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Schneekartierung aus dem All - das
Potenzial frei verfügbarer Satellitendaten

Reik Leiterer, Hendrik Wulf, Gillian Milani, Bernhard Sassik, Yves Bühler, Jan D. Wegner

Zusammenfassung
In dieser Studie wird ein neuer Ansatz für eine satellitengestützte Kartierung der

Schneebedeckung und der Schneehöhen vorgestellt. Die resultierenden Karten

geben die Schneebedeckung und die Schneehöhen für ganze Gebirgsketten auf

täglicher Basis mit einer räumlichen Auflösung von 20 m wieder. Die Validierung des
entwickelten geostatistischen Modells erfolgte auf der Grundlage von über 60

flugzeuggestützten Messungen in den europäischen Alpen und den Rocky Mountains.
Die daraus resultierenden Korrelationskoeffizienten für die Schneehöhenabschätzungen
variieren zwischen 0,13 und 0,73 und weisen einen durchschnittlichen RMSE von
0,53 m auf. Die grossen Variationen im Korrelationskoeffizienten sind durch die

eingeschränkt verfügbaren Satellitendaten bei starken Neuschneefällen in Kombination
mit langanhaltender Wolkenbedeckung bedingt. Das Verfahren zur Kartierung der

Schneebedeckung resultierte in einer Overall Accuracy von 94%. Angesichts der

dynamischen und komplexen Natur der Schnee- und Schneehöhenverteilung sind
diese Ergebnisse ein wichtiger Meilenstein auf dem Weg zu einer verbesserten,
flächendeckenden Schneekartierung in alpinen Regionen.

1. Methoden der Schneekartierung

Schnee gehört zu den sogenannten essen-
ziellen Klimavariablen (EC\/-siehe Infobox)

und trägt somit entscheidend zur
Charakterisierung des Klimas und

diesbezüglicher Veränderungen bei. Hierbei
wird die Variable Schnee in die Produkte

Schneebedeckung, Schneehöhe und

Schneewassergehalt differenziert (GCOS,

2020). Diese Produkte sind nicht nur für
die Klimaforschung von besonderem Inte¬

resse, sondern auch für viele Interessengruppen

in Tourismus, Risikomanagement
und Wasserkrafterzeugung (Gonseth, 2013;

Cherry et ai, 2010).

Die präzise Detektion und Charakterisierung

der Schneedecke ist aufgrund
deren hoher zeitlicher und räumlicher
Variabilität eine grosse Herausforderung
(Grünewald et ai, 2010; Anderton et ai,
2004). Diese Variabilität wird mit den be¬

stehenden Ansätzen nur bedingt abgebil-
det-sei es in Bezug auf die räumliche
Detailgenauigkeit, die Aktualität der Messungen

oder die Widerspiegelung topografi-
scher Variationen. Stationsmessungen, wie

z.B. durch IMIS Interkantonales Mess-
und Informationssystem, betrieben durch
das WSL-Institut für Schnee- und

Lawinenforschung, SLF) zur Verfügung gestellt,
erlauben hoch präzise Messungen und können

die zeitliche Variabilität sehr gut
abbilden, sind aber nur Messungen an einem

Punkt und sind aufgrund der geografi-
schen Verteilung der Stationen für eine

Charakterisierung der kleinräumlichen
Variabilität des Schneedecke bzw. der
Schneehöhen nur sehr eingeschränkt
geeignet (Noetzli et ai, 2019; IMIS, 2020).
Mithilfe geostatistischer Methoden und unter
Verwendung geeigneter Atmosphären- und

Schneeverteilungsmodelle ist eine
Interpolation zwischen den jeweiligen Stationen

zwar möglich (vgl. Mott et ai, 2010), aber
die Zuverlässigkeit und Aussagekraft der
interpolierten Werte sind insbesondere für
kleinräumliche Variationen aufgrund der
hohen Komplexität der Wechselwirkungen
von Topografie, Vegetationsbedeckung
und mikrometeorologischer Prozesse nur

Essential Climate Variables- ECV

Eine ECV ist laut dem Global Climate

Observing System (GCOS) eine
physikalische, chemische oder biologische
Variable oder Variablengruppe, die zur
Charakterisierung des Erdklimas
beiträgt. Eine ECV muss dementsprechend
eine Klimarelevanz aufweisen und
Operationen auf globaler Ebene kosteneffizient

erfassbar sein. Die Erfassung der
ECVs hilft, aktuelle und zukünftige
Entwicklungen des Klimas zu verstehen,
diesbezügliche Risikoanalysen
durchzuführen und Anpassungsstrategien zu
entwickeln. (GCOS, 2020)

Bild 1 : Falschfarben-Darstellung der Schweizer Alpen, basierend auf den frei
verfügbaren Daten von Sentinel-2, einer Satellitenmission der Europäischen
Raumfahrtsorganisation ESA, die eine wöchentliche Abdeckung mit bis zu
10m räumlicher Auflösung ermöglicht. Detail: Die Wasserspeicher Grimselsee,
Oberaarsee, Gelmersee und Räterichsbodensee in der Region Grimsel.
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bedingt gegeben (Grünewald et al., 2013).
In diesem Zusammenhang werden zunehmend

Daten der Erdbeobachtung (EO)

integriert, da diese die notwendige hohe
räumliche und zeitliche Auflösung für eine
flächendeckende Kartierung der Schneedecke

aufweisen (Noetzlietat., 2019; Wang
et ai, 2018; Liu et al., 2013). Während für
lokale Auswertungen vor allem
flugzeuggestützte Verfahren und Drohnenbeflie-

gungen Anwendung finden, ermöglicht die
aktuelle Generation von Satelliten die
Kartierung der Schneebedeckung für ganze
Gebirgsketten (Bild 1).

Nachfolgend wird ein innovativer
Ansatz vorgestellt, wie mit der synergetischen
Verwendung verschiedener Satellitendaten
eine signifikante Verbesserung der Schnee-

bedeckungs- und Scheehöhenkartierung
erzielt werden kann. Der Fokus liegt hierbei

vor allem auf der präzisen räumlichen
Repräsentation der Variationen in der Schneedecke

und auf einer möglichst aktuellen

Abbildung der Schneesituation vor Ort. Die

erzielten Ergebnisse wurden mit aussagekräftigen

Referenzdaten, die mit Flugzeugen

in der Schweiz und in den Vereinigten
Staaten erhoben wurden, validiert.

2. Daten

2.1 Netzwerke von Bodenstationen
In vielen Ländern, in denen Schnee eine
relevante Grösse ist, werden umfangreiche
Netzwerke mit stationären Messungen
betrieben. In der Schweiz umfasst dies neben

IMIS (182 Stationen) auch das von Meteo-
Schweiz betriebene SwissMetNet mit ca.
160 Stationen (SwissMetNet, 2020). In den

Vereinigten Staaten bieten die National Centers

for Environmental Information (NCEI)

freien Zugang zu einem dichten landesweiten

Netzwerk an Stationen, und das
NRCS National Water and Climate Centre
betreibt zusätzlich automatisierte Stationen
in den abgelegenen und unzugänglichen
Regionen (NRCS, 2020). Obwohl
insbesondere die Schneehöhen hohe räumliche

Schwankungen aufweisen können und
insbesondere bei den automatisierten Stationen

auch Fehlfunktionen und -messungen
nicht auszuschliessen sind, liefern diese
Netzwerke wertvolle Informationen über die

aktuellen Schneeverhältnisse und deren

Veränderung in Raum und Zeit.

2.2 Flugzeuggestützte Messungen
Eine hoch präzise Erfassung räumlicher
Schneehöhenveränderungen ist auf Grundlage

von Airborne-Laserscanning-Flug-
kampagnen (ALS) oder überfotogramme-
trische Auswertung von Luftbildern möglich

(Bühler et ai, 2015). Diese Verfahren sind

jedoch dadurch limitiert, dass sie nur in

unregelmässigen Abständen und nur für
begrenzte Flächen umsetzbar sind. Darüber

hinaus ist die Durchführung der
Flugkampagnen mit zum Teil hohen Kosten
verbunden. Das am weitesten fortgeschrittenen

Projekt für ALS-basierte Schneekartierungen

ist das Airborne Snow Observatory
(ASO) der NASA (Painter et ai, 2016). Zu

den Standardprodukten des ASO gehören

regionale Kartierungen von Schneehöhen,

Schneewassergehalt und Schneealbedo in

einer räumlichen Auflösung von 3 bis 50 m.

In der Schweiz hat das SLF regionale
Schneehöhenerfassungen mit einer räumlichen

Auflösung von 2 m, basierend auf der

fotogrammetrischen Auswertung von

flugzeuggestützten ADS-80/100-Erhebungen,
im Sommer und im Winter erstellt (Marty et
al., 2019). Die ASO-Daten wurden in dieser
Studie zur Analyse des Zusammenhanges
zwischen Schneehöhenverteilung und

kleinräumlicher Topografie (d.h. Reliefelemente
wie Sattel, Kessel oder Ebenen) verwendet,
während die ADS-80/100-Kartierungen
primär als unabhängige Validierungsquelle
dienten.

Produktgenerierung mit 20 m räumlicher
Auflösung und in Near Real Time (NRT), d.h.

mit einer zeitlichen Differenz zwischen
Satellitenaufnahme und Produktgenerierung
von weniger als 1 Tag. Tabelle 1 listet die

verwendeten Satelliten mit den jeweiligen
räumlichen und zeitlichen Spezifikationen auf.

Satellit

(Sensor)

Räumliche

Auflösung

(Pixeldimension

in
m)

Zeitliche

Auflösung

(Aufnahmeintervall

am

Äquator)

Sentinel -1 A/B (C-SAR) 30 m alle 6 Tage

Sentinel-2 A/B (MSI) 10/20m alle 5 Tage

Landsat-7 (ETM+) 30 m alle 16 Tage

Landsat -8 (0LI) 30 m alle 16 Tage

Terra/Aqua (M0DIS) 500 m täglich

SU0MI NPP (VIIRS) 500 m täglich

Tabelle 1: Übersicht über die
verwendeten Satellitendaten und deren
raum-zeitlichen Auflösung.

3. Methodik

2.3 Digitale Gelände-und
Oberflächenmodelle

Die Grundlage für die topografischen
Auswertungen bilden die verschiedenen frei

verfügbaren Gelände- und Oberflächenmodelle.

Primär fand hierbei das Global

Digital Surface Model «ALOS World 3D-
30 m» Verwendung, da bisherige Studien auf
die bessere Qualität gegenüber den ebenfalls

gebräuchlichen «SRTM GL1 -30 m» und

«ASTER GDEM-30m» verweisen (Florinsky
et ai, 2018). In Regionen mit deutlichen
Anomalien in dem ALOS World 3D, wurde ein

Modell entwickelt, um ein synergetisches
Produkt, basierend auf den SRTM GL1

und dem ASTER GDEM, zu berechnen.

2.4 Satellitendaten
Satellitendaten bieten eine einzigartige
Datenquelle, um die räumliche und zeitliche

Dynamik der Schneebedeckung auch für
grossflächige Fragestellungen abbilden zu
können. Dabei unterscheiden sich die jeweiligen

Aufnahmesysteme hinsichtlich ihrer
räumlichen und zeitlichen Auflösung sowie
in dem ableitbaren Informationsgehalt der

jeweiligen Messungen. Um diese
Eigenschaften optimal zu kombinieren, wurde
eine Multi-Sensor-Modell mit Methoden des

maschinellen Lernens entwickelt. Dies

erlaubt nicht nur, Einschränkungen durch
intensive Wolkenbedeckung oder
Sensorartefakte auszugleichen, sondern auch eine

Der entwickelte Ansatz zur grossflächigen
Erfassung der Schneebedeckung und zur
räumlich hochaufgelösten Kartierung der
Schneehöhen verknüpft die verschiedenen
Satellitendaten (vgl. Tabelle 1) mit den
Informationen aus den meteorologischen
Netzwerken unter Berücksichtigung der topografischen

Einflüsse auf die Schneeverteilung.
In einem ersten Schritt wurde ein

Basismodell, basierend auf den digitalen Gelände-

und Oberflächenmodellen, berechnet,
welches den Zusammenhang zwischen den

verschiedenen Reliefelementen und der

Schneehöhenverteilung widerspiegelt. Zu

diesem Zweck wurden die Schneehöheninformationen

aus den ASO-Datensätzen
(vgl. 2.2) mit verschiedenen topografischen
Merkmalen (z.B. Hangneigung, Hangorientierung

und Windexposition) räumlich
verschnitten. Dabei fanden 58 verschiedene
ASO-Datensätze aus den Jahren 2013 bis

2018 Verwendung. Die resultierenden
Regressionsmodelle verdeutlichen die jeweiligen

durchschnittlichen Zusammenhänge.
In Bild 2 ist beispielhaft der Zusammenhang

zwischen der Hangneigung/Hangexposition

und den Schneehöhen
wiedergegeben, wobei die Graphen sich aus der
mittleren Korrelation der jeweils einzeln

durchgeführten Auswertungen der 58 ASO-

Datensätze ergeben. Basierend auf den
absoluten Schneehöhen, wurde hierbei
der Normalisierungskoeffizient berechnet.
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Bild 2: Empirisch abgeleiteter Zusammenhang zwischen Schneehöhen und der
Hangneigung/Hangexposition. Der darauf basierende Normalisierungskœffizient
(Y-Achse) fungiert als Indikator für die Gewichtung der absoluten Schneehöhen.

Dieser gibt an, ob und in welcher Grössen-

ordnung die Verteilung der Schneehöhen in

Hinblick auf den Einfluss der Hangneigung/
Hangexposition optimiert werden können.

Dieses Vorgehen wurde für alle topo-
grafischen Merkmale bzw. Reliefelemente

durchgeführt. Die resultierenden
Informationsebenen der Normalisierungskoeffizienten

wurden nachfolgend kombiniert, womit
für jeden Bildpunkt Pixel) die Information
über die mittlere Schneehöhenabweichung
in Bezug auf die kleinräumliche Topografie
berechnet werden konnte. Dieser Kom-

binationslayer wurde dann als statische

Eingangsgrösse in den Algorithmus zur
Schneehöhenbestimmung integriert.

In einem weiteren Schritt wurde ein

Modell entwickelt, welches die einzelnen

Schneehöhenmessungen aus den
Bodennetzwerken in eine flächendeckende
Repräsentation überführt. Dieser Vorgang
basierte auf einem generalisierten
additiven Modell (GAM) unter Berücksichtigung

der digitalen Gelände- und
Oberflächenmodelle, des topografischen Kom-

binationslayers und der klimatischen
sowie aktuellen Schneegrenze, basierend
auf den Satellitendaten. Um die kleinräumlichen

Variationen in der Schneebedeckung
abzubilden, wurde in einem letzten Schritt
die räumlich hochaufgelöste direkte
Kartierung mittels Satellitendaten integriert. Damit

konnten nicht nur vereinzelte Schneeflächen

unterhalb bzw. schneefreie
Gebiete oberhalb der Schneegrenze detek-
tiert werden, sondern auch die Erfassung
und Charakterisierung möglicher
Schneebedeckung in Waldgebieten (d.h. unter dem

Kronendach) erfolgen.
Die Abschätzung der Zuverlässigkeit

der so generierten Schneebedeckungsund

Schneehöhenprodukte erfolgte über

unabhängige Datensätze des ASO
sowie die Schneehöhenkarten, basierend
auf ADS-80/100-Befliegungen des SLF

(vgl. 2.2). Aufgrund der unterschiedlichen
räumlichen Auflösung dieser Referenzdaten

wurde der Vergleich mit den ASO-Daten
mit einer räumlichen Auflösung von 50m,
und der Vergleich mit den SLF-Daten mit
einer räumlichen Auflösung von 2 m

durchgeführt. Die statistische Auswertung um-
fasste hierbei die Metriken Root Mean

Square Error (RMSE), Standardabweichung
(StdDev) und Pearson-Korrelationskoeffi-
zient (Corr. Coef.).

4. Ergebnisse

Der vorgestellte Ansatz ermöglicht die

Generierung von Karten, in denen die Schnee¬

bedeckung und die jeweiligen Schneehöhen

ersichtlich sind. Diese Karten werden

täglich erstellt, haben eine räumliche

Auflösung von 20x20m (Pixeldimension)
und können grundsätzlich für jede Region
auf der Erde berechnet werden. Die

Kartierung der Schneebedeckung resultierte
hierbei in einer Overall Accuracy von 94%.
Die Qualität der Kartierung der Schneehöhen

zeigte eine hohe Abhängigkeit von
den verfügbaren Stationsdaten, da diese
einen signifikanten Einfluss auf die
Kalibrierung der satellitengestützten Kartierung

der Schneehöhenverteilung haben. In

Bild 3 ist ein Ausschnitt der Schneehöhenkarte

für die Region Aletsch visualisiert.
Im Schneehöhenprodukt wird hierbei

gut sichtbar, wie die topografischen
Eigenschaften sich in der Ausprägung der
Schneehöhen widerspiegeln und wie die

generelle Verteilung der Schneebedeckung
mit dem Echtfarbenbild korreliert. Dabei
ist zu berücksichtigen, dass auch bei den

Bodenstationen die jeweiligen topografischen

Bedingungen als beschreibende
Variablen in Bezug auf die Stationsmessungen

in den Modellansatz übernommen
wurden. Um die absoluten Schneehöhenwerte

zu validieren, erfolgte ein punktueller
Vergleich, basierend auf einem stratifizier-
ten Stichprobenansatz, mit den
Schneehöhenwerten der ASO-Datensätze sowie
den SLF-Schneehöhenkarten. In Bild4 sind

Bild 3: Die Region Aletsch in einer Echtfarben-Darstellung, aufgenommen durch
den Satelliten Sentinel-2 (links), und die daraus abgeleitete Karte der Schneebedeckung

und Schneehöhenverteilung (rechts). Aufnahmezeitpunkt: 3.12.2019.
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Bild 4: Beispiele für die berechneten Streudiagramme der Schneehöhenkorrelation

für das Gebiet der Sierra Nevada (links) und für Davos (rechts).
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exemplarisch zwei Streudiagramme dargestellt,

die den Zusammenhang zwischen
den absoluten Schneehöhenwerten,
berechnet mit der vorgestellten Methodik,
und den Schneehöhenwerten, basierend
auf den ASO-Daten (für das Gebiet Sierra

Nevada) bzw. den SLF-Daten (für das
Gebiet Davos), aufzeigen.

Im Vergleich zu den hoch genauen
ASO-/SLF-Referenzdaten wird deutlich,
dass insbesondere in Bereichen mit Schneehöhen

>200cm der neu entwickelte Ansatz
tendenziell die tatsächlichen Schneehöhen

unterschätzt. Mit einem mittleren RMSE

über alle Datensätze von 52,6cm zeigt der
hier vorgestellte satellitengestützte Ansatz

jedoch grundsätzlich eine gute
Übereinstimmung mit den Referenzdaten. Auch

wenn mittels Drohnenbefliegung oder

flugzeuggestützten Methoden aktuell RMSE-
Werte von bis zu 10cm und über die räumlich

höchstauflösenden Daten der kommerziellen

Satellitenmissionen ein mittlerer RMSE von
50cm erreicht werden kann (vgl. Bühler et al.,

2020), so sind diese Verfahren jedoch in

ihrer räumlichen und zeitlichen Abdeckung
limitiert und häufig mit einem vergleichsweise

hohen Kostenaufwand verbunden.
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