen der Schweiz überdurchschnittlich aus. In den Einzugsgebieten der Aare, der Glatt, der Töss, der Thur sowie in der Genferseeregion, in grossen Teilen des Juras und des Hochrheins lagen die Werte um 15 bis 25 Prozent über der Norm. In der Zentralschweiz (Limmat, Reuss) und im Wallis (Rhone) waren die Werte leicht überdurchschnittlich. Dies lag vor allem am sehr niederschlagsreichen Sommer, der nördlich der Alpen zu den nassesten seit Messbeginn zählt (MeteoSchweiz, 2022). Im Tessin sowie im Engadin lag der Jahresniederschlag bei 90 bis 95 Prozent der Norm (Bild 1).

Beim Jahresabfluss zeichnete sich ein sehr ähnliches Muster ab. Überdurchschnittliche Abflüsse dominierten im Mittelland, im Jura und in der Genferseeregion. Sie lagen zwischen 10 und 40 Prozent über der Norm. Im Wallis, Tessin und Graubünden lagen die Abflüsse im Bereich des langjährigen Mittelwerts. Nur im

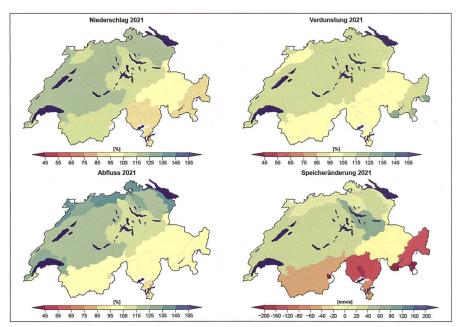


Bild 1: Prozentuale Abweichungen von 2021 gegenüber der Normperiode 1991 bis 2020 der Grosseinzugsgebiete für den mittleren Niederschlag, die mittlere Verdunstung und den mittleren Abfluss sowie die absolute Speicheränderung von Ende 2021 gegenüber Ende 2020 (in mm).

Flussgebiet	P [mm/a]			R [mm/a]			E [mm/a]			dS [mm/a]		
	1981	1991	2021	1981	1991	2021	1981	1991	2021	1981	1991	2021
	2010	2020		2010	2020		2010	2020		2010	2020	
Rhein-Domat/Ems	1516	1530	1516	1171	1173	1156	349	370	389	-4	-14	-28
Thur-Andelfingen	1416	1414	1631	890	862	1012	528	555	584	-2	-3	34
Birs-Münchenstein	1076	1039	1196	564	517	652	513	521	540	-2	2	5
Aare-Bern	1708	1694	1964	1333	1003	1477	400	430	453	-25	-39	34
Aare-Bern bis Brügg	1414	1396	1625	939	900	1046	484	511	548	-10	-14	30
Aare-Brügg bis Brugg	1337	1319	1525	838	800	940	506	528	563	-7	-10	23
Reuss-Mellingen	1743	1761	1974	1298	1296	1420	460	489	517	-16	-23	36
Limmat-Zürich	1869	1866	2136	1404	1377	1518	468	496	532	-3	-7	85
Rhône-Porte du Scex	1395	1321	1403	1176	1155	1110	335	345	343	-117	-179	-49
Ticino-Bellinzona	1694	1691	1543	1322	1313	1278	367	389	94	5	-11	-129
Tresa-Ponte Tresa	1553	1560	1444	1058	1047	986	485	512	523	10	2	-66
Inn/En-Martina	1129	1173	1090	881	907	875	276	302	350	-29	-36	-135
Politische Schweiz-Inland	1392	1382	1508	979	960	1035	434	455	481	-21	-33	-9
Zufluss aus dem Ausland				295	297	325						
Gesamtabfluss	9			1274	1257	1360						
Hydrologische Schweiz	1426	1426	1555	983	969	1048	459	482	510	-15	-25	-3

Tabelle 1: Natürlicher Wasserhaushalt der ganzen Schweiz und bedeutender Grosseinzugsgebiete für 2021 im Vergleich mit der alten Normperiode 1981 bis 2010 sowie der neuen 1991 bis 2020 (mm pro Jahr). Dargestellt sind Niederschlag (P), Abfluss (R), Verdunstung (E) und Speicheränderungen (dS, siehe Zappa et al., 2017).

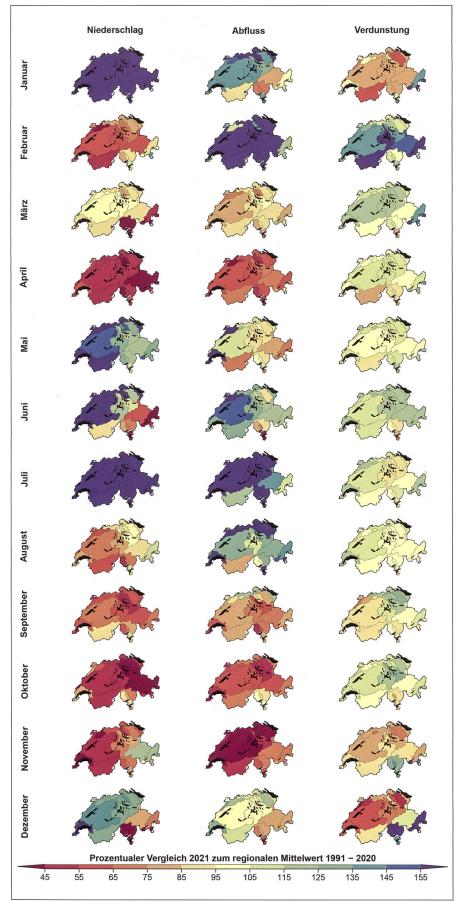


Bild 2: Prozentuale Abweichung der Monatsmittelwerte gegenüber der Normperiode 1991 bis 2020 von Niederschlag, Abfluss und Verdunstung. In den Wintermonaten führen bei der Verdunstung schon kleine Abweichungen von den Normwerten zu grossen prozentualen Unterschieden, da die absolute Verdunstung in den Wintermonaten gering ausfällt.

Südtessin war der Jahresabfluss leicht unterdurchschnittlich (Bild 1).

Nördlich der Alpen war die Verdunstung grösstenteils leicht überdurchschnittlich. Im Wallis, Tessin, Nord- und Mittelbünden lagen die Werte im Bereich der Norm. Eine Ausnahme bildet das Engadin und die Bündner Südtäler mit Werten von 25 bis 50 Prozent darüber (Bild 1).

Die Speicheränderung war nördlich der Alpen sowie in Nord- und Mittelbünden leicht positiv oder nahe bei null. Die grössere Speicherzunahme im Einzugsgebiet der Limmat liegt an der Zunahme der Schneedecke, verursacht durch intensiven Niederschlag im Dezember. Demgegenüber stehen grössere Speicherverluste im Wallis, Tessin und Engadin (Bild 1), allerdings fiel die Gletscherschmelze dort geringer aus als im Vorjahr.

Jahresverlauf und Besonderheiten

Der Januar war schweizweit geprägt von überdurchschnittlich hohen Niederschlagssummen. Der Schneespeicher in hohen Lagen füllte sich und die Abflüsse auf der Alpennordseite und im Südtessin lagen über dem langjährigen Mittelwert. Ein sehr warmer Februar führte durch erhöhte Schneeschmelze schweizweit zu stark überdurchschnittlichen Abflüssen und zu erhöhter Verdunstung, obwohl kaum Niederschlag fiel (Bild 2). März und April fielen trocken aus, was sich auch im unterdurchschnittlichen Abfluss wiederspiegelte. Die Schneespeicher nahmen kontinuierlich ab (Bild 3). Von Mai bis Ende Juli fiel schweizweit überdurchschnittlich viel Niederschlag. Intensive Gewitter, oft mit Hagel, dominierten das Wettergeschehen im Juni; weitgehend verschont blieben Graubünden und die Alpensüdseite. Im Juli waren es langanhaltende Regenfälle mit eingelagerten Gewittern, die für rekordhohe Niederschlagssummen sorgten. Diese lagen verbreitet bei Werten zwischen 200 und 300 Prozent der Norm (MeteoSchweiz, 2021). Dies führte im Juni und vor allem im Juli zu stark erhöhten Abflüssen. Ab Mitte Juli kam es nördlich der Alpen in Flüssen und Seen zu Hochwasser. In den meisten Regionen blieben die Abflüsse auch im August noch überdurchschnittlich hoch, obwohl die Niederschläge unterdurchschnittlich ausfielen (Bild 2, Bild 3). Von September bis November blieb es schweizweit sonnig und trocken. Auf der Alpennordseite wurde regional einer der niederschlagsärmsten Herbste seit Messbeginn 1864 aufgezeichnet (MeteoSchweiz, 2022). Dies führte zu Abflüssen unter der Norm.

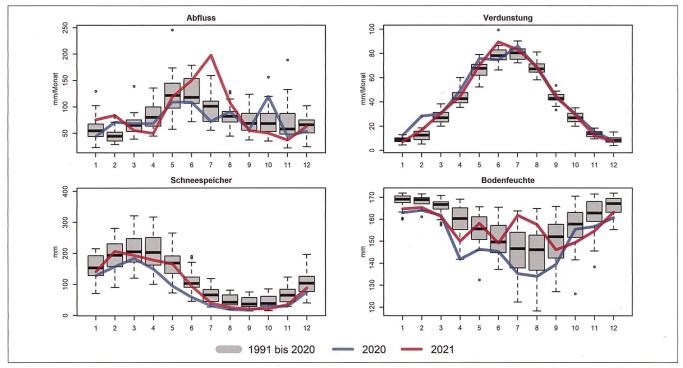


Bild 3: Monatswerte (mm/Monat oder mm) der hydrologischen Schweiz für den Abfluss, die Verdunstung, den Schneespeicher und die Bodenfeuchte. Die Boxplots fassen die Daten der Normperiode 1991 bis 2020 zusammen. Die grauen Boxen beinhalten 50 Prozent der Datenpunkte, die breite horizontale Linie in den Boxen markiert den Median aus 30 Jahren. Die blaue und rote Linie repräsentieren die Werte für die Jahre 2020 und 2021.

Infolge dieser Trockenphase fiel im Oktober und November auch die Bodenfeuchte unter die Norm, was ebenfalls die Verdunstung reduzierte. Der Dezember zeigte sich wieder niederschlagsreicher und die Werte waren, mit Ausnahme von Tessin und Graubünden, überdurchschnittlich. Für den Abfluss sowie die Verdunstung waren die Abweichungen von der Norm gering (Bild 3).

Normperiode

Die Weltorganisation für Meteorologie (WMO) definiert und koordiniert seit 1935 die Publikation von Klimanormwerten (Begert et al., 2013). Diese beziehen sich auf Klimanormperioden, welche jeweils aus einem Zeitraum von 30 aufeinanderfolgenden Jahren bestehen (WMO. 2017. WMO, 2021). Zur Berücksichtigung der langfristigen klimatischen Veränderungen wird diese Periode regelmässig angepasst. In der Vergangenheit geschah dies alle 30 Jahre. Die beschleunigte Klimaveränderung der letzten Jahrzehnte bewog die WMO jedoch dazu, eine Aktualisierung der Referenzperiode alle zehn Jahre zu empfehlen. Dieser Empfehlung folgt die MeteoSchweiz seit 2013 und verwendet seither die jeweils jüngste abgeschlossene 30-Jahresperiode, um die aktuelle Witterung einzuordnen (Begert et al., 2013). Seit Vollendung des Jahres 2020 liegen deshalb die Werte der neuen Normperiode (1991 bis 2020) vor.

Auch die Kenngrössen des schweizerischen Wasserhaushalts, welche wir jährlich in dieser Zeitschrift publizieren (siehe z.B. Liechti et al., 2021), werden deshalb neu auf der Grundlage der neuen Normperiode eingeordnet. Zur Veranschaulichung der Unterschiede, welche durch die Wahl der Normperiode entstehen, wurden in Tabelle 1 und Bild 4 sowohl die alte, wie auch die neue Normperiode dargestellt.

Die Abweichungen zwischen den Kennwerten des Jahres 2021 und den Normwerten fallen bei Verwendung der neuen Normperiode erwartungsgemäss geringer aus. Die Richtung der Abweichungen (über-/ unterdurchschnittlich) bleibt jedoch bis auf wenige Ausnahmen gleich (Tabelle 1).

Beim Abfluss decken die Daten der beiden Perioden einen ähnlichen Bereich ab. Der Hauptunterschied besteht in den Wintermonaten, wo die Mediane der neuen Normperiode höher liegen und die Spannweite der Monatswerte etwas grösser ist. Im Sommer liegen die Mediane neu etwas tiefer (Bild 4). Beim Niederschlag liegen in der neuen Normperiode die Mediane von August bis Dezember höher. Ausserdem ist die Spannweite im November und Dezember grösser. Im Sommer sind die Verdunstungswerte der neuen Periode höher. Der Schneespeicher sowie auch die Bodenfeuchte sind in allen Monaten in der

neuen Normperiode tiefer. Beim Niedrigwasserspeicher, dem dynamischen Teil des Grundwasserspeichers, der mit den Fliessgewässern in aktivem Austausch ist (siehe auch Zappa et al., 2019), liegen die Werte von April bis Dezember ebenfalls leicht tiefer. Die Gletscherschmelze ist hingegen zwischen Juni und Oktober grösser. Hier zeigt sich der Einfluss des Klimawandels deutlich.

Quellen:

Begert, M., Frei, C., Abbt, M. (2013): Einführung der Normperiode 1981-2010, Fachbericht MeteoSchweiz, 245. Liechti, K., Barben, M., Zappa, M. (2021): Wasserhaushalt der Schweiz 2020 - Einordnung und Besonderheiten. Wasser Energie Luft, 113(2), 87-88. MeteoSchweiz (2021): Klimabulletin Juli 2021. Zürich. MeteoSchweiz (2022): Klimabulletin Jahr 2021. Zürich. World Meteorological Organization, WMO, (2017): WMO Guidelines on the Calculation of Climate Normals. Geneva. ISBN: 978-92-63-11203-3. World Meteorological Organization, WMO (2021): Technical Regulations, Volume I: General Meteorological Standards and Recommended Practices. Geneva. ISBN: 978-92-63-10049-8. Zappa, M., Liechti, K., Barben, M. (2017): Wasserhaushalt der Schweiz 2.0-Eine validierte, modellgestützte Methode für die Bilanzierung der Wasserressourcen der Schweiz. Wasser Energie Luft, 109(3), 203-212. Zappa, M., Liechti, K., Winstral A., Barben, M. (2019):

Trockenheit in der Schweiz: Vergleich der Jahre 2003,

2015 und 2018. Wasser Energie Luft, 111(2), 95-100.

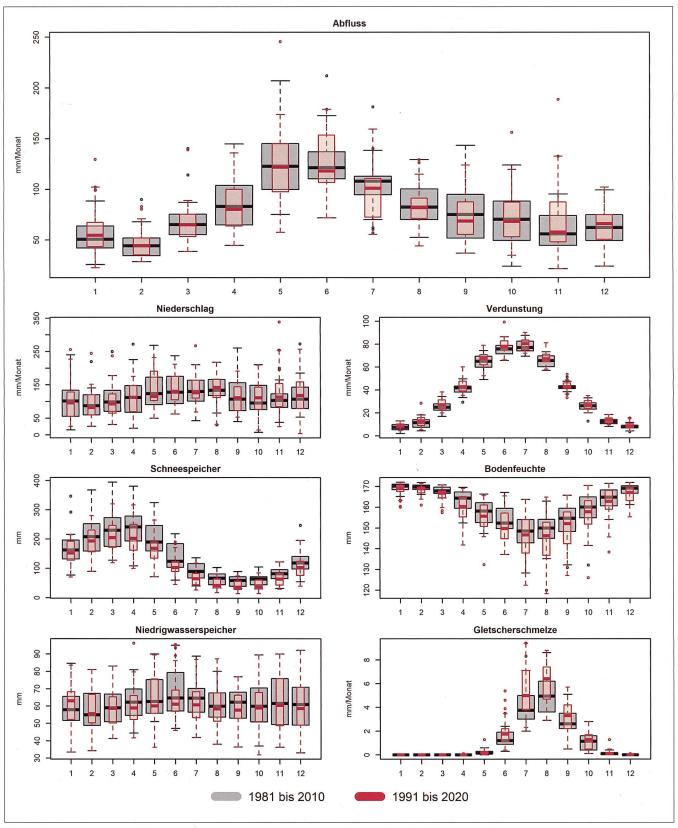


Bild 4: Monatswerte (mm/Monat oder mm) der hydrologischen Schweiz für den Abfluss, den Niederschlag, die Verdunstung, den Schneespeicher, die Bodenfeuchte, den Niedrigwasserspeicher und die Gletscherschmelze. Die grauen Boxplots fassen die Daten der alten Normperiode 1981 bis 2010 zusammen, die roten Boxplots diejenigen der neuen Normperiode 1991 bis 2020. Die Boxen beinhalten 50 Prozent der Datenpunkte, die breite horizontale Linie in den Boxen markiert den Median aus 30 Jahren.

Autorinnen und Autoren:
Florian Lustenberger
Katharina Liechti, kaethi.liechti@wsl.ch

Massimiliano Zappa Eidg. Forschungsanstalt WSL, Zürcherstrasse 111, CH-8903 Birmensdorf

Martin Barben, Bundesamt für Umwelt, Abteilung Hydrologie, CH-3003 Bern-Ittigen