Zeitschrift: Wasser Energie Luft = Eau énergie air = Acqua energia aria

Herausgeber: Schweizerischer Wasserwirtschaftsverband

Band: 106 (2014)

Heft: 2

Artikel: Ökologische Aufwertung der Thur an der Eggrankkurve bei Andelfingen

ZΗ

Autor: Mende, Matthias / Pellandini, Stefano / Grober, Otmar

DOI: https://doi.org/10.5169/seals-939743

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 20.10.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Ökologische Aufwertung der Thur an der Eggrankkurve bei Andelfingen ZH

Matthias Mende, Stefano Pellandini, Otmar Grober, Philip Lüthi, Matthias Oplatka

Zusammenfassung

Die Eggrankkurve bei Andelfingen ZH ist heute aufgrund der Thurkorrektion durch fehlende Strömungsvielfalt und Strukturarmut gekennzeichnet. Zur ökologischen Aufwertung der Kurve werden im Verlauf des Jahres 2014 fünf inklinante Lenkbuhnen mit einer Länge von 30 bis 50 m und eine Schneckenbuhne, ein besonderer Bautyp der Lenkbuhne, in die Thursohle eingebaut. Die bereits bei Niedrigwasser überströmten Lenkbuhnen dienen der Verringerung der Fliessgeschwindigkeit am Prallufer und bewirken über die gesamte Gewässerbreite eine deutlich erhöhte Strömungsvielfalt, die mit einer grossen Tiefenvarianz und Substratsortierungen einhergeht. Als weitere Massnahmen werden die Thur am Innenufer aufgeweitet und der begradigte Flusslauf oberhalb der Eggrankkurve in einen gewundenen Verlauf umgestaltet.

1. Ausgangslage und Zielsetzung

Zum Schutz des Zürcher Thurtals vor Überschwemmungen hat der Kanton Zürich die Thur zwischen 1983 und 2005 in fünf Etappen naturnah umgestaltet. Im Jahr 2008 kam mit dem Projekt «Hochwasserschutz und Auenlandschaft Thurmündung» der sechste und letzte Abschnitt bis zur Mündung der Thur in den Rhein hinzu. In diesem Abschnitt durchfliesst der Fluss die Thurauen. Sie sind das grösste Auengebiet des Schweizer Mittellands und von nationaler Bedeutung.

Ein spezieller Teilbereich bei der Umgestaltung des sechsten Abschnitts ist die ökologische Aufwertung der Eggrankkurve (Bild 1). Die Kurve ist heute durch eine grosse Strukturarmut gekennzeichnet. Zwar besteht ein ausgeprägter Kurvenkolk mit Niedrigwasserfliesstiefen bis zu vier Metern, der auch im Sommer gerne von Badenden genutzt wird. Durch hohe Fliessgeschwindigkeiten und fehlende strömungsberuhigte Bereiche werden insbesondere Fische jedoch auch hier bereits bei mittleren Abflüssen (MQ = 47 m³/s) verdriftet oder müssen viel Energie aufwenden, um am Standort zu bleiben.

Als Hauptgrund für die grossen Fliessgeschwindigkeiten entlang des Talwegs ist der Ausbau im Rahmen der Thurkorrektion des letzten und vorletzten Jahrhunderts zu nennen. Der ursprünglich mäandrierende Fluss wurde auf eine einheitli-

che Sohlenbreite von 50 m eingeengt und begradigt, womit bereits eine Erhöhung der mittleren Fliessgeschwindigkeit verbunden ist. Im Bereich Eggrank geht die ausgebaute Thur darüber hinaus von einem schnurgeraden, ca. 400 m langen Abschnitt ohne Übergangsbogen in die sehr enge 110°-Kurve (mittlerer Kurvenradius r = 125 m, Kurvenradius entlang des Talwegs $r_T \approx 140$ m) über. Die Hauptströmung liegt am Einlauf in die Kurve bereits in der Gewässermitte und kann sich so schnell an das im Vergleich zur Breite glatte, durch Blockwurf gesicherte Prallufer verlagern. Verschärft wird die Situation zudem durch eine in den 1990er-

Jahren gebaute leichte Gerinneaufweitung oberhalb der Eggrankkurve, die dort zu einem Anstieg der Sohlenlage geführt hat. Daraus resultieren ein grösseres Gefälle und eine weitere Erhöhung der Fliessgeschwindigkeit am Einlauf in die Kurve.

Für eine ökologische Aufwertung der durch ausgeprägte Abflussspitzen gekennzeichneten Thur (HQ₁₀₀ = 1400 m³/s am Pegel Andelfingen [Horat & Scherrer AG 2000]) muss daher im Bereich der Eggrankkurve neben einer Erhöhung der Strukturvielfalt auch eine Verringerung der Fliessgeschwindigkeit erreicht werden.

2. Anpassungen der Flussgeometrie

Die ökologische Aufwertung der Thur erfolgt im Projekt «Hochwasserschutz und Auenlandschaft Thurmündung» nach Möglichkeit durch das Zulassen und Fördern einer eigendynamischen Entwicklung. Voraussetzung hierfür sind ungesicherte Ufer, weshalb, sofern vorhanden, ein Rückbau des Uferverbaus erfolgt. Am Aussenufer der Eggrankkurve kann jedoch nicht auf den bestehenden Längsverbau verzichtet werden, da der Erhalt der angrenzenden Kantonsstrasse eine harte Randbedingung darstellt.

Bild 1. Luftaufnahme der Eggrankkurve bei einem mittleren Abfluss (Fliessrichtung von oben nach links, Foto: AWEL, Matthias Oplatka).

Aus diesem Grund werden bauliche Massnahmen umgesetzt.

2.1 Initialaufweitung am Innenufer

Am Innenufer der Eggrankkurve hat sich eine Kiesbank gebildet, die im Sommer gerne von Badegästen genutzt wird. Diese Nutzung soll auch in Zukunft möglich sein oder sogar verbessert werden, um hier die Freizeitnutzung zu konzentrieren und andere Teile der Auenlandschaft zu entlasten.

Zur ökologischen Aufwertung und Verbesserung der Freizeitnutzung wird die bestehende Böschungsoberkante durch Abgrabungen um 30 bis 50 m verschoben (Bild 2), wobei stellenweise bis zu 5 m Erdreich abgetragen werden (Planergemeinschaft Bachmann, Stegemann + Partner AG, Staubli, Kurath & Partner AG 2013). Durch diese Initialaufweitung entstehen zusätzliche Kiesflächen, die jedoch nur dann von Dauer sind, wenn die hydraulische Belastung am Innenufer durch Lenkbuhnen erhöht wird (Kapitel 3). Die Kiesflächen gehen mit zunehmender Entfernung zur Flussmitte allmählich in eine Weichholzaue über.

2.2 Verlauf

Der heute begradigte Abschnitt oberhalb der Eggrankkurve wird durch eine neue Kurve geringfügig verlängert (Bild 2). Der neue naturnahe Verlauf lehnt sich an den Charakter der Thur als mäandrierender Fluss an. Er führt zu erhöhter Strömungsvielfalt und verstärkter Dynamik im Sohlenbereich (Talwegbildung, Flachufer, Substratsortierungen). Am linken Ufer wird auf einer Länge von ca. 300 m ein Flachufer mit standortgerechten Gehölzen erstellt, das Lebensraum für zahlreiche seltene Landtiere und -pflanzen aber auch Unterstände für Fische (z.B. durchströmte Erlen- und Weidenwurzeln, Totholzstrukturen) bietet.

Durch den naturnahen Verlauf wird neben der ökologischen Aufwertung oberstrom der Eggrankkurve auch ihre Anströmung verbessert. Die Hauptströmung liegt durch die vorgelagerte Kurve am Einlauf in die Eggrankkurve am Innenufer und verlagert sich daher erst weiter unterstrom an das Prallufer. Die heute auftretende starke Fliessgeschwindigkeitszunahme im Kurvenbereich wird dadurch verringert. Zudem induziert die vorgelagerte Kurve eine leichte Sekundärströmung, deren Drehrichtung sich im Verlauf des Eggranks umkehrt (Kurvenfolge links/rechts). Durch diese Umkehrung wird der Strömungsverlust erhöht, was zusätzlich zur Reduktion der Strömungsgeschwindigkeiten entlang des Aussenufers der Eggrankkurve beiträgt.

Eine weitere ökologische Verbes-

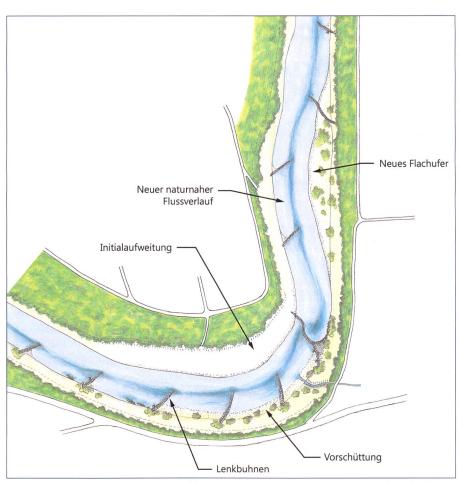


Bild 2. Geplante Umgestaltung der Thur im Bereich Eggrank (Planergemeinschaft Bachmann, Stegemann + Partner AG, Staubli, Kurath & Partner AG 2013).

serung wird durch eine mit Lenkbuhnen erreichte Verschiebung des Talwegs in Richtung Innenufer und die damit verbundene Vergrösserung des Kurvenradius von derzeit ca. 140 m (Kapitel 1) auf ca. 215 bis 280 m erreicht. Durch die grösseren Radien wird die im Kurvenbereich auftretende Querströmung verringert, die durch ihre Interaktion mit der Hauptströmung zu einer Zunahme der Fliessgeschwindigkeit im Talweg und seine Verlagerung an das Prallufer führt (Meckel 1978). Mit der Vergrösserung der Kurvenradien geht daher auch die aus ökologischen Gründen gewünschte Verringerung der Fliessgeschwindigkeit im Talweg einher. Zusätzlich ermöglicht eine Vorschüttung entlang des heutigen Prallufers die Entwicklung eines standorttypischen Gehölzsaums, der neben weiteren ökologischen Funktionen bei grösseren Abflüssen grossräumige strömungsberuhigte Bereiche bietet.

3. Massnahmen im Fluss: Lenkbuhnen

3.1 Zielsetzung

Der Uferschutz am Prallufer der Eggrankkurve ist bereits heute durch den bestehenden Blocksatzverbau sichergestellt. Der Einbau von Lenkbuhnen erfolgt daher ausschliesslich zur ökologischen Aufwertung und in geringerem Masse zum Erhalt des hohen Freizeitwerts.

Als Teilziele sind zu nennen:

- Verhinderung von Auflandungen am aufgeweiteten Innenufer
- Gewässertypische Fliessgeschwindigkeiten, Verlagerung des Talwegs in Richtung Innenufer (Kapitel 2.2)
- Möglichst grossräumige Erhöhung der Strömungs- und damit der Strukturvielfalt (Kolke, Substratsortierungen, Fischeinstände usw.).

3.2 Definition und Wirkungsweise

Die zum Einsatz kommenden Lenkbuhnen sind eine Buhnenbauweise, die bereits bei Niedrigwasserabfluss vollständig überströmt wird (Bild 3). Als wesentliches Kennzeichen induzieren sie bei grösseren Abflüssen eine grossräumige Sekundärströmung (Bild 4). Bei inklinanter Anordnung ($\alpha < 90^{\circ}$, Bild 4 unten) lenkt die induzierte Sekundärströmung langsam fliessendes sohlennahes Wasser in den Bereich der Einbauten. Schnell fliessendes oberflächennahes Wasser wird dagegen heraustransportiert. Dieser Massen- und Impulsbereich bewirkt im Buhnenbereich

Bild 3. Inklinante Lenkbuhne in der Mur bei St. Michael/Obersteiermark bei Niedrigwasserabfluss (Foto: Otmar Grober).

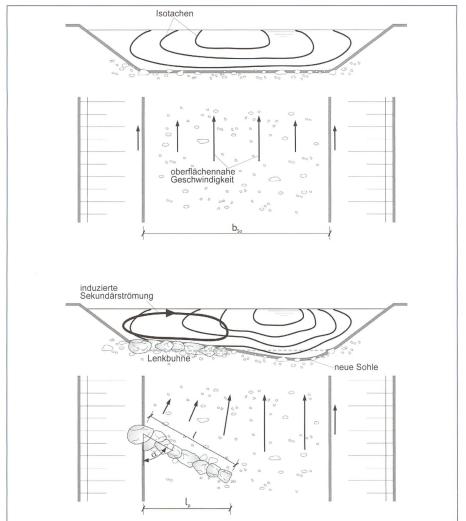


Bild 4. Schematische Isotachendarstellung einer geraden Gewässerstrecke ohne (links) und mit inklinanter Lenkbuhne (rechts; Sindelar & Mende 2009, modifiziert).

Bild 5. Schneckenbuhne an der Wiese bei Maulburg (Quelle: Erich Linsin, modifiziert).

eine deutliche Verringerung der Fliessgeschwindigkeit. Die Ablagerung eingetragener Sedimente wird begünstigt und das Ufer entlastet. Ausserhalb der Einbauten nimmt die Fliessgeschwindigkeit zu, Eintiefungen sind die Folge (Sindelar & Mende 2009).

3.3 Bautyp Schneckenbuhne

Neben inklinanten Lenkbuhnen wird an der Eggrankkurve auch eine sogenannte «Schneckenbuhne» gebaut. Diese besondere Form der Lenkbuhne wird ebenfalls an Prallufern eingesetzt, jedoch einzeln und meist bei bestehenden Ufereinrissen angeordnet. Die Schneckenbuhne weist einen in Fliessrichtung kleiner werdenden Radius auf. Sie wird tangential angeströmt, was z.B. durch den Einbau eines S-Riegels erreicht werden kann (Bild 5). Nach dem Drehimpulserhaltungssatz muss die Fliessgeschwindigkeit zunehmen, wenn der Radius kleiner wird. Dieser Effekt ist z.B. auch vom Auslaufwirbel eines Waschbeckens bekannt und wird umgangssprachlich als «Pirouetteneffekt» bezeichnet. Das Umfeld der Schneckenbuhne ist aufgrund der sich ständig ändernden Fliessgeschwindigkeit durch eine besonders grosse Strömungsvielfalt gekennzeichnet. Durch die Wirbelbildung wird ein Teil der Strömungsenergie umgewandelt, wodurch unterhalb liegende Gewässerabschnitte entlastet werden (Mende 2012). Zur Entlastung des Prallufers trägt ausserdem bei, dass die Buhne zum Innenufer um ein bis zwei Dezimeter abfällt und den Abfluss somit dort konzentriert.

Bei einer im Jahr 2011 an der Wiese bei Maulburg gebauten Schneckenbuhne zeigte sich, dass der entstehende Wirbel zu einem grossflächigen Kolk oberstrom der Buhne führt (Bild 5). Die Fläche dieses trichterförmigen Kolks beträgt an der Wiese ca. 250 m², die Fliesstiefe am tiefsten Punkt knapp einen Meter. Die Wiese weist bei Maulburg einen mittleren Abfluss von 10.7 m³/s, der hundertjährliche Abfluss beträgt 260 m³/s (HQ₁₀₀). Die dort erstellte Schneckenbuhne wurde bisher mit einem maximalen Abfluss von ca. 100 m³/s belastet.

Die an der Thur geplante Schneckenbuhne besitzt mit ca. 35 m einen etwa doppelt so grossen Durchmesser (Messung quer zur Gewässerachse) wie die an der Wiese. Es wird daher eine noch grossflächigere und auch etwas tiefere Kolkbildung erwartet. Neben der ökologischen Aufwertung bietet dieser Kolk im Sommer sehr gute Bademöglichkeiten («Flussschwimmbad»).

125

3.4 Dimensionierung und Gestaltung

3.4.1 Zielsetzung und grundsätzliche Überlegungen

Der Einbau von Lenkbuhnen zum Uferschutz verfolgt das Ziel, die hydraulische Belastung durch die Verringerung der ufernahen Fliessgeschwindigkeit zu reduzieren. Beim Einbau von Lenkbuhnen an einem Prallufer sollen sie darüber hinaus die Ausbildung eines tiefen ufernahen Kurvenkolks verhindern, der die Standsicherheit des Ufers durch das Unterspülen des Böschungsfusses zusätzlich zur hydraulischen Belastung herabsetzt. An der Eggrankkurve ist die Zielsetzung eine andere. Die Verringerung der Fliessgeschwindigkeit dient hier in erster Linie der ökologischen Aufwertung (Kapitel 1).

Die Zunahme der Fliessgeschwindigkeit entlang eines Prallufers entsteht durch die kurveninduzierte Sekundärströmung. Ihre Ausbildung kann durch die Induzierung einer mindestens gleich starken Sekundärströmung umgekehrter Drehrichtung mithilfe von Lenkbuhnen verhindert werden. Bestehende Kurvenkolke werden nach dem Einbau von Lenkbuhnen eigendynamisch verfüllt. Zwar geht durch diese Wirkung das Habitatelement Kurvenkolk weitgehend verloren, die erhöhte Strömungsvielfalt und zahlreiche neu entstehende Kolke im Umfeld der Buhnen kompensieren diesen Verlust jedoch mehr als vollständig. Im Gegensatz zum Kurvenkolk werden diese Kolke nur langsam durchströmt, weshalb sie ideale Fischeinstände darstellen.

Als Bemessungsziel für Lenkbuhnen wurde in Mende (2014) ein Kräftegleichgewicht zwischen der krümmungsinduzierten und der lenkbuhneninduzierten Sekundärströmung definiert. Lenkbuhnen werden so bemessen, dass die lenkbuhneninduzierte Sekundärströmung nahe der Buhnenwurzel bis zum Bemessungsabfluss (i.d.R. HQ₁₀₀) grösser als die kurveninduzierte ist. Da die buhneninduzierte Sekundärströmung von der Wurzel zum Kopf auf null abnimmt, bildet sich am kopfnahen Bereich der Lenkbuhne wieder die kurveninduzierte Sekundärströmung aus (Bild 6). Die hydraulische Belastung der Lenkbuhne ist aus diesem Grund am Kopf besonders gross. Der Talweg bildet sich entlang der Buhnenköpfe aus, er wird durch die Lenkbuhnen also vom Prallufer in Richtung Innenufer verschoben (Bild 7), wodurch ein Unterspülen des Böschungsfusses verhindert wird.

Durch das Verfüllen des Kurvenkolks und die damit verbundene Verringerung der

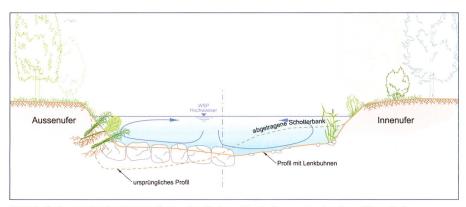


Bild 6. Schematische Darstellung der Sekundärströmungen in einer Flusskrümmung mit inklinanten Lenkbuhnen bei Hochwasserabfluss (nach Grober 1998, modifiziert).

Fliesstiefe ermöglichen Lenkbuhnen auch den vermehrten Einsatz ingenieurbiologischer Bauweisen entlang von Prallufern, an denen ihre Einsatzmöglichkeiten ansonsten stark eingeschränkt sind. Dies gilt auch für die Eggrankkurve, an der der vorhandene Blockwurf im Rahmen der Umgestaltung mit Kies abgedeckt und punktuell mit Buschlagen gesichert wird (Planergemeinschaft Bachmann, Stegemann + Partner AG, Staubli, Kurath & Partner AG 2013).

3.4.2 Bemessungsverfahren

Wie bereits erläutert, soll durch den Lenkbuhneneinbau die kurveninduzierte Sekundärströmung nahe des Prallufers neutralisiert werden. Zu ihrer analytischen Beschreibung wurden verschiedene Verfahren entwickelt, von denen das Verfahren von Rozovskii (1957) das gebräuchlichste ist. In dem Verfahren wird eine lineare Verteilung der Quergeschwindigkeit über die Tiefe angenommen. Die Quergeschwindigkeit ist folglich an der Wasseroberfläche und an der Sohle gleich gross, die Fliessrichtung jedoch umgekehrt.

Zur analytischen Beschreibung der durch Lenkbuhnen hervorgerufenen Quergeschwindigkeit ging *Mende* (2014) ebenfalls von einer linearen Verteilung über die Tiefe aus und bestimmte für jede von ihm in Laborversuchen untersuchte Lenkbuhnenanordnung die «relative Quergeschwindigkeit c». Die relative Quergeschwindigkeit beschreibt das Verhältnis von Quergeschwindigkeit an der Wasseroberfläche v_S [m/s] zur mittleren Geschwindigkeit in Fliessrichtung u_m [m/s].

Wegen der zugrunde liegenden linearen Verteilung sind relative Quergeschwindigkeiten, die nach *Rozovskii* (1957) berechnet werden, unmittelbar vergleichbar mit den lenkbuhneninduzierten, die in *Bild 8* in Abhängigkeit vom «relativen Abstand A_B» (Gl. 1) und der «relativen Höhe H» (Gl. 2) dargestellt sind. A_B und H sind wie folgt definiert:

$$A_{B} = \frac{a_{x}}{I_{p}} \tag{1}$$

$$H = \frac{h_{B,m}}{h_m} \tag{2}$$

mit:

a_x = Lenkbuhnenabstand in Fliessrichtung [m]

 = auf die Gewässerbreite projizierte Länge [m] (Bild 4, Bild 7)

h_{B,m} = mittlere Bauwerkshöhe; Bezugsniveau: mittlere Sohlenlage [m]

h_m = mittlere Fliesstiefe [m]

Ist die lenkbuhneninduzierte Quergeschwindigkeit an der Wasseroberfläche bei entgegengesetzter Fliessrichtung grösser als die kurveninduzierte, wird die kurveninduzierte Sekundärströmung vollständig eliminiert. Es überwiegt die durch die Lenkbuhnen hervorgerufene Sekundärströmung.

Um die Zunahme der Fliessgeschwindigkeit am Prallufer und die Ausbildung des Kurvenkolks zu verhindern, muss die Lenkbuhnenanordnung und -geometrie so gewählt werden, dass die buhneninduzierte Querströmung nahe des Prallufers bis zum Bemessungsabfluss grösser als die kurveninduzierte ist.

Zur Bemessung von Lenkbuhnen sind somit folgende Schritte notwendig: Schritt 1:

• Berechnung der relativen kurveninduzierten Quergeschwindigkeit $c_{Kurve} = v_s/u_m$.

Schritt 2:

 Ermittlung des maximalen relativen Lenkbuhnenabstands A_B und der relativen Höhe H (siehe Bild 8)

Schritt 3:

 Festlegung einer Lenkbuhnenanordnung und -geometrie für das ermittelte A_B und H.

Für die Bemessung der Lenkbuhnen in Flusskurven müssen folglich nur der Krümmungsradius entlang des Talwegs r_{T} und die mittlere Fliesstiefe im Bemessungsfall h_{b} bekannt sein.

126

3.4.3 Bemessung der Lenkbuhnen in der Eggrankkurve

Für die Bemessung ist der Krümmungsradius des Talwegabschnitts relevant, in dem der Talweg entlang des Prallufers verläuft. Da der Talweg durch die neue Krümmung oberhalb der Eggrankkurve und die Schneckenbuhne am Beginn der Kurve am Innenufer liegt, erreicht der Talweg erst in der unteren Kurvenhälfte das Prallufer (Bild 7, blaue Linie). Der engste Krümmungsradius beträgt hier nach Einbau der Lenkbuhnen $r_T = 280 \,\mathrm{m}$ (Bild 7, rote Linie). Die Bemessung wird nachfolgend exemplarisch für diesen Radius erläutert. Die mittlere Fliesstiefe im Bemessungsfall HQ₁₀₀ ist aus Wasserspiegellinienberechnungen bekannt und beträgt $h_b = 4.9 \text{ m}.$

Schritt 1: Berechnung der relativen kurveninduzierten Quergeschwindigkeit c_{Kurve}

$$c_{Kurve} = \frac{v_s}{u_m} = \alpha_v \cdot \frac{h_b}{r_T} = 6.5 \cdot \frac{4.9}{280} = 0.114$$
 (3)

mit

v_S = Quergeschwindigkeit an der Wasseroberfläche [m/s]

u_m = mittleren Geschwindigkeit in Fliessrichtung [m/s]

 α_v = Sekundärströmungskoeffizient [-]

h_b = mittlere Wassertiefe beim Bemessungsabfluss (hier HQ₁₀₀) [m]

r_T = Kurvenradius entlang des Talwegs [m]

Der Sekundärströmungskoeffizient ist eine Funktion der Gerinnerauheit. Da der Wertebereich von α_v jedoch mit 6.3 bis 6.7 (*Malcherek* 1999) klein ist, kann eine ausreichend genaue Berechnung in der Regel bereits unter Verwendung des Mittelwerts 6.5 erzielt werden.

Schritt 2: Ermittlung des maximalen relativen Lenkbuhnenabstands A_B und der relativen Höhe H, sodass nahe des Prallufers gilt $c_{\text{Lenkbuhne}} > c_{\text{Kurve}}$

Die in Schritt 1 berechnete relative kurveninduzierte Quergeschwindigkeit c_{Kurve} dient als Eingangswert für die Bemessung (*Bild* 8, schwarzer Pfeil). Soweit möglich, wird wie hier ein Inklinationswinkel von $\alpha=60^\circ$ verwendet. Zwar können mit $\alpha=30^\circ$ etwas grössere Quergeschwindigkeiten erreicht werden, bei gleicher projizierter Länge I_P ist die wahre Länge I (*Bild* 4) und damit der Materialbedarf für die Lenkbuhne bei 30° jedoch wesentlich grösser (*Mende* 2014).

Aus *Bild* 8 wird deutlich, dass zur Neutralisierung der Sekundärströmung nahe der Buhnenwurzel und damit in Prallufernähe ein relativer Abstand von $A_B = 1.8$ bei H = 1/10 notwendig ist.

Schritt 3: Festlegung der Lenkbuhnenan-

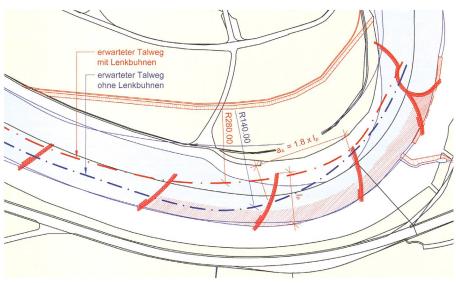


Bild 7. Bemessungsgrundlagen der Lenkbuhnen in der Eggrankkurve (Planergemeinschaft Bachmann, Stegemann + Partner AG, Staubli, Kurath & Partner AG 2013, modifiziert).

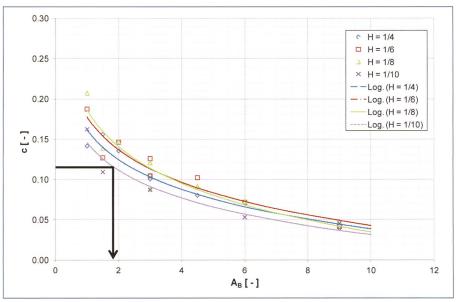


Bild 8. Abhängigkeit zwischen der relativen Quergeschwindigkeit c und dem relativen Abstand A_B im Bereich der Buhnenwurzel für $\alpha = 60^{\circ}$.

ordnung und -geometrie für das ermittelte $A_{\mbox{\scriptsize B}}$ und $\mbox{\scriptsize H}$

In der Praxis hat sich für Lenkbuhnen das sogenannte «Drittelprinzip» zur Festlegung der Länge bewährt. Die Lenkbuhnen werden so dimensioniert, dass etwa ein Drittel der Sohlenbreite unverbaut bleibt. Bei einseitiger Buhnenanordnung wie in der Eggrankkurve reichen die Lenkbuhnen über 2/3 der zukünftigen Sohlenbreite von ca. 60 m, die projizierte Länge I_P beträgt somit ca. 40 m, die wahre Länge beträgt bei $\alpha = 60^{\circ} I = 46.2$ m (siehe Bild 4). Der Abstand zwischen den Lenkbuhnen ist

$$a_x = A_B \cdot I_p = 1.8 \cdot 40 = 72 \,\text{m}.$$
 (4)

Die Höhe der Lenkbuhne sollte möglichst niedrig gewählt werden, da aus der geringen Höhe zahlreiche Vorteile resultieren, z.B. geringerer Materialbedarf, vernachlässigbarer Wasserspiegelanstieg, ständige Überströmung und damit keine negative Auswirkung auf das Landschaftsbild. Für H=1/10 ergibt sich die Höhe der Lenkbuhne über der mittleren Sohlenlage zu

$$h_B = h_b \cdot H = 4.9 \cdot \frac{1}{10} = 0.49 \approx 0.5 \,\text{m}.$$
 (5)

Bei der Festlegung der Lenkbuhnenanordnung und -geometrie ist darauf zu achten, dass die Bemessungsgrössen von Buhne zu Buhne ein wenig variieren. Zusätzlich wird die Wahl einer leicht geschwungenen oder gebogenen Buhnenachse empfohlen. Diese Variationen haben nur wenig Einfluss auf die induzierte Sekundärströmung und die Geschwindigkeitsverteilung, wirken sich jedoch positiv auf die Strömungsvielfalt und das Erscheinungsbild aus.

4. Zusammenfassung und Ausblick

Im Rahmen des Projekts «Hochwasserschutz und Auenlandschaft Thurmündung» wird auch die Eggrankkurve revitalisiert, wobei der bestehende Uferschutz am Prallufer belassen wird, um die Kantonsstrasse zu schützen.

Die Eggrankkurve ist heute aufgrund der Thurkorrektion durch Strukturarmut und unnatürlich grosse Fliessgeschwindigkeiten gekennzeichnet. Insbesondere Fische werden daher bereits bei mittleren Abflüssen verdriftet oder müssen viel Energie aufwenden, um am Standort zu bleiben. Neben der Strukturverbesserung kommt daher auch einer Verringerung der Fliessgeschwindigkeit im Bereich der Eggrankkurve eine grosse Bedeutung zu.

Zur ökologischen Aufwertung der Kurve wird bereits der Abschnitt oberhalb eingebunden und durch eine neue Kurve geringfügig verlängert. Der neue, naturnahe Verlauf führt zu verstärkter Dynamik im Sohlenbereich (z.B. Talwegbildung) und ermöglicht die Entwicklung eines Flachufers mit standortgerechten Gehölzen. Neben der ökologischen Aufwertung oberstrom führt der naturnahe Verlauf auch zu einer Verringerung der Fliessgeschwindigkeit am Prallufer der Eggrankkurve. Zusätzlich zum neuen Verlauf oberhalb werden in der Eggrankkurve fünf 30 bis 50 m lange inklinante Lenkbuhnen und eine Schneckenbuhne in die Thursohle eingebaut. Die bereits bei Niedrigwasser überströmten Buhnen dienen der weiteren Verringerung der Fliessgeschwindigkeit am Prallufer und bewirken über die gesamte Gewässerbreite eine deutlich erhöhte Strömungsvielfalt, die mit einer grossen Tiefenvarianz und Substratsortierungen einhergeht.

Neben dem Einbau der Lenkbuhnen und weiteren Massnahmen wird die Eggrankkurve auch durch eine Initialaufweitung am Innenufer aufgewertet. In Teilen dieses bis auf den Kieshorizont abgegrabenen Bereichs werden sich, wie bereits auf dem heutigen Gleitufer, im Sommer Badegäste aufhalten können. Der erhöhten Gefahr einer übermässigen Auflandung des abgegrabenen Bereichs wird durch die Lenkbuhnen, die die hydraulische Belastung am Innenufer erhöhen, wirkungsvoll und nachhaltig entgegengewirkt.

Um aus der Aufwertungsmassnahme im Bereich Eggrank den grösstmöglichen Erkenntnisgewinn zu erzielen, wird sie durch ein intensives Monitoring vor und nach der Umsetzung begleitet. Das Monitoring beinhaltet zum einen die grossflächige zweidimensionale Mes-

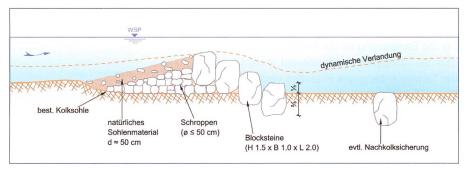


Bild 9. Lenkbuhnenaufbau bei Einbau in Kurvenkolk (Schnitt in Fliessrichtung).

sung von Fliessgeschwindigkeiten mittels Oberflächen-Particle-Image-Velocimetry (PIV) aus Helikopteraufnahmen (Detert & Weitbrecht 2014). Zum anderen werden in zehn Querprofilen dreidimensionale Acoustic-Doppler-Current-Profiler-Messungen (ADCP) durchgeführt, bei denen neben den Fliessgeschwindigkeiten auch die Querprofilgeometrie erfasst wird. Mithilfe dieser umfangreichen Erfolgskontrolle können insbesondere weitreichende Erkenntnisse zum Einfluss der Lenkbuhnen auf die Strömungsverhältnisse und die Morphologie in einem grossen Talfluss gewonnen und das Prozessverständnis weiter verbessert werden.

Der Einbau der Lenkbuhnen in der Thur ist die bislang grösste Massnahme des Instream River Trainings (Mende 2012) in der Schweiz und weist daher Pilotcharakter auf. Die bauliche Umsetzung wird eine grosse Herausforderung darstellen, da die tonnenschweren Blocksteine (Masse bis 10 t) sehr genau gesetzt werden müssen und im heutigen Kurvenkolkbereich ein mehrlagiger Aufbau notwendig ist (Bild 9). Nichtsdestotrotz überwiegen bei dieser innovativen Massnahme die Chancen bei Weitem, da eine bedeutende ökologische Aufwertung zu moderaten Kosten erwartet wird und die gewonnenen Erfahrungen auch zukünftigen Flussbauprojekten zugutekommen.

Literatur

Detert, M.; Weitbrecht, V. (2014): Oberflächen-PIV aus Helikopteraufnahmen. Tagungsband Internationales Symposium 2014 in Zürich, Wasser- und Flussbau im Alpenraum, Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie, ETH Zürich (im Durck).

Grober, O. (1998). Ökologisch orientierte Gewässerinstandhaltungen mit naturnaher dynamischer Landschaftseingliederung nach Grundsätzen von V. Schauberger in der Region Mariazell an der Salza und ihren Nebenbächen. Zusammenstellung der Baubezirksleitung Bruck an der Mur.

Horat & Scherrer AG (2000): Hochwasserschutz und Auenlandschaft Thur-Mündung: Hydrologische Grundlagen. Auftraggeber: Baudirektion

des Kantons Zürich.

Malcherek, A. (1999). Hydromechanik der Oberflächengewässer – Version 5.0. Bundesanstalt für Wasserbau, Aussenstelle Küste, Hamburg.

Meckel, H. (1978). Spiralströmungen und Sedimentbewegung in Fluss- und Kanalkrümmungen. Wasserwirtschaft. 68(10), 287–294.

Mende, M. (2012). Instream River Training – Naturnaher Flussbau mit minimalem Materialeinsatz. Korrespondenz Wasserwirtschaft. 5(10), 537–543.

Mende, M. (2014). Naturnaher Uferschutz mit Lenkbuhnen – Grundlagen, Analytik und Bemessung. Dissertation an der Technischen Universität Carolo-Wilhelmina zu Braunschweig (Veröffentlichung voraussichtlich im Juli 2014). Planergemeinschaft Bachmann, Stegemann + Partner AG, Staubli, Kurath & Partner AG (2013). HWS und Auenlandschaft Thurmündung. Technischer Bericht Bauprojekt 2. Etappe, Bericht Nr. 2490 (08.07.2013).

Rozovskii, I.L. (1957). Flow of water in bends of open channels. Academy of Sciences of the Ukrainian SSR, Institute of Hydrology and Hydraulic Engineering, Kiev.

Sindelar, C.; Mende, M. (2009). Lenkbuhnen zur Strukturierung und Stabilisierung von Fliessgewässern. Wasserwirtschaft, 1-2, 70–75.

Anschrift der Verfasser

Matthias Mende, IUB Engineering AG
CH-3000 Bern 14, Belpstrasse 48
matthias.mende@iub-ag.ch

Stefano Pellandini, Dr. Matthias Oplatka
Baudirektion Kanton Zürich, AWEL Amt für Abfall,
Wasser, Energie und Luft, Abteilung Wasserbau,
CH-8090 Zürich, Walcheplatz 2

Otmar Grober, AT-8643 Allerheiligen im Mürztal,
Wieden 77

Philip Lüthi, Staubli, Kurath & Partner AG CH-8048 Zürich, Bachmattstrasse 53