Zeitschrift: Wasser Energie Luft = Eau énergie air = Acqua energia aria

Herausgeber: Schweizerischer Wasserwirtschaftsverband

Band: 111 (2019)

Heft: 2

Artikel: Gefahrenbeurteilung von Schwemmholzverklausungen in Flüssen. Teil

1, Verklausungswahrscheinlichkeit

Autor: Schalko, Isabella / Schmocker, Lukas / Weitbrecht, Volker

DOI: https://doi.org/10.5169/seals-941516

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 18.10.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Gefahrenbeurteilung von Schwemmholzverklausungen in Flüssen: Teil 1 – Verklausungswahrscheinlichkeit

Isabella Schalko, Lukas Schmocker, Volker Weitbrecht, Robert Boes

Zusammenfassung

Während Hochwasserereignissen können Schwemmholzverklausungen vor allem an Brückenbauwerken auftreten. Um kritische Brückenquerschnitte zu identifizieren, ist die Vorhersage der Verklausungswahrscheinlichkeit von massgebender Bedeutung. Frühere Untersuchungen wurden hauptsächlich für Brückendeckwerke durchgeführt. Brückenpfeiler können die Verklausungswahrscheinlichkeit zusätzlich erhöhen, wurden bisher aber nicht detailliert untersucht. Im Rahmen einer Doktorarbeit wurden deshalb Modellversuche an der VAW durchgeführt, um die Verklausungswahrscheinlichkeit bei Brückenpfeilern zu ermitteln. Während der Modellversuche wurde die Verklausungswahrscheinlichkeit in Abhängigkeit der (1) Zuflussbedingungen, (2) Pfei-Iereigenschaften mit unterschiedlicher Rauheit, Form, Durchmesser und Anzahl, (3) Holzeigenschaften mit verschiedenen Holzlängen, -durchmessern, -dichten, Hölzern mit und ohne Ästen, Holztransportarten (Einzel- versus schubweiser Transport) und des (4) Sohlmaterials bzw. Pfeilerkolks untersucht. Die Ergebnisse zeigen, dass die Verklausungswahrscheinlichkeit hauptsächlich eine Funktion der Zufluss-Fliessgeschwindigkeit und Holzlänge ist. Die Ergebnisse wurden in einer Abschätzgleichung zusammengefasst, um die Verklausungswahrscheinlichkeit zu quantifizieren und so die Gefahrenbeurteilung in der Praxis zu ermöglichen.

1. Einleitung

Während Hochwasserereignissen kann Schwemmholz aufgrund von Seitenerosion oder Hangrutschungen in das Gewässer eingetragen werden. Zusätzlich kann Holz, das sich bereits im Gerinne befindet (Gerinneholz oder Totholz), mobilisiert werden. Durch die transportierte Schwemmholzmenge erhöht sich die Gefahr von Schwemmholzverklausungen an Brückenbauwerken oder Wehren und somit die Gefahr von Ausuferungen sowie Kolkbildung an Pfeilern (Bild 1). Brückenund Wehrpfeiler erhöhen dabei zusätzlich die Verklausungswahrscheinlichkeit. Um die Gefahrenbeurteilung bei Hochwasserereignissen zu verbessern, ist eine Abschätzung der Verklausungswahrscheinlichkeit von Schwemmholz an Brücken zwingend erforderlich.

Bezzola et al. (2002) und Schmocker und Hager (2011) haben mit Hilfe von hydraulischen Modellversuchen die Verklausungswahrscheinlichkeit an Brückendeckwerken untersucht. In beiden Studien wurden die Ergebnisse in Abschätzgleichungen zusammengefasst, um die Verklausungswahrscheinlichkeit p in Abhängigkeit der Zuflussbedingungen und

Holzeigenschaften zu bestimmen. Bei den Modellversuchen wurde p basierend auf der Zugabe von drei (Bezzola et al., 2002) bzw. acht (Schmocker und Hager, 2011) Einzelhölzern bestimmt. Gemäss Bezzola et al. (2002) ist p hauptsächlich eine Funktion der Holzabmessungen (Länge und Durchmesser) in Relation zu den Brücken- bzw. Querprofilabmessungen. Schubweiser

Schwemmholztransport resultierte in höheren Verklausungswahrscheinlichkeiten im Vergleich zu Einzeltransport. Aufgrund der limitierten Anzahl an Modellversuchen wurde dieser Aspekt nicht in der Abschätzgleichung berücksichtigt. Gemäss *Bezzola et al.* (2002) hat die Zufluss-Froude-Zahl F_o einen geringen Einfluss auf *p*, während *Schmocker* und *Hager* (2011) F_o als massgebenden Parameter definiert haben.

Der Einfluss von Zuflussbedingungen, Holzeigenschaften und Pfeilerformen auf die Verklausungswahrscheinlichkeit bei Brückenpfeilern wurde mit Hilfe von Modellversuchen von Lyn et al. (2003) und De Cicco et al. (2018) untersucht. Die Ergebnisse zeigten, dass die Zufluss-Fliessgeschwindigkeit und Holzlänge einen massgebenden Einfluss auf die Verklausungswahrscheinlichkeit haben. Die Pfeilerform wurde von De Cicco et al. (2018) variiert, jedoch waren die Unterschiede der Verklausungswahrscheinlichkeit gering. Die Ergebnisse beider Studien wurden nicht in einer Abschätzgleichung zusammengefasst. Untersuchungen zu Schwemmholzverklausungen an anderen Bauwerken (Geschiebesammler, Hochwasserentlastungsanlagen) sind u.a. in

Bild 1. Verklausung an einem Brückenpfeiler und strukturelle Versagenswahrscheinlichkeit aufgrund von Kolk (Foto: bridgemastersinc.com).

Piton und Recking (2015), STK (2017) oder Furlan et al. (2018a) zusammengefasst.

Basierend auf der vorhandenen Literatur kann die Verklausungswahrscheinlichkeit p somit für Brückendeckwerke abgeschätzt werden. Die massgebenden Parameter, die den Verklausungsprozess definieren, sind jedoch unterschiedlich. Eine Abschätzgleichung, die den Einfluss von Brückenpfeilern und schubweisen Schwemmholztransport berücksichtigt, ist zurzeit nicht vorhanden. Im Rahmen einer Doktorarbeit zur Gefahrenbeurteilung von Schwemmholzverklausungen in Flüssen wurden deshalb Modellversuche an der Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie (VAW) durchgeführt, um die Verklausungswahrscheinlichkeit p bei Brückenpfeilern in Abhängigkeit der (1) Zuflussbedingungen, (2) Pfeilereigenschaften, (3) Holzeigenschaften, und eines (4) Pfeilerkolks zu bestimmen (Schalko, 2018; Schalko et al., 2019a). Die Ergebnisse der Modellversuche zur Verklausungswahrscheinlichkeit werden in diesem Heft (Teil 1) zusammengefasst und die Abschätzgleichung für die Berechnung der Verklausungswahrscheinlichkeit bei Brückenpfeilern vorgestellt. In einem zweiten Teil (Schalko et al., 2019b) werden die Ergebnisse zum Aufstau infolge einer Schwemmholzverklausung vorgestellt. Die Doktorarbeit wurde vom BAFU finanziert und war Teil des interdisziplinären Forschungsprojekts WoodFlow: Schwemmholzmanagement an Fliessgewässern (Ruiz-Villanueva et al., 2016).

2. Methodik

2.1 Versuchsaufbau und Messtechnik

Die Modellversuche wurden an der VAW in einem neigbaren Kanal (10.7 m lang, 1.0 m

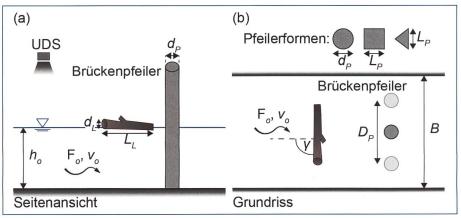


Bild 2. Seitenansicht und Situation des Versuchsaufbaus mit 1 bzw. 2 Pfeilern; UDS = Ultraschallsensor, h_o = Zufluss-Wassertiefe, F_o = Zufluss-Froude-Zahl, v_o = Zufluss-Fliessgeschwindigkeit, L_L = Holzlänge, d_L = Holzdurchmesser, d_P = Pfeilerdurchmesser, L_P = Pfeilerlänge, γ = Holzausrichtungswinkel, D_P = axialer Pfeilerabstand, B = Kanalbreite und verschiedene Pfeilerformen.

Testserie	Tests	Parameter
А	A1	Anzahl Versuchswiederholungen
	A2-A9	Reproduzierbarkeit
	A10-A18	Holzausrichtungswinkel y
В	B1-B43	Zuflussbedingungen (h_o , v_o , F_o) und Holzlänge L_L
	B44-B55	Holzdurchmesser d_L
С	C1-C4	Pfeilerrauheit
	C5-C16	Pfeileranzahl mit $L_L > D_P$
	C17-C28	Pfeilerform
	C29-C37	Pfeilerdurchmesser d _P
D	D1-D7	Äste
	D8-D11	Holzdichte $\rho_{\scriptscriptstyle L}$
Е	E1-E17	schubweiser Transport (3-5 Hölzer)
	E18-E21	kontinuierlicher Transport (40 Hölzer)
	E22-E25	schubweiser Transport (40 Hölzer)
F	F1-F6	Pfeilerkolk

Tabelle 1. Testprogramm der Testserien A–F mit untersuchten Parametern (weitere Details siehe Schalko, 2018).

breit, und 0.8 m tief) im Massstab 1:20 durchgeführt. Der Durchfluss von bis zu Q = 265 l/s wurde mit Hilfe eines MID (magnetisch-induktiver Durchflussmesser) gemessen. Die Zuflussbedingungen wurden mit der Kanalneigung Jo und dem Durchfluss Q variiert. Die Wassertiefe wurde mit einem Ultraschallsensor (UDS) und die Sohltopografie mit einem Laser-Distanz-Sensor (LDS) gemessen. Der Grossteil der Versuche wurde mit einer rauen ($k_{St_Prototyp}$ ≈ 30 m^{1/3}/s), festen Sohle durchgeführt. Ein kreisförmiger Brückenpfeiler aus Aluminium wurde 5 m unterstrom des Einlaufs in die Mitte des Kanals platziert. Für ausgewählte Versuche wurde die Pfeileranzahl, Pfeilerrauheit und Pfeilerform variiert. Weiter wurde für eine Testserie eine bewegliche Sohle mit Einkornmaterial eingebaut. Das zugegebene Holz sowie das erodierte Sediment wurden am Kanalende in einem Korb aufgefangen. Der Versuchsaufbau und die Notation sind in Bild 2 dargestellt.

2.2 Modellschwemmholz

Modellschwemmholz wurde natürliches Holz mit und ohne Ästen verwendet und die Abmessungen basierend auf Erfahrungswerten von früheren Hochwasserereignissen gewählt (Bezzola und Hegg, 2007; Manners et al., 2007). Die Holzlängen variierten zwischen L_L = 0.08 m, 0.10 m, 0.20 m und 0.40 m und die Holzdurchmesser zwischen $d_1 = 0.004$ m, 0.015 m und 0.03 m. Hölzer ohne Äste entsprechen dem Holztyp «Reg.». Der Einfluss von Ästen auf die Verklausungswahrscheinlichkeit wurde mit Hilfe von zwei verschiedenen Holztypen untersucht. Der «2D»-Typ entspricht einem Holz mit Ästen auf zwei Seiten, der «3D»-Typ weist Äste

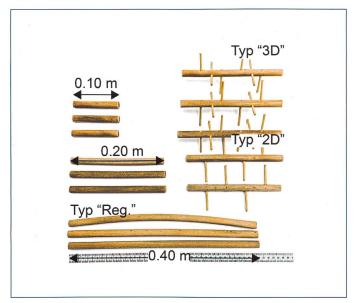


Bild 3. Modellschwemmholz mit $d_L = 0.015 \, m$.

auf vier Seiten auf (*Bild 3*). Die Äste sind 0.04 bis 0.05 m lang und 0.004 m dick. Für den Grossteil der Versuche wurde das Holz vor den Versuchen nicht gewässert und hatte eine Dichte von ca. $\rho_L = 460 \text{ kg/m}^3$. Die Hölzer wurden immer schwimmend transportiert und hatten somit keinen Kontakt mit dem Kanalboden. Um den Einfluss der Holzdichte auf die Verklausungswahrscheinlichkeit zu untersuchen, wurden Hölzer für 2 bis 5 Monate gewässert, womit sich die Dicht auf ca. $\rho_L = 850 \text{ kg/m}^3 \text{ bzw.}$ $\rho_L = 1320 \text{ kg/m}^3 \text{ erhöhte.}$

2.3 Versuchsablauf und Versuchsprogramm

Die Verklausungswahrscheinlichkeit *p* wurde mit Hilfe von sechs Testserien (A–F, *Tabelle 1*) ermittelt, die 153 Einzelversuche und 10 020 zugegebene Hölzer umfassten.

In Testserie A wurden Reproduzierbarkeitsversuche durchgeführt und die erforderliche Anzahl der Versuchswiederholungen ermittelt, indem bei einem Versuch ein Holzstück 300-mal zugegeben wurde (Test A1; Tabelle 1). Weiter wurde der Einfluss des Holzausrichtungswinkels bezogen auf die Kanalachse (Bild 2b) $y = 0^{\circ}$, 45° und 90° auf p untersucht. Basierend auf den Ergebnissen dieser Versuchsserie wurde der Versuchsablauf für die Standardversuche festgelegt. Ein Holzstück wurde quer zur Fliessrichtung ($y = 90^{\circ}$) 1 m oberstrom des Brückenpfeilers in Kanalmitte zugegeben, um die höchste Verklausungswahrscheinlichkeit zu ermitteln. Falls das Holzstück beim Brückenpfeiler hängen blieb, wurde dies als «Verklausung» bewertet und das Holzstück wieder aus dem Kanal entnommen. Dieser Vorgang wurde für jede Versuchseinstellung 40-mal wiederholt, um eine statistisch signifikante Verklausungswahrscheinlichkeit mit einer Genauigkeit von ±10 % (basierend auf dem Test mit 300 Wiederholungen; Test A1 in Tabelle 1) zu berechnen. Die Reproduzierbarkeit der Modellversuche konnte für verschiedene Zuflussbedingungen und Holzabmessungen bestätigt werden (Schalko, 2017).

In Testserie B wurde der Einfluss der Zuflussbedingungen ($h_o=0.05-0.20\,\mathrm{m},\,v_o=0.08-1.12\,\mathrm{m/s},\,F_o=0.08-1.2$), der Holzlänge ($L_L=0.08\,\mathrm{m},\,0.10\,\mathrm{m},\,0.20\,\mathrm{m}$ und 0.40 m) und des Holzdurchmessers ($d_L=0.004\,\mathrm{m},\,0.015\,\mathrm{m}$ und 0.03 m) auf p untersucht.

In Testserie C wurden für ausgewählte Zuflussbedingungen die Pfeilerrauheit, Pfeileranzahl und Pfeilerform variiert. Bei der Pfeilerrauheit wurde p für einen glatten (Prototyp: Stahl) und einen rauen (Pro-

totyp: Beton) Pfeiler untersucht. Bei der Pfeilerform wurde der Einfluss eines dreieckigen, quadratischen und kreisförmigen (Standardversuche) Pfeilerquerschnitts (Bild 2b) auf p getestet. Weiter wurde der Pfeilerdurchmesser ($d_p = 0.01 \text{ m}, 0.025 \text{ m}, 0.05 \text{ m})$ variiert. Bei der Pfeileranzahl wurden die Versuche mit zwei kreisförmigen

Pfeilern und einem axialen Pfeilerabstand von $D_P = 0.33$ m durchgeführt. Ähnlich zu den Standardversuchen mit einem kreisförmigen Pfeiler wurden die Hölzer mit $L_L = 0.40$ m quer zur Fliessrichtung 1 m oberstrom der Brückenpfeiler in Kanalmitte zugegeben. Die Holzlänge wurde so gewählt, dass sich die Verklausung

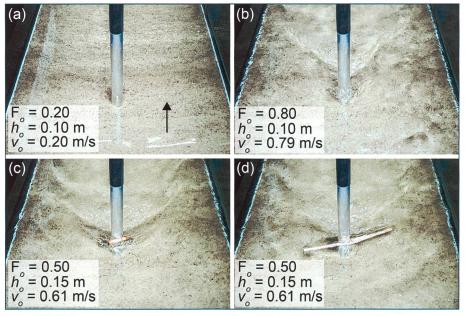


Bild 4. Modellversuche zur Verklausungswahrscheinlichkeit p mit verschiedenen Zuflussbedingungen und Holzlängen (a) $v_o = 0.20$ m/s versus (b) $v_o = 0.79$ m/s; c) $L_L = 0.10$ m versus (d) $L_L = 0.40$ m mit $v_o = 0.61$ m/s.

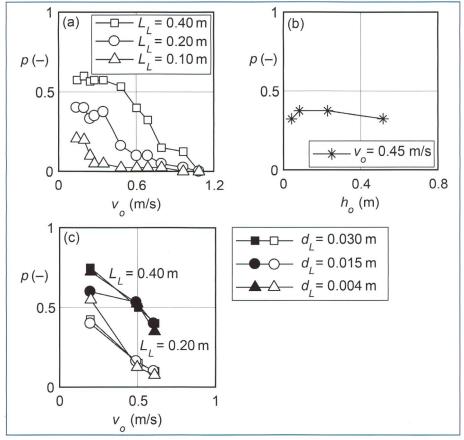


Bild 5. Verklausungswahrscheinlichkeit p versus (a) v_o für verschiedene Holzlängen L_L mit $d_L = 0.015$ m, (b) h_o für konstantes $v_o = 0.45$ m/s, (c) v_o für verschiedene d_L mit $L_L = 0.20$ m und 0.40 m.

über beide Brückenpfeiler bildet ($L_L > D_P$). Somit ist der Verklausungsprozess anders als bei einem einzelnen Pfeiler.

In Testserie D wurde der Einfluss der Holzeigenschaften (Äste und Holzdichte) auf p untersucht. Dabei wurden sowohl 2D- als auch 3D-Typen getestet. Bei den Standardversuchen hatten die Hölzer eine Dichte von ρ_L = 460 kg/m³. Mit Hilfe der Wässerung wurde die Holzdichte auf ρ_L = 850 kg/m³ bzw. ρ_L = 1320 kg/m³ erhöht.

In Testserie E wurden verschiedene Schwemmholztransportarten geprüft. Diese umfassen schubweisen (Zugabe von 3,5 oder 40 Hölzern gemeinsam) und kontinuierlichen (Zugabe von 40 Hölzern hintereinander) Transport.

InTestserieFwurdederEinflusseines Pfeilerkolks auf p untersucht. Die Versuche wurden mit Einkornmaterial und einem mittleren Korndurchmesser $d_m = 5.6$ mm

durchgeführt. Aufgrund der beweglichen Sohle und den Zuflussbedingungen mit $F_o=0.8,\,h_o=0.10\,\mathrm{m}$ und $v_o=0.79\,\mathrm{m/s}$ bildete sich ein Pfeilerkolk. Die dimensionslose Sohlschubspannung resultierte zu $\theta=0.061$ und war somit grösser als $\theta_{cr}=0.047$ für Transportbeginn. Nachdem sich ein Gleichgewichtskolk mit einer maximalen Kolktiefe von $S_{\mathrm{max}}=0.045\,\mathrm{m}$ gebildet hatte, wurde p für $v_o=0.79\,\mathrm{m/s}$ bestimmt. Um p für weitere Zuflussbedingungen und mit der gleichen Kolktiefe zu testen, wurden Q und J_o reduziert.

3. Ergebnisse

3.1 Einfluss der Zuflussbedingungen und Holzabmessungen auf p

Fotos der Modellversuche mit verschiedenen Zuflussbedingungen und Holzlängen sind in *Bild 4* abgebildet. Erkennbar sind

insbesondere die verschiedenen Strömungungen mit mungsbedingungen (Wellen, Turbulenz) im Nahbereich des Pfeilers in Abhängigkeit der Zufluss-Fliessgeschwindigkeit.

Der Einfluss der Zufluss-Fliessgeschwindigkeit v_0 und Holzlänge L_L auf p ist in Bild 5a dargestellt. Für $L_L = 0.20$ m variiert p zwischen 0 und 40%, wobei p

Der Einfluss der Zufluss-Fliessgeschwindigkeit v_o und Holzlänge L_L auf pist in Bild 5a dargestellt. Für $L_L = 0.20$ m variiert p zwischen 0 und 40 %, wobei p für $v_o \ge 0.8$ m/s gegen Null strebt und den maximalen Wert p = 40 % für $v_o = 0.08$ m/s erreicht. Somit nimmt p mit abnehmendem vo zu. Bei einer kleinen Zufluss-Fliessgeschwindigkeit bleiben Hölzer am Pfeiler hängen, sobald ein Teil des Holzes den Pfeiler berührt. Im Gegensatz dazu können Hölzer, die mit hoher Geschwindigkeit transportiert werden, zwar den Pfeiler berühren, werden aber aufgrund der erhöhten Oberflächenwellen und Turbulenz weitertransportiert (Bild 4a vs. b). Für ein konstantes $v_o = 0.14$ m/s nimmt p mit zunehmender L_L zu (p = 21 % für $L_L = 0.10$ m im Vergleich zu p = 58 % für $L_L = 0.40$ m), da ein längeres Holz stabiler transportiert wird und die Fliessgeschwindigkeitsschwankungen besser ausgleichen kann (Bild 4c vs. d). Kurze Hölzer können sich aufgrund der Oberflächenwellen und Turbulenz eher wieder vom Pfeiler lösen. Zudem ist die Wahrscheinlichkeit, dass sie exakt mittig auf den Pfeiler treffen, klein.

Der Einfluss der Zuflussbedingungen wurde weiter untersucht, indem v_o konstant gehalten und h_o variiert wurde. In $Bild\ 5b$ ist p für $v_o=0.45$ m/s und $L_L=0.20$ m in Abhängigkeit von h_o dargestellt. Für $h_o=0.04-0.52$ m variiert p zwischen ± 5 %; der Schwankungsbereich ist somit geringer als die Reproduzierbarkeit mit ± 10 %. Sobald Hölzer vollständig schwimmend transportiert werden, hat die Kanalsohle und somit auch h_o keinen Einfluss auf p. Für ein bestimmtes v_o und L_L , ist der Einfluss von h_o somit vernachlässigbar. Für die Bemessungsgleichung ist daher F_o als

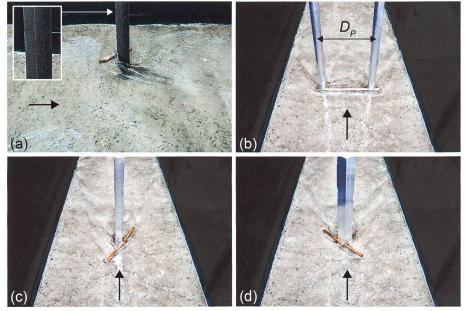


Bild 6. Modellversuche zur Verklausungswahrscheinlichkeit p mit verschiedenen Pfeilereigenschaften (a) rauer Pfeiler, (b) 2 Pfeiler, (c) quadratischer und (d) dreieckiger Pfeiler.

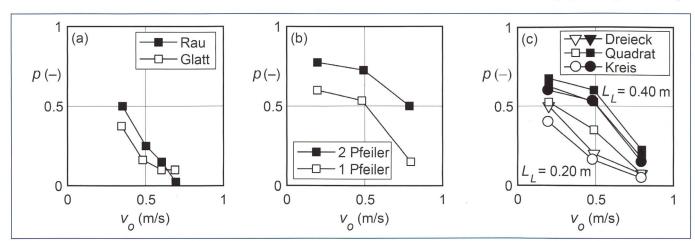


Bild 7. Verklausungswahrscheinlichkeit p versus v_o für (a) glatten versus rauen Pfeiler mit $L_L = 0.20$ m, (b) 1 versus 2 Pfeiler mit $L_L = 0.40$ m, (c) dreieckiger versus quadratischer versus kreisförmiger Pfeiler mit $L_L = 0.20$ m und $L_L = 0.40$ m.

Parameter nicht geeignet. Im Gegensatz dazu weist F_o einen grossen Einfluss auf den Aufstau infolge einer Schwemmholzverklausung auf (*Schalko et al.*, 2018 und 2019b – Teil 2).

Der Einfluss des Holzdurchmessers d_L auf p wurde für zwei verschiedene L_L und verschiedene v_o getestet (Bild 5c). Die mittleren Abweichungen von p varieren zwischen $\pm 5\,\%$ und befinden sich somit innerhalb der Reproduzierbarkeit. Somit ist der Einfluss des Holzdurchmessers auf die Verklausungswahrscheinlichkeit im Gegensatz zur Holzlänge von untergeordneter Bedeutung.

3.2 Einfluss der Pfeilereigenschaften auf *p*

Die Pfeilereigenschaften umfassen die Pfeilerrauheit, Pfeileranzahl, Pfeilerform und den Pfeilerdurchmesser (Bild 6).

Die Ergebnisse von p für einen glatten versus rauen Brückenpfeiler sind für $L_L = 0.20$ m in Bild 7a dargestellt. Für den Grossteil der getesteten v_o ist p etwas höher für einen rauen Pfeiler, da die Reibung zwischen Holz und Pfeiler grösser ist. Die mittlere Abweichung zwischen glattenmund rauem Pfeiler beträgt $\approx 8.4\,\%$ und liegt somit im Bereich der Reproduzierbarkeit. Die getesteten Pfeilerrauheiten haben somit nur einen geringen Einfluss auf p.

In Bild 7b ist p als Funktion von von für den Versuchsaufbau mit zwei Brückenpfeilern dargestellt. Mit zwei Brückenpfeilern ist p im Mittel um 24 % grösser, wobei die Unterschiede in p mit zunehmendem vo grösser werden. Der Verklausungsprozess kann wie folgt beschrieben werden: Das Holz wird mit $y = 90^{\circ}$ der Strömung zugegeben. Falls das Holz die Ausrichtung nicht verändert ($y = 90^{\circ}$), berührt es die zwei Pfeiler mit beiden Enden und es kommt zu einer Verklausung über beide Pfeiler. Falls sich das Holz dreht, berührt das Holz nur einen der beiden Pfeiler und es kommt entweder zu (1) einer Kippbewegung des Holzes und wiederum zu einer Verklausung über beide Pfeiler oder (2) das Holz wird zwischen den beiden Pfeilern stromabwärts transportiert. Mit zunehmendem vo nehmen die Oberflächenwellen zu und Hölzer drehen sich leichter. Dadurch werden mehr Hölzer zwischen den beiden Pfeilern stromabwärts transportiert und p somit reduziert.

Der Einfluss der Pfeilerform auf p ist in $Bild\ 7c$ für $L_L=0.20$ m und 0.40 m dargestellt. Für beide Holzlängen ist die Verklausungswahrscheinlichkeit p für einen quadratischen Pfeiler am grössten, da die Kontaktfläche zwischen Pfeiler und Holz

grösser ist und somit auch die Reibungskraft. Im Mittel betragen die Abweichungen von p zwischen den verschiedenen Pfeilerformen $\pm 8.5\,\%$ für $L_L=0.20\,$ m und $\pm 4\,\%$ für $L_L=0.40\,$ m und liegen somit im Bereich der Reproduzierbarkeit. Daher kann kein massgebender Einfluss der Pfeilerform auf p abgeleitet werden.

Der Einfluss des Pfeilerdurchmessers wurde untersucht, indem das Verhältnis d_P/L_L zwischen Pfeilerdurchmesser und Holzlänge konstant gehalten wurde. Die Verklausungswahrscheinlichkeit nimmt mit abnehmendem Verhältnis von d_P/L_L zu, wobei vor allem der Einfluss der Holzlänge auf p massgebend war.

3.3 Einfluss der Holzeigenschaften auf p

Bei den Holzeigenschaften wurde der Einfluss von Ästen (Bild 8), der Holzdichte sowie des Holztransports auf p untersucht.

Die Verklausungswahrscheinlichkeit p für Hölzer ohne Äste (Referenz) und mit Ästen variierte im Bereich der Reproduzierbarkeit, so dass kein definitiver Trend abgeleitet werden kann (Bild 9a). Je nachdem, wie das Holz mit den Ästen den Pfeiler trifft, verfangen sich die Äste entweder auf beiden Seiten oder das Holz wird aufgrund der Äste abgestossen und weitertransportiert. Im Prototyp würden die Äste voraussichtlich brechen, sobald sie den Brückenpfeiler berühren. Dieser Prozess wurde während der Modellversuche nicht beobachtet, da die Steifigkeit der Äste überschätzt wurde. Generell ist es schwierig, den Einfluss von Ästen auf p abzuschätzen, da man den Astabstand, die Festigkeit und das Bruchverhalten in der Natur nur schwer vorhersagen kann. Die Modellversuche bestätigen die Ergebnisse von Lyn et al. (2003), die ebenfalls keinen massgebenden Einfluss von Ästen

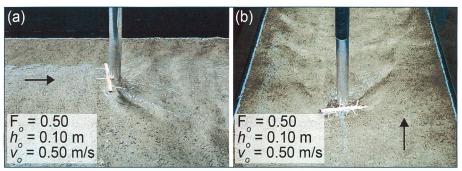


Bild 8. Modellversuche zur Verklausungswahrscheinlichkeit p mit (a) 2D-Ästen und (b) 3D-Ästen.

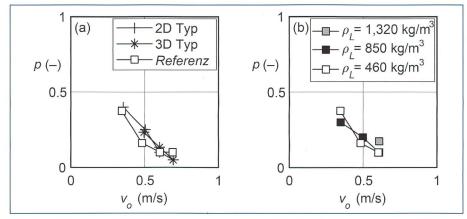


Bild 9. Verklausungswahrscheinlichkeit p versus v_o für L_L = 0.20 m mit (a) 2D- und 3D-Ästen sowie Hölzern ohne Äste; (b) Hölzer mit unterschiedlicher Dichte.

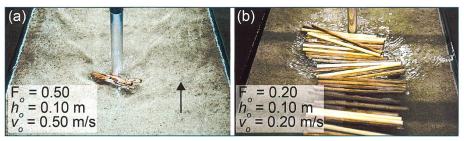


Bild 10. Schubweiser Transport mit (a) 3 Hölzern und $L_L = 0.20$ m, (b) 40 Hölzern und $L_L = 0.40$ m.

auf pidentifiziert haben. Die Verklausungswahrscheinlichkeit p für Hölzer mit einer Dichte von $\rho_L = 460 \text{ kg/m}^3 \text{ im Vergleich}$ zu $\rho_L = 850 \text{ kg/m}^3 \text{ variierte im Mittel zwi-}$ schen $\pm 4\%$ (Bild 9b). Für Hölzer mit ρ_L = 1320 kg/m³ und v_o = 0.61 m/s erhöhte sich p um 8 %. Bei dieser Dichte wurden die Hölzer jedoch nicht mehr schwimmen, sondern am Kanalboden transportiert. Der Transportprozess kann somit nicht mit den anderen Ergebnissen verglichen werden. Unter der Voraussetzung, dass die Hölzer schwimmend transportiert werden, kann der Einfluss der Dichte auf p vernachlässigt werden, da die Unterschiede in p im Bereich der Reproduzierbarkeit liegen. Furlan et al. (2018b) haben ebenfalls keinen massgebenden Einfluss der Holzdichte ($\rho_L = 400-990 \text{ kg/m}^3$) auf p identifiziert.

Schubweiser Holztransport mit 3 und 40 Hölzern ist in Bild 10 dargestellt. Der Einfluss von schubweisem Holztransport mit 3 bis 5 Hölzern auf p mit L_L = 0.40 m ist für die Konfiguration mit einem Brücken-

pfeiler in *Bild 11a* und mit zwei Brückenpfeilern in *Bild 11b* dargestellt. Für beide Konfigurationen erhöht sich p im Mittel um \approx 18 % für schubweisen Holztransport im Vergleich zu Einzeltransport, wobei die Unterschiede zwischen 3 und 5 Hölzern eher klein sind. Mit zwei Brückenpfeilern und $v_o = 0.50$ m/s erreicht p = 100 %. Weiter beträgt für $v_o = 0.97$ m/s und zwei Brückenpfeiler $p \ge 78$ % im Vergleich zu $p \le 13$ % für einen Brückenpfeiler. Sobald $L_L \ge D_P$ und der Holztransport schubweise stattfindet, resultiert $p \ge 75$ %.

Der Einfluss von schubweisem und kontinuierlichem Holztransport mit 40 Hölzern auf p wurde für ausgewählte Zuflussbedingungen und einen Brückenpfeiler untersucht. Bei der kontinuierlichen Holzzugabe nimmt p im Vergleich zu Einzeltransport für beide getesteten Holzlängen um 33 % zu. Im Gegensatz dazu ist p für schubweisen Holztransport mit 40 Hölzern im Mittel um \approx 15 % geringer im Vergleich zu Einzeltransport. Die Reproduzierbarkeit der schubweisen Zugabe von

40 Hölzern war im Vergleich zu den anderen Versuchen schwieriger. Während der Versuche wurde beobachtet, dass Hölzer zwar den Pfeiler berührten, sich jedoch die Verklausung aufgrund der nachfolgenden Hölzer wieder löste. Weiter weicht der Zusammenhalt der Modellhölzer von Prototyphölzern ab. Der Einfluss der Rauheit (bzw. Rinde oder Verastung), Geometrie und Dichte der Prototyphölzer kann zu einer kompakteren Verklausung führen und somit p erhöhen. Aufgrund der begrenzten Anzahl an Modellversuchen kann der Einfluss von schubweisem Transport mit 40 Hölzern auf p nicht abschliessend bestimmt werden.

3.4 Einfluss eines Pfeilerkolks p

Um den Einfluss eines Pfeilerkolks auf p zu bestimmen, wurden Versuche mit einer beweglichen Sohle durchgeführt. Die Abweichungen zwischen p ohne Pfeilerkolk (Referenz) und mit Pfeilerkolk betragen im Mittel \pm 12 % für beide getesteten Stammlängen L_L (Bild 12a und b). Da kein Trend erkennbar ist und die Abweichungen in etwa der Reproduzierbarkeit entsprechen, ist der Einfluss des Pfeilerkolks auf p für diese Studie nicht massgebend. Der Einfluss einer Verklausung auf die Kolktiefe wurde nicht untersucht.

3.5 Abschätzgleichung Verklausungswahrscheinlichkeit p

Basierend auf den Ergebnissen kann zusammengefasst werden, dass die Verklausungswahrscheinlichkeit p zunimmt

- mit zunehmender Holzlänge,
- mit abnehmender Zufluss-Fliessgeschwindigkeit,
- für schubweisen und kontinuierlichen Schwemmholztransport und
- mit zunehmender Pfeileranzahl, falls $L_1 \ge D_P$.

Falls Hölzer schwimmend transportiert werden, hat die Zufluss-Wassertiefe keinen Einfluss auf p, da das Holz nicht mit der Sohle in Kontakt ist. Weiter haben die Versuche gezeigt, dass der Holzdurchmesser, die Holzdichte, Hölzer mit Ästen, die Pfeilerrauheit, die Pfeilerform sowie Pfeilerkolk jeweils nur einen geringen Einfluss auf die Verklausungswahrscheinlichkeit haben bzw. der Einfluss innerhalb der Reproduzierbarkeit von \pm 10 % liegt.

Um für die Gefährdungs- bzw. Schwachstellenanalyse Brückenquerschnitte hinsichtlich der Verklausungswahrscheinlichkeit beurteilen zu können, wurden die Ergebnisse der Modellversuche in einer Abschätzgleichung zusammengefasst. Die Verklausungswahrscheinlichkeit

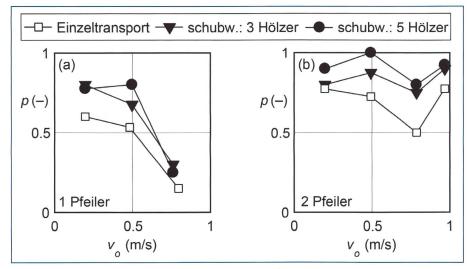


Bild 11. Verklausungswahrscheinlichkeit p versus v_o für Einzeltransport versus schubweisen Transport mit 3 bis 5 Hölzern, $L_L = 0.40$ m und (a) 1 Pfeiler, (b) 2 Pfeiler.

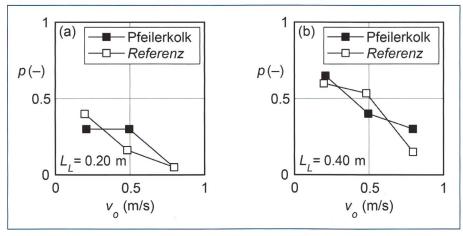


Bild 12. Verklausungswahrscheinlichkeit p versus v_o für eine feste Sohle (Referenz; ohne Pfeilerkolk) im Vergleich zu einer beweglichen Sohle (mit Pfeilerkolk) (a) $L_L = 0.20$ m, (b) $L_L = 0.40$ m

p an **einem** Brückenpfeiler kann mit Hilfe des dimensionslosen Schwemmholz-Verklausungswahrscheinlichkeitsfaktors LW_P für Einzel- und schubweisen Transport abgeschätzt werden ($R^2 = 0.83$):

$$p = e^{-12.7 LWp} \tag{1}$$

mit

$$LW_P = x_n \left(\frac{v_o^2}{2gL_L}\right)^{0.43} \left(\frac{d_P}{L_L}\right)^{0.60}$$
, (2)

wobei

 $x_n = 1.00$ für Einzeltransport

 $x_n = 0.65$ für schubweisen Schwemmholztransport

GI. (1) ist gültig für $F_o = 0.08-1.2$ bzw. $0 \le LW_P \le 0.53$. Gemäss GI. (2) hat die Holzlänge L_L den grössten Einfluss auf p, gefolgt von Holztransport x_n , Zufluss-Fliessgeschwindigkeit v_o und Pfeilerdurchmesser d_P . Bild 13 zeigt p als Funktion von LW_P für alle variierten Parameter und GI. (1).

Für die Anwendung in der Praxis muss nach der Berechnung der Verklausungswahrscheinlichkeit entschieden werden, ob das Szenario Verklausung in der Gefahrenbeurteilung zu berücksichtigen ist. Ab welcher Verklausungswahrscheinlichkeit dies zu erfolgen hat, ist stark situationsabhängig und hängt auch mit dem vorhandenen Schadenpotenzial zusammen. Zudem muss abgeschätzt werden, wie sich infolge der Verlegung die Abflusskapazität der Brücke ändert und ob sich ein massgebender Aufstau im Oberwasser ergeben kann. Für die Praxisanwendung wird empfohlen, bei $p \ge 30 \%$ und der Möglichkeit einer grösseren Verklausung (z. B. über die gesamte Gerinnebreite) den Aufstau infolge Schwemmholzverklausung in einem nächsten Schritt zu berechnen (Schalko et al. 2019b - Teil 2) und mit den Höhen der Ufer bzw. Hochwasserschutzdämme zu vergleichen.

Für mehrere Brückenpfeiler können, abhängig vom Verhältnis zwischen Holzlänge L_L und Pfeilerabstand D_P , folgende Empfehlungen abgeleitet werden:

• $L_L > D_P$: Die Verklausungswahrscheinlichkeit für Fliessgeschwindigkeiten von $v_o = 0.20-1$ m/s (Modellmassstab 1:20) resultierte zu $p \ge 50\,\%$ für Einzeltransport und $p \ge 75\,\%$ für schubweisen Transport. Somit stellen Querschnitte mit zwei oder mehreren Brückenpfeilern eine erhöhte Verklausungsgefahr dar, und weitere Schritte für die Gefahrenbeurteilung sind erforderlich. In diesem Fall wird em

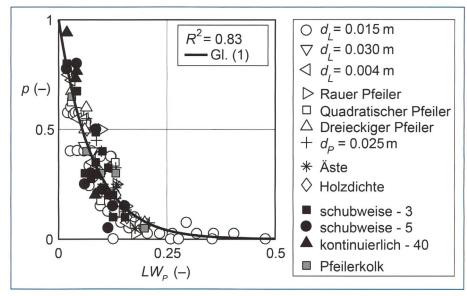


Bild 13. Verklausungswahrscheinlichkeit an einem einzelnen Brückenpfeiler mit Gl. (1).

pfohlen, den Aufstau infolge einer Schwemmholzverklausung abzuschätzen (Schalko et al. 2019b – Teil 2).

L_L < D_P: Die Verklausungswahrscheinlichkeit kann mittels Gl. (1) abgeschätzt werden. Bei p ≥ 30 % und der Möglichkeit zu einer Verklausung über die Gerinnebreite wird wiederum empfohlen, den Aufstau infolge Schwemmholzverklausung abzuschätzen (Schalko et al. 2019b – Teil 2).

4. Schlussfolgerungen

Die Verklausungswahrscheinlichkeit bei Brückenpfeilern wurde mit Hilfe von Modellversuchen im Massstab 1:20 untersucht. Die Ergebnisse wurden in einer Abschätzgleichung quantifiziert. Die massgebenden Resultate können wie folgt zusammengefasst werden:

- Die Verklausungswahrscheinlichkeit p nimmt mit zunehmender Holzlänge L_L, abnehmender Zufluss-Fliessgeschwindigkeit v_o, für schubweisen und kontinuierlichen Schwemmholztransport und mit zunehmender Pfeileranzahl zu.
- Die Zufluss-Wassertiefe h_o hat einen zu vernachlässigenden Einfluss auf die Verklausungswahrscheinlichkeit p, solange das Holz vollständig schwimmend transportiert wird.
- 3. Pfeilerrauheit, Äste, Pfeilerform und Pfeilerkolk haben einen geringen Einfluss auf die Verklausungswahrscheinlichkeit p. Der Einfluss von Wurzelstöcken wurde nicht untersucht.
- Mit Hilfe einer Dimensionsanalyse (Schalko, 2018) wurden die Ergebnisse der Modellversuche mit Einzeltransport und schubweisem Transport in einer Abschätzgleichung zusammen-

- gefasst, um die Verklausungswahrscheinlichkeit p bei einem Einzelpfeiler zu quantifizieren (Gl. [1]). Die Abschätzgleichung kann für $F_o = 0.08-1.2$ und $LW_P = 0-0.53$ ($R^2 = 0.83$) verwendet werden.
- 5. Die Verklausungswahrscheinlichkeit p bei mehreren Brückenpfeilern kann mit dem Verhältnis zwischen Holzlänge L_i und Pfeilerabstand D_p ermittelt werden. Für $L_L > P$ feilerabstand D_p , resultiert p≥50 % für Einzeltransport und $p \ge 75\%$ für schubweisen Transport. Somit stellen Querschnitte mit zwei oder mehreren Brückenpfeilern eine erhöhte Verklausungsgefahr dar, und weitere Schritte für die Gefahrenbeurteilung sind erforderlich. Für L_L < Pfeilerabstand D_p kann p mit Hilfe von Gl. (1) für einen Einzelpfeiler ermittelt werden.

Die Ergebnisse dieser Doktorarbeit tragen dazu bei, die Gefahrenbeurteilung von Schwemmholzverklausungen bei Brückenpfeilern zu verbessern und so Schwachstellen frühzeitig zu erkennen. Mittels Abschätzung der Verklausungswahrscheinlichkeit können kritische Brückenquerschnitte identifiziert werden. Die Eingangsparameter für die Abschätzgleichung (Gl. [1]) können mit Hilfe von Abflussmessungen oder numerischer Modellierung (v_o) , Waldbestand (L_t) , und Informationen zu den Brückeneigenschaften (dp) ermittelt werden. Der Einfluss der Transportart (x_n) kann mit Hilfe einer Sensitivitätsanalyse berücksichtigt werden.

Das Prozessverständnis von Schwemmholzverklausungen an Brückenpfeilern könnte im Rahmen weiterer Modellversuche zur Interaktion zwischen Holz und Pfeiler verbessert werden. Mit Hilfe

67

von Untersuchungen der Strömungsverhältnisse im Bereich des Brückenpfeilers können die auf ein Schwemmholz wirkenden Kräfte abgeleitet werden. Weiter sollte der Einfluss der Festigkeitseigenschaften der Modellhölzer (E-Modul, Steifigkeit) auf den Schwemmholztransport und die Verklausung untersucht werden.

Die Auswirkungen einer Verklausung auf den Aufstau und somit auf mögliche Ausuferungen sind in Teil 2 zusammengefasst.

Literatur

Bezzola, G. R., Gantenbein, S., Hollenstein, R., Minor, H.-E. (2002). Verklausung von Brückenquerschnitten. Wasserbausymposium «Moderne Methoden und Konzepte im Wasserbau», VAW-Mitteilung 175: 87–97 (H. E. Minor, ed.). ETH Zürich. Schweiz.

Bezzola, G.R., Hegg, C. (2007). Ereignisanalyse Hochwasser 2005, Teil 1: Prozesse, Schäden und erste Einordnung. Bundesamt für Umwelt, BAFU, Eidg. Forschungsanstalt für Wald, Schnee und Landschaft, WSL. Umwelt-Wissen Nr. 0707: 215 S.

De Cicco, P. N., Paris, E., Ruiz-Villanueva, V., Solari, L., Stoffel, M. (2018) In-channel wood-related hazards at bridges: A review. River Research and Applications, 1–12.

Furlan, P., Pfister, M., Matos, J., Amado, C., Schleiss, A. J. (2018a). Experimental repetitions and blockage of large stems at ogee crested spillways with piers. Journal of Hydraulic Research, 1–13.

Furlan, P., Pfister, M., Matos, J., Schleiss, A. J. (2018b). Influence of density of large stems on

the blocking probability at spillways. Proc. 7th IAHR International Symposium on Hydraulic Structures, Aachen, Deutschland.

Lyn, D. A., Cooper, T., Yi, Y. K., Sinha, R., Rao, A. R. (2003). Debris accumulation at bridge crossings: Laboratory and field studies. Report No.: FHWA/IN/JTRP-2003/10. Joint Transportation Research Program, Purdue University, West Lafayette, IN, USA.

Manners, R.B., Doyle, M.W., Small, M.J. (2007). Structure and hydraulics of natural woody debris jams. Water Resources Research 43: W06432. *Piton, G., Recking, A.* (2015). Design of sediment traps with open check dams. II: Woody debris. Journal of Hydraulic Engineering, 142(2), 04015046.

Ruiz-Villanueva, V., Badoux, A., Boes, R.M., Rickenmann, D., Rickli, C., Schalko, I., Schmocker, L., Schwarz, M., Steeb, N., Stoffel, M., Weitbrecht, V. (2016). Large wood research in Swiss watercourses. Proc. 8th River Flow Congress (Constantinescu, Garcia & Hanes, ed.). St. Louis, USA. 2307–2314.

STK (2017). Schwemmgut an Hochwasserentlastungsanlagen (HWE) von Talsperren. Schweizerisches Talsperrenkomitee, Report, www.swissdams.ch/de/publications/publications-csb.

Schalko, I. (2017). Large wood accumulation probability at a single bridge pier. Proc. 37th IAHR World Congress, Kuala Lumpur, Malaysia: 1704–1713.

Schalko, I. (2018). Modeling hazards related to large wood in rivers. VAW-Mitteilungen 249. Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie (VAW), (R.M. Boes, ed.), ETH Zürich, Schweiz.

Schalko, I., Schmocker, L., Weitbrecht, V., Boes, R.M. (2018). Backwater rise due to large wood accumulations. Journal of Hydraulic Engineering 144(9): 04018056.

Schalko, I., Schmocker, L., Weitbrecht, V., Boes, R.M. (2019a). Laboratory study on wood accumulation probability at bridge piers. Journal of Hydraulic Research [accepted].

Schalko, I., Schmocker, L., Weitbrecht, V., Boes, R. (2019b). Gefahrenbeurteilung von Schwemmholzverklausungen in Flüssen: Teil 2 – Aufstau. «Wasser Energie Luft» 111. Heft 2: 69–75.

Schmocker, L., Hager, W.H. (2011). Probability of drift blockage at bridge decks. Journal of Hydraulic Engineering, 137(4), 480–492.

Verdankung

Die Doktorarbeit der Autorin wurde vom Schweizer Bundesamt für Umwelt (BAFU) finanziert (Projektnummer: 15.0018.PJ / O192-0202) und ist Teil des Forschungsprojekts WoodFlow.

Anschrift der Verfasserin und der Verfasser Dr. Isabella Schalko, Department of Civil and Environmental Engineering, Massachusetts Institute of Technology MIT, (vormals VAW), ischalko@mit.edu

Dr. Lukas Schmocker, VAW, ETH Zürich, schmocker@vaw.baug.ethz.ch
Dr. Volker Weitbrecht, VAW, ETH Zürich, weitbrecht@vaw.baug.ethz.ch
Prof. Dr. Robert Boes, VAW, ETH Zürich, boes@vaw.baug.ethz.ch