Zeitschrift: Wasser Energie Luft = Eau énergie air = Acqua energia aria

Herausgeber: Schweizerischer Wasserwirtschaftsverband

106 (2014) Band:

Heft: 3

Lineares und quadratisches Speichermodell der Hydrologie Artikel:

Autor: Führer, Harald / Nowak, Werner Georg DOI:

https://doi.org/10.5169/seals-939752

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 20.10.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Lineares und quadratisches Speichermodell in der Hydrologie

Harald Führer, Werner Georg Nowak

Zusammenfassung

Zur Thematik der hydrologischen Speichermodelle präsentiert dieser Artikel einen guadratischen Ansatz: Der Zusammenhang zwischen Speicherinhalt S und Abflussintensität Q wird durch eine Gleichung $Q = aS + bS^2$ modelliert. Es zeigt sich, dass dies - zumindest für den wichtigen Fall eines Blockregens ebenfalls auf explizite Modellfunktionen für S und Q führt, zum Unterschied zu den zur Verfügung stehenden komplizierteren Ansätzen, die durchwegs nur numerisch gelöst werden können. Für empirische Daten von zwei Fliessgewässern in Ostösterreich werden das lineare und das quadratische Modell miteinander verglichen, mittels zweier unabhängiger bekannter Verfahren, nämlich dem F-Test und dem sog. Akaike-Kriterium. Es zeigt sich eine signifikante Überlegenheit des quadratischen Ansatzes.

1. Einleitung

In der Wasserwirtschaft und der angewandten Hydrologie besteht ein wichtiger Problemkreis darin, die Wasserstandshöhe fliessender Gewässer im Laufe der Zeit in Abhängigkeit von der Niederschlagsintensität zu modellieren und damit voraussagbar zu machen. Dies ist von Bedeutung sowohl für den Hochwasserschutz als auch hinsichtlich der wirtschaftlichen Nutzbarkeit des Wassers für Bewässerung und den Betrieb von Kraftwerken.

Für einen beliebigen Zeitpunkt t bezeichnet Q(t) die Abflussstärke eines bestimmten Fliessgewässers, gemessen an einem fixen Messpunkt, sowie I(t) die Gesamt-Niederschlagsintensität im zugehörigen Wassereinzugsgebiet, beide in m^3/s . Q(t) hängt prinzipiell von den Niederschlagswerten $I(\tau)$ vor dem Zeitpunkt t ab $(\tau < t)$, wobei allerdings die Gewichtung

schwer zu beschreiben ist. Man betrachtet daher - zunächst als eine Art «virtuelles Konstrukt» (!) - zusätzlich den sogenannten Speicherinhalt S(t), den man sich als jene Wassermenge vorstellen kann, die vor dem Zeitpunkt t als Niederschlag auf das Einzugsgebiet fiel und nach dem Zeitpunkt t die betrachtete Messstelle passieren wird. Selbstverständlich gibt es realistische, anschauliche Interpretationen für S(t), etwa als Inhalt eines (Stau-)Sees. Unter Vernachlässigung bzw. Ausschluss von Änderungen des Aggregatzustandes (Verdunstung, Schneeschmelze) - dies möge im Folgenden durchwegs gelten - folgt plausibel die Speichermodellgleichung

$$S'(t) = I(t) - Q(t) \tag{1}$$

Nun liegt es weiter nahe, dass die Abflussintensität (näherungsweise) nur vom Speicherinhalt abhängt:

$$Q = \Phi(S) \tag{2}$$

mit einer noch unbekannten Funktion Φ . Daraus folgt

$$S'(t) = I(t) - \Phi(St)$$
 (3)

also eine Differentialgleichung, aus der Modellfunktionen S = S(t) und Q = Q(t) bestimmt werden können, sofern die Niederschlagsfunktion I(t) sowie Φ bekannt sind. Als grundlegende Literatur für dies und das Folgende seien T. Dracos [5], S. Dyck & G. Peschke [7], R. Herrmann [8], R. Hinkelmann [10], W. Hosang & W. Bischof [11] sowie U. Maniak [12] zitiert.

2. Der lineare Speicher

Im Sinne der Einfachheit ist es in der Hydrologie Standard, zumindest als ersten Ansatz eine direkte Proportionalität zwischen S und Q anzunehmen, also $Q = \Phi(S) = a \cdot S$ anzusetzen, wobei $a \cdot$ als Speicherkons-

tante bezeichnet wird. Lösen der Gl. (3) führt damit schlussendlich auf die Abfluss-Modellfunktion

$$Q(t) = a_{s}e^{-a,t} \int_{0}^{t} I(\tau)e^{a,\tau}d\tau + Q(0)e^{-a,t}$$
(4)

Hier beschreibt der erste Term rechts den Einfluss des Niederschlags im Zeitintervall $0 \le \tau \le t$, der zweite das Abfliessen des bereits bei t=0 vorhandenen Speicherinhalts. Allerdings ist es in der Praxis sehr problematisch, eine analytische Niederschlagsmodellfunktion $I(\tau)$ anzugeben. Häufig wird der Niederschlag daher als auf einem Intervall zeitlich konstant $I=I_c$ modelliert («Blockregen»). Hierfür vereinfacht sich Gl. (4) zu

$$Q(t) = I_{C} \left(1 - e^{-a_{,t}} \right) + Q(0)e^{-a_{,t}}$$
(5)

Weiter ist es üblich, längere Fliessgewässer abschnittsweise durch eine sogenannte Speicherkaskade zu beschreiben, d.h. durch eine Folge linearer Einzelspeicher S_j , j=1,...,J, welche durch die Gleichungen $I_j(t)=Q_{j-1}(t)$ für $j\geq 1$ verbunden sind.

3. Nichtlineare Modelle

Zunächst sei erwähnt, was sich ergibt, wenn man den Speicher als Becken in Form eines verallgemeinerten Zylinders modelliert, aus dem unten durch eine fixe Öffnung (Rohr) das Wasser abfliesst. Dann hängt Q(t) nur von der Austrittsgeschwindigkeit ab und ist nach dem Gesetz von Torricelli proportional zu $\sqrt{S(t)}$, also $Q = \Phi(S) = a_0 \sqrt{S}$. Diese Annahme hat allenfalls Bedeutung für das Entleeren von Stauseen; eine interessante praktische Anwendung auf die Möhnetalsperre in Nordrhein-Westfalen hat M. Dierks [4] im Detail ausgeführt.

In der Praxis der Hydrologie geht man aber meist davon aus, dass bei stei-

gendem Speicherinhalt auch der natürliche Abflussquerschnitt deutlich wächst – nach welcher quantitativen Gesetzmässigkeit, ist a priori unklar. In der Literatur wurden teilweise auf empirischer Basis Ansätze der Form $Q = \Phi(S) = aS^y$ mit Exponenten 1 < y < 2 verwendet, häufiger aber noch rein numerische Berechnungen mit einer unbestimmten nicht-linearen Funktion Φ durchgeführt.

Man vgl. dazu – zusätzlich zu der bereits zitierten Literatur – A. Baumgartner & H.J. Liebscher [1], V.T. Chow [3], S. Dyck [6], K.H. Schmidt [14] und E.M. Shaw [15].

4. Der quadratische Ansatz

Grundidee des vorliegenden Artikels ist es, die (a priori unbekannte) Funktion Φ durch eine passende quadratische Taylorentwicklung approximativ zu ersetzen: Es sei \hat{S} ein typischer (mittlerer) Wert für S, dann ist es plausibel anzunehmen, dass $\Phi(S)$ in einer Umgebung von \hat{S} eine Taylorentwicklung besitzt, die wir im Sinne einer Näherung nach dem quadratischen Term abbrechen:

$$Q = \Phi(S) \approx \Phi(\hat{S}) + \Phi'(\hat{S})(S - \hat{S}) + \frac{1}{2}\Phi''(\hat{S})(S - \hat{S})^2 =$$

$$= c_0 + c_1 S + c_2 S^2.$$

(6)

Nun sollte für S = 0 auch Q = 0 folgen, daher wird $c_0 = 0$ festgesetzt. Nach passender Umbenennung ergibt dies, wieder als Gleichung geschrieben,

$$Q = aS + bS^2 \tag{7}$$

und in Gl. (2) eingesetzt,

$$S'(t) = I(t) - aS(t) - bS(t)^{2}$$
(8)

mit zwei Konstanten a und b, die jeweils an konkrete Daten angepasst werden können.

Der durch Gl. (7) und (8) beschriebene «quadratische Speicher» hat – wie wir zeigen werden zwei Vorteile:

- Zum Unterschied von den anderen zuvor erwähnten nicht-linearen Ansätzen erhält man zumindest für den wichtigen Fall I = I_c («Blockregen») explizite analytische Lösungsfunktionen.
- Mindestens für gewisse, an zwei Fliessgewässern in Ostösterreich erhobene Datensätze ist das quadratische Modell dem linearen schlagend überlegen
 – in einem wissenschaftlich präzisen Sinn, wie später erörtert wird.

Weiter sei darauf hingewiesen, dass Gl. (7) den früher erwähnten Ansatz $Q = \Phi(S) =$

 aS^y mit 1 < y < 2 qualitativ gut approximiert, für den keine explizite analytische Lösung existiert. Dasselbe gilt für stückweise lineare Zusammenhänge

$$Q = \Phi(S) = \begin{cases} a_1 S & \text{für } 0 \le S \le S_1, \\ a_2 (S - S_1) + a_1 S_1 & \text{für } S \ge S_1, \end{cases}$$
(9)

mit $a_1 < a_2$. Diese finden eine natürliche Interpretation in dem Szenario, dass bis zu einem Speicherinhalt S_1 der Niederschlag teilweise vom Boden aufgenommen wird, dieser aber ab $S = S_1$ gesättigt ist.

Lösung der «quadratischen Speichergleichung»

GI. (8) ist eine sog. Riccati'sche Differentialgleichung: siehe *H. Heuser* [9]. Als solche besitzt sie die folgende nützliche Eigenschaft: Ist eine Lösung *S.*(t) bekannt, dann erhält man alle andern Lösungen durch den Ansatz

$$S(t) = S_*(t) + \frac{1}{u(t)}, \tag{10}$$

wobei sich für die Hilfsfunktion u(t) eine lineare Differentialgleichung ergibt. Beschränkt man sich auf ein hinreichend kleines Zeitintervall $t_1 \le t \le t_2$, dann ist es plausibel und praktisch, wie angekündigt I(t) durch eine Konstante I_c zu modellieren. Unter dieser Voraussetzung setzen wir auch $S \cdot (t) = S \cdot$ konstant an und erhalten aus GI. (8) die simple quadratische Gleichung

$$0 = I_{\rm C} - aS_* - bS_*^2$$
, von der

$$S_* = \frac{-a+W}{2b}$$
 mit $W := \sqrt{a^2 + 4bI_C}$ (11)

eine Lösung ist. Wir werden daher durchwegs fordern, dass

$$a^2 + 4bI_C \ge 0 \tag{12}$$

gilt. Praktisch bedeutet dies keine wesentliche Einschränkung, da in der Regel ein konvexer Graph $Q = \Phi(S)$ und daher $b \ge 0$ zu erwarten ist. (Vgl. die Bemerkung am Ende von Abschnitt 4.) Im Sonderfall b = 0

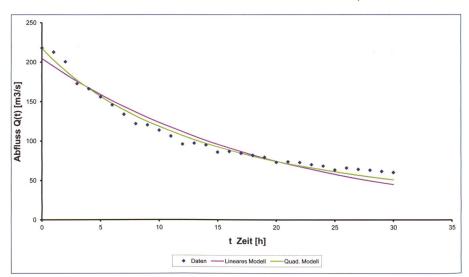


Bild 1. Ybbs, 1./2. September 2010.

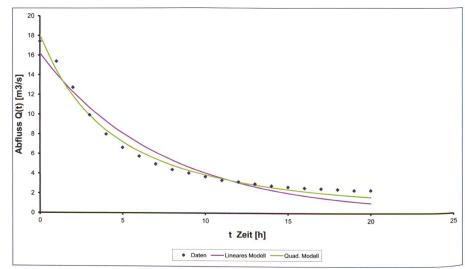


Bild 2. Taffa, 2./3. Juni 2010.

ist $S = I_c/a$. Setzt man GI. (10) mit diesem S- in GI. (8) ein, so folgt nach kurzer Rechnung die lineare Differentialgleichung u'(t) = Wu(t) + b. Ihre allgemeine Lösung lautet

$$u(t) = Ce^{Wt} - \frac{b}{W}.$$

Damit ergibt sich die allgemeine Lösung der Riccati'schen DGL (8) auf dem Intervall $t_1 \le t \le t_2$ als

$$S(t) = S_* + \left(Ce^{Wt} - \frac{b}{W}\right)^{-1}$$
 (13)

Die Abflussstärke Q(t) ist daraus mittels GI. (7) zu bestimmen.

Es ist instruktiv, auf der Basis der allgemeinen Lösung (13) die folgende elementare Sequenz von Ereignissen zu diskutieren, die in einführenden Lehrveranstaltungen und Lehrbüchern der Hydrologie häufig betrachtet wird:

Beginnend mit einem «Anfangsspeicherinhalt» S₀ ≥ 0 zum Zeitpunkt t = 0, gibt es zunächst einen Blockregen während eines Zeitintervalls 0 ≤ t ≤ T,

mit konstant modellierter Niederschlagsintensität I_c (Phase A).

 Danach folgt eine niederschlagsfreie Periode, während der das Wasser abfliesst und der Pegelstand des beobachteten Fliessgewässers sinkt (Phase B).

Um für die Phase A die Modellfunktion $S_A(t)$ zu finden, brauchen wir nur in Gl. (13) die Anfangsbedingung $S_A(0) = S_0$ einzusetzen. So erhalten wir mit Gl. (11)

$$C = C_A = \frac{b}{W} + \frac{2b}{2bS_0 + a - W}$$

und somit die Modellfunktion

$$S_A(t) = \frac{W - a}{2b} +$$

$$\left(\left(\frac{b}{W} + \frac{2b}{2bS_0 + a - W}\right)e^{WI} - \frac{b}{W}\right)^{-1} \quad . \tag{14}$$

Während der Trockenphase B ist I_c durch 0 zu ersetzen, folglich W durch a (wieder wegen Gl. (11)), es entsteht die Modellfunktion

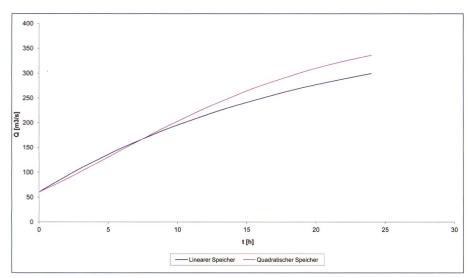


Bild 3. Modellrechnung: Ybbs, Gesamtniederschlag Ic = 400 m³/s.

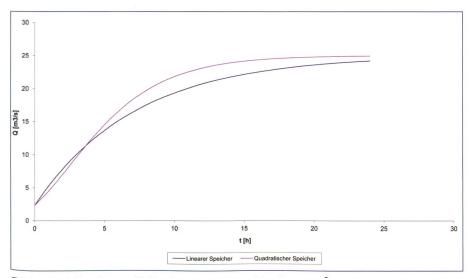


Bild 4. Modellrechnung Taffa, Gesamtniederschlag Ic = 25 m³/s.

$$S_B(t) = \left(C_B e^{at} - \frac{b}{a}\right)^{-1}.$$

Zur Bestimmung von C_B beachten wir die «Anfangsbedingung» $S_B(T) = S_A(T)$, wobei $S_A(T)$ aus (14) zu berechnen ist. Eine kurze Rechnung ergibt

$$C_B = \left(\frac{1}{S_A(T)} + \frac{b}{a}\right) e^{-aT},$$

also letztendlich die Modellfunktion

$$S_B(t) = \left(\left(\frac{1}{S_A(T)} + \frac{b}{a} \right) e^{a(t-T)} - \frac{b}{a} \right)^{-1}.$$
 (15)

Die Abflussstärken $Q_A(t)$, $Q_B(t)$ werden nun wieder mittels Gl. (7) aus Gl. (14) bzw. Gl. (15) berechnet.

6. Exkurs: Wie man Modelle vergleicht

Zum Zweck einer fundierten Diskussion «quadratisches versus lineares Speichermodell» geben wir zunächst einen Abriss über zwei gebräuchliche statistische Methoden, Modelle miteinander zu vergleichen. Eine instruktive Darstellung findet man in *H.J. Motulsky & A. Christopoulos* [13], S. 134–159, deren Resultate wir hier zusammenfassen. (Vgl. auch *K.P. Burnham & D.R. Anderson* [2].)

Empirisch gegeben seien N Datenpaare $(x_1,y_1),...,(x_N,y_N)$. Zur Modellierung des funktionellen Zusammenhangs von x und y stehen zwei Modellfunktionen $y=f_1(x)$ und $y=f_2(x)$ zur Auswahl, mit p_1 bzw. p_2 freien Parametern, $0 < p_1 < p_2$. Es seien f_1,f_2 «verschachtelt» (engl.: nested models) in dem Sinn, dass f_1 entsteht, indem man p_2-p_1 der Parameter von f_2 einen festen Wert zuweist (meist 0). Es seien

$$FQS_{j} = \sum_{n=1}^{N} (f_{j}(x_{n}) - y_{n})^{2}, \qquad j = 1, 2,$$

die entsprechenden Fehlerquadratsummen, wobei die Parameter in f_j jeweils so bestimmt werden, dass FQS_j minimiert wird. Klarerweise ist $FQS_2 \le FQS_1$, wobei in der Regel das strikte Kleinerzeichen gilt. Methode (I) (*«F-*Test*»*). Es wird der *«F-*Quotient*»*

$$F := \frac{\text{FQS}_1 - \text{FQS}_2}{\text{FQS}_2} \frac{N - p_2}{p_2 - p_1}$$

berechnet und daraus z.B. mittels der *Microsoft Excel*TM Formel =FVERT(F; p_2-p_1 ; $N-p_2$) die Wahrscheinlichkeit P_F , dass die Verbesserung FQS $_2$ <FQS $_1$ nur durch Zufallsschwankungen der Daten zustande kam. Ist P_F sehr klein, dann sollte die (kompliziertere) Modellfunktion f_2 bevorzugt werden.

221

Methode (II) («Akaike's Information Criterion»). Für die Modellfunktionen f_1, f_2 ist der («korrigierte») AIC-Index definiert als

$$\begin{aligned} & \text{AIC}_{\text{corr}}(f_j) \coloneqq N \ln \left(\frac{\text{FQS}_j}{N} \right) + 2(p_j + 1) \\ & + \frac{2(p_j + 1)(p_j + 2)}{N - p_j - 2} \end{aligned}$$

Das Modell mit kleinerem Wert von $AlC_{corr}(f_j)$ ist eher korrekt: Die Wahrscheinlichkeit, dass dies z.B. für f_2 zutrifft, ist

$$P = \frac{1}{e^{\Delta/2} + 1}, \quad \Delta := AIC_{corr}(f_2) - AIC_{corr}(f_1)$$

der sog. Evidenzquotient dafür errechnet sich als

$$\frac{P}{1-P} = e^{\Delta/2}$$

7. Vergleich quadratisches versus lineares Modell, anhand empirischer Daten

Zum Vergleich der Modelle wurden zwei durchaus verschiedenartige Flüsse im ostösterreichischen Bundesland Niederösterreich ausgewählt. Zum einen die Taffa (an der Messstelle Frauenhofen), die ein lokal sehr beschränktes Einzugsgebiet von 140 km² aufweist, das geologisch am Rand der Böhmischen Masse liegt. Zum anderen die Ybbs (an der Messstelle Greimpersdorf), deren Einzugsgebiet von 1116.6 km² bis in die niederösterreichischen Kalkalpen reicht. Die Daten der Durchfluss- bzw. Niederschlagsintensitäten von den offiziellen Messstellen des Landes Niederösterreich für das Jahr 2010 wurden uns freundlicherweise von der Abteilung Hydrologie und Geoinformation (BD3) des Amtes der niederösterreichischen Landesregierung zur Verfügung gestellt. Ausgewählt wurden jeweils Abflusszeitreihen, die durchwegs nach einem ausgeprägten Niederschlagsereignis eine niederschlagsfreie Periode beschreiben; dadurch wurde die quantitative Verwendung von meist stärker fehleranfälligen Niederschlagsmessdaten umgangen.

Im Sinne des in Abschnitt 6 Dargestellten stehen – angesichts der Gl. (5) bzw. (7) und (15) – die beiden Modellfunktionen

$$Q = f_1(t) = a_* S_0^{\text{lin}} e^{-a_* t}$$
und
$$Q = f_2(t) = a \left(\left(\frac{1}{S_0^{\text{quad}}} + \frac{b}{a} \right) e^{at} - \frac{b}{a} \right)^{-1}$$

$$+ b \left(\left(\frac{1}{S_0^{\text{quad}}} + \frac{b}{a} \right) e^{at} - \frac{b}{a} \right)^{-2}$$

zur Konkurrenz an, wobei $S_0^{\rm lin}$, $S_0^{\rm quad}$ jeweils den gesamten «Speicherinhalt» zum Zeitpunkt t=0 bezeichnet, geschätzt nach dem linearen bzw. quadratischen Modell. Die Modellfunktion f_1 enthält also zwei freie Parameter, $S_0^{\rm lin}$ und a_1 , hingegen f_2 drei: a,b und $S_0^{\rm quad}$. Diese Parameter werden nun, im Sinne der nichtlinearen Regression, z.B. mit dem Solver von $Microsoft Excel^{\rm TM}$, durch Minimieren der Fehlerquadratsummen an die gegebenen Abflusszeitreihen angepasst. Es ergeben sich im Einzelnen die folgenden Resultate (gerundet):

 Datensatz 1: Ybbs, 1./2. September 2010. (Vgl. Datenpunkte in Bild 1.)

$$S_0^{\text{lin}} = 14,53 \times 10^6 \text{ m}^3, \ a_* = 1,409 \times 10^{-5} \text{ s}^{-1},$$

 $S_0^{\text{quad}} = 21,85 \times 10^6 \text{ m}^3, \ a = 8,51 \times 10^{-8} \text{ s}^{-1},$
 $b = 4,51 \times 10^{-13} \text{ m}^{-3} \text{ s}^{-1}.$

Die Fehlerquadratsummen sind

$$FQS_1 = 2933,429$$
, $FQS_2 = 1061,168$,

daraus errechnen sich im Sinne der beiden Vergleichsmethoden in Abschnitt 6:

$$F = 49, 4, P_F = 1, 2 \times 10^{-7};$$

$$AIC_{corr}(f_1) = 147,937,$$

$$AIC_{corr}(f_2) = 119,066$$
.

Die Wahrscheinlichkeit, dass das quadratische Modell eher zutrifft, ist somit nach dem AIC-Kalkül praktisch 1, der *Evidenzquotient* dafür ist grösser als 1.895 × 10⁶.

 Datensatz 2: Taffa, 2./3. Juni 2010. (Vgl. Datenpunkte in Bild 2.)

$$S_0^{\text{lin}} = 4,20 \times 10^5 \text{ m}^3, \ a_* = 3,85 \times 10^{-5} \text{ s}^{-1},$$

 $S_0^{\text{quad}} = 5,49 \times 10^5 \text{ m}^3, \ a = 8,97 \times 10^{-7} \text{ s}^{-1},$

$$b = 5.816 \times 10^{-11} \text{ m}^{-3} \text{ s}^{-1}$$
.

Die Fehlerquadratsummen sind

$$FQS_1 = 18,889$$
, $FQS_2 = 4,877$,

daraus folgt nach Abschnitt 6:

$$F = 51,716, P_F = 1,08 \times 10^{-6}; AIC_{corr}(f_1) =$$

5,1866,
$$AIC_{corr}(f_2) = -20,1605$$
.

Die Wahrscheinlichkeit, dass das quadratische Modell eher zutrifft, ist nach AIC wieder praktisch 1, der Evidenzquotient grösser als 3 × 10⁵.

8. Modellrechnung für konstante Niederschlags- intensität

Wir führen nun noch, sowohl für das lineare als auch für das quadratische Modell, für beide Gewässer hypothetische Berechnungen durch unter der Annahme, dass am Ende der durch die Daten beschriebenen niederschlagsfreien Periode ein 24-stündiges Niederschlagsereignis mit einer konstanten Gesamtniederschlagsintensität $I_{\rm c}$ für das gesamte Einzugsgebiet stattgefunden hat. Wir verwenden dazu die Formeln (5) bzw. (14) und (7), weiter die in Abschnitt 7 jeweils errechneten Werte für a,b und a.

Für die Ybbs legen wir den plausiblen Niederschlagswert $I_{\rm c}=400~{\rm m}^3/{\rm s}$ zugrunde, sowie den Anfangswert $Q_0^{\rm neu}=59.85~{\rm m}^3{\rm s}^{-1}$ (letzter Q-Wert des Datensatzes 1). Mittels (7) folgt

$$S_0^{\text{neu}} = \left(\sqrt{4bQ_0^{\text{neu}} + a^2} - a\right) / (2b) = 11.42 \times 10^6 \text{ m}^3.$$

Das Ergebnis ist in *Bild 3* grafisch dargestellt. Analog wird für die Taffa $I_c = 25 \, \mathrm{m}^3/\mathrm{s}$ angenommen, weiter ist $Q_0^{\mathrm{neu}} = 2.32 \, \mathrm{m}^3 \mathrm{s}^{-1}$ und $S_0^{\mathrm{neu}} = 1.92 \times 10^5 \, \mathrm{m}^3$, siehe *Bild 4*. Wie sich zeigt, führt das quadratische Modell, dessen Glaubwürdigkeit ja in Abschnitt 7 erhärtet wurde, zu einer deutlich höheren Prognose für die zu erwartende Abflussstärke Q(t). Dies könnte als Indiz angesehen werden, dass das klassische lineare Speichermodell die Abflussentwicklung als Folge eines Niederschlagsereignisses möglicherweise systematisch unterschätzt.

9. Zusammenfassung der Ergebnisse

- Es wird eine Variante der mathematischen Speichermodellierung in der Hydrologie dargestellt («quadratischer Speicher»), die bei Tests an empirischen Daten dem klassischen linearen Modell deutlich überlegen ist.
- Dieses quadratische Speichermodell führt ebenfalls zu einer expliziten analytischen Abfluss-Modellfunktion. Die erforderlichen Berechnungen können folglich mit Standardsoftware wie Microsoft ExcelTM durchgeführt werden.
- Es zeigt sich, dass Prognoserechnungen anhand des linearen Modells die zu erwartende Abflussstärke als Folge eines vorgegebenen Blockregens eher unterschätzen, der quadratische Ansatz führt hier tendenziell zu höheren Werten.

Es steht ausser Zweifel, dass aufwendigere Modelle, deren Lösungsfunktionen nur mehr numerisch bestimmt werden können, noch präziser und auch flexibler sein mögen, allerdings um den Preis wesentlich grösserer mathematischer Komplexität und damit auch höherer Anforderungen an die erforderliche Software

Für weitere Forschungen wäre es von Interesse, den quadratischen Ansatz an möglichst vielfältigen empirischen Daten zu testen, auch unter Berücksichtigung von Niederschlägen, und sowohl mit dem linearen als auch mit komplexeren Modellen zu vergleichen.

Danksagung

Die Verfasser danken Herrn Dipl.Ing. Christian Krammer und Herrn Mag. Friedrich Salzer von der Abteilung Hydrologie und Geoinformation (BD3) des Amtes der NÖ Landesregierung für die zuvorkommende und rasche Bereitstellung der Durchfluss- bzw. Niederschlagsdaten.

Gedankt sei weiter dem hilfreichen Team des Instituts für Wasserwirtschaft, Hydrologie und Konstruktiven Wasserbau der BOKU Wien für sehr informative beratende Kommunikation sowie konstruktiv-kritische Lektüre verschiedener Fassungen dieses Artikels; namentlich Herrn Prof. Hans-Peter Nachtnebel, Herrn Prof. Hubert Holzmann und Frau Katharina Lebiedziński. Dank gebührt auch Herrn Professor Norbert Brunner vom Institut für Mathematik der BOKU Wien für den Hinweis auf das wert-

volle Zitat [13] sowie für hilfreiche Bemerkungen

Literatur

[1] A. Baumgartner, H.J. Liebscher (Hrsg.) (1996), Allgemeine Hydrologie – Quantitative Hydrologie. – In: Lehrbuch der Hydrologie Bd. 1, 2. Aufl., Gebr. Borntraeger, Berlin-Stuttgart. [2] K.P. Burnham, D.R. Anderson (2002), Model selection and multimodel inference – a practical information-theoretic approach, Springer.

[3] *V.T. Chow* (ed.) (1964), Handbook of Applied Hydrology, McGraw-Hill, New York u.a.

[4] *M. Dierks* (o.J.), Anwendungen der Differentialrechnung bei Stauseeentleerungen, Facharbeit.

http://www.lifeandscience.de/fileadmin/down-loads/referate/mathematik/Differentialrechnung_bei_Stauseeentleerungen.pdf

[5] *T. Dracos* (1980), Hydrologie. Eine Einführung für Ingenieure, Springer, Wien, New York.

[6] S. Dyck (Hrsg.) (1980), Angewandte Hydrologie, Teil 1: Berechnung und Regelung des Durchflusses der Flüsse, Teil 2: Der Wasserhaushalt der Flussgebiete, Verlag für Bauwesen, Berlin.

[7] S. Dyck, G. Peschke (1995), Grundlagen der Hydrologie, Verl. F. Bauwesen Berlin.

[8] R. Herrmann (1976), Einführung in die Hydrologie, Teubner Studienbücher Geographie, Stuttgart.

[9] H. Heuser (2004), Gewöhnliche Differentialgleichungen, Teubner.

[10] R. Hinkelmann (2005), Hydrologie und

Wasserwirtschaft – Hydrologische Modellierung – Manuskript zur Vorlesung. TU Berlin, Fachgebiet Wasserwirtschaft und Hydroinformatik

[11] W. Hosang, W. Bischof (1998), Abwassertechnik, Teubner.

[12] *U. Maniak* (2005), Hydrologie und Wasserwirtschaft. Eine Einführung für Ingenieure, 5. Aufl., Springer, Berlin.

[13] H.J. Motulsky, A. Christopoulos (2003), Fitting models to biological data using linear and nonlinear regression. A practical guide to curve fitting. GraphPad Software Inc., San Diego CA. http://www.graphpad.com

[14] K.H. Schmidt (1984), Der Fluss und sein Einzugsgebiet – Hydrogeographische Forschungspraxis, Wissenschaftl. Paperbacks, Franz Steiner Verlag, Wiesbaden.

[15] E.M. Shaw, (1994), Hydrology in Practice, Chapman & Hall, London u.a.

Anschrift der Verfasser

Prof. Dr. Werner Georg Nowak, Harald Führer, BSc, Institut für Mathematik, Department für Integrative Biologie, Universität für Bodenkultur Wien, Gregor-Mendel-Strasse 33, AT-1180 Wien

Hydraulische Lösungen - alles aus einer Hand

Planen - entwickeln - produzieren

Als innovatives Schweizer Traditionsunternehmen sind wir spezialisiert auf hydraulische Steuerungs- und Antriebstechnik. Ob grosse, komplexe Herausforderungen oder Einzelkomponenten: Jeder Auftrag ist für uns der Wichtigste.

Bei Fragen, Anliegen oder Projekten freut es uns, für Sie da zu sein.

Oelhydraulik Hagenbuch AG, Rischring 1, CH-6030 Ebikon, Tel. +41 (0)41 444 12 00, Fax +41 (0)41 444 12 01

ohe@hagenbuch.ch, www.hagenbuch.ch, www.hydraulikshop.ch

