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Numerische Modellierung von
Erdrutschen und Schlammlilawinen

L Matthias Preisig, Thomas Zimmermann

Zusammenfassung

Immerhéufiger werden grosse Erdrutsche und Schlammlawinen registriert, die durch
Regen oder unterirdische Infiltration von Regenwasser ausgelést werden. In unseren
Stark berbauten Siedlungsgebieten verursachen solche Ereignisse zum Teil heftige
Schéden. Geeignete Software ist deshalb notwendig, die es uns erlaubt, mégliche
Konsequenzen solcher Ereignisse vorherzusagen. In diesem Aufsatz stellen wir ein
einfaches und gleichzeitig robustes numerisches Modell vor, das auf den Grundglei-
chungen viskoser, inkompressibler Fliissigkeiten und einer Euler-Lagrange’schen
Beschreibung der Bewegung basiert [3]. Das Modell stiitzt sich auf die Mechanik von
Zweiphasenmischungen ab und verfolgt das Ziel, detailgetreu die Bewegung sowie
die von der Fliessmasse ausgelésten Kréfte zu ermitteln. Auch wenn momentan ledig-
lichzweidimensional, geht das Modell deutlich weiter als existierende Modelle, deren
Anspruch im Allgemeinen darauf begrenzt ist, Risikozonen identifizieren zu kénnen.
Der Aufsatz beginnt mit einer kurzen Beschreibung des Modells, gefolgt von zwei
Anwendungsbeispielen; das erste dient der Validierung, das zweite stellt die Simula-
tion einer Schlammlawine dar. Der interessierte Leser wird auf die Referenzen [4,5,6]
verwiesen, in welchen die ausfuhrliche Theorie und eine ausfihrlichere Validierung
des Modells zu finden ist.

1. Einfiihrung

Eine grosse Anzahl méglicher Ansétze zur
Numerischen Analyse von Rutschungen
sind Teil einer reichhaltigen Literatur
Zum Thema. Die meisten modellieren die
Rutschzone in zwei (horizontalen) Dimen-
sionen, wobei dem Modell die Hypothese
einer geeigneten vertikalen Geschwindig-
keits- und Druckverteilung zugrunde liegt.
Solche Modelle erlauben es, dierdumliche
Ausbreitung eines Ereignisses zu bestim-
men. Andere Ansatze benltzen mecha-
nische Grundgesetze im Kontinuum, wie
dies auch bei uns der Fall ist, bleiben aber
bei einem Einphasenmodell. Solche Mo-
delle bringen oft hochentwickelte Stoffge-
Setze zur Anwendung, die sehr schwer auf
die Realitat zu kalibrieren sind.

Das vorliegende Modell basiert
auf den Grundgesetzen der Fluidmecha-
nik. Der Algorithmus ist neuartig in seiner
Formulierung. Er ist gleichfalls robust und
erlaubt das Verfolgen eines Ereignisses
vom Anfang bis zum Ende. Das Zweipha-
Senmodell griindet auf der Annahme einer
Mischung zweier viskoser Fliissigkeiten.
Das zweidimensionale Modell benutzt
ein lineares Stoffgesetz und prasentiert

sich deshalb konzeptuell sehr einfach.
Die Euler-Lagrange’sche Beschreibung
der Bewegung wie auch der sehr generell
gehaltene Algorithmus ermdglichen eine
Erweiterung auf drei Dimensionen sowie
die Anwendung komplexerer Stoffgesetze
ohne grundlegende Schwierigkeiten.

Eine Rutschung beginnt, wenn ein
Hang seine Stabilitat verliert. Die Masse,
die sich bei einer Rutschung in Bewegung
setzt, kann mittels eines Computerpro-
grammes wie ZSOIL.PC [8] bestimmt wer-
den. Diese Masse besteht, schematisch
betrachtet, aus einer «pseudo-festen»
Phase und einer flissigen Phase. Das hier

présentierte Modell erlaubt das Verfolgen
derinstabilen Masse (Bild 1), nachdem das
Volumen dieser sowie ihre Eigenschaften
definiert worden sind.

2. Theorie

Wir treffen die Annahme einer Mischung
zweier inkompressibler Phasen unter-
schiedlicher Viskositdt. Der «pseudo-
feste» Anteil wird durch eine erhohte
Viskositat simuliert, wéhrend die andere
Phase mit geringer Viskositat Wasser mit
feinen Schwebestoffen darstellt. Obwohl
die beiden Phasen hier linearen Stoffge-
setzen folgen, stellt dies in der Folge keine
Einschrénkung der Methode dar. Die bei-
den Phasen formen eine Mischung, die
einzig durch die Konzentration ihrer Kom-
ponenten charakterisiert wird. Zwischen
den Phasen erfolgt kein Massenaus-
tausch. Beide Phasen sind flissig, mit un-
terschiedlichen Dichten und Viskositaten.
Beide Phasen nehmen den selben Raum
ein und sind in jedem Punkt des Modellbe-
reichs gemeinsam prasent. In der Folge ist
der Druck p in beiden Phasen identisch.

2.1 Grundgleichungen

Ausgehend von den oben genannten An-
nahmen kann gefolgert werden, dass die
Summe der Konzentrationen C, der bei-
den Phasen Uberall 1 betragt:

C,+C, =1 (s:solid, [ : fluid) (1)

Instabiler
Bereich

Rutschmasse
beit=0

Randbedingung

Bild 1. Bestimmung der instabilen Masse (links), Bereich, der fiir Rutschanalyse be-
riicksichtigt wird (rechts). Verschiebungsamplitude: rot = maximal, blau = 0.
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Die Massenerhaltung wird fiir jede Phase
separat formuliert. Kombiniert mit der
obigen Gleichung sowie der Annahme,
dass beide Flussigkeiten inkompressibel
sind, lasst sich die Massenerhaltung der
Mischung wie folgt schreiben:

V-(C»x_u_\_)+V-(C/-u,-)=0 @)

u, stellt die Geschwindigkeit der Phase a.
dar (s oder fflir solid oder fluid), V den Di-
vergenzoperator.

Der Impulserhaltungssatz wird fur
beide Phasen separat geschrieben. Es
handelt sich dabei um zwei Gleichungen
des Typs Navier-Stokes, die durch einen
Impulsaustauschterm, m, (siehe weiter
unten) erganzt werden:

Du
C o
apa D/

a=s,f ®

=V-(o,)+C,p,f+m,

wobei p, die Dichte der Phase « ist. Der
Term

Du,
Dt steht fur die totale Ableitung der
Geschwindigkeit des Massenpunktes

der Phase «, das heisst seiner Beschleu-
nigung. o, ist die lokale Spannung, die
Uber eine Viskositdtskonstante an den
Geschwindigkeitsgradienten der Phase a.
gebunden ist.

<0a> ist die Uber ein Kontrollvolumen
gemittelte Spannung in der Phase a.

Der Impulserhaltungssatz stellt die
Bewegung einer Menge Massenpunkte
dar, die sich in einer viskosen Flissig-
keit bewegen. Die linke Seite der Glei-
chung hat somit einen Lagrange’schen
Charakter (das Bezugssystem folgt dem
Massenpunkt), wahrend die Spannung in
einem Euler’schen Bezugssystem (fixiert
im Raum) ausgedrtickt wird. Diese auf den
ersten Blick scheinbare Inkoharenz wird
durch die gewahlte algorithmische Vorge-
hensweise beseitigt.

Der Impulsaustauschterm wird als
das Produkt eines konzentrationsabhan-
gigen Parameters und der Differenz der
Geschwindigkeiten der beiden Phasen
ausgedriickt. Verschiedene auf einfache
Situationen basierte Argumente erlauben
es, die Form des Terms wie folgt zu be-
schreiben:

msf =-m 5 = K(Ir'u;.{ <ux —u f) (4)
Wobei Ky, eine neue Materialeigenschaft
ist, die von den Viskositdten sowie den
Konzentrationen abhéngt.

Der interessierte Leser wird auf
[4,5,6] verwiesen, worin die detaillierte
Herleitung nachschlagbar ist. Zudem er-
lautert [7] den mehr allgemeinen theore-
tischen Zusammenhang.

2.2 Numerische Formulierung

Die Formulierung einer Matrixform mithilfe
der Finite-Elemente-Methode folgt der
klassischen Vorgehensweise und fiihrt zur
gewohnten Form eines Systems von Be-
wegungsgleichungen, die zu jedem Zeit-
punkt t,.1=(n+1)At erflllt sein missen (At
ist der Zeitschritt):

(&)

n+l

)a”” e K(xn+l ? C/1+] )vn+l = Fe,\-r

n+l

®)

M(x

n+l?

M ist die Massenmatrix, K die Viskositats-
matrix, beide sind Funktion der Knotenpo-
sition sowie der entsprechenden Konzen-
tration. a ist der Beschleunigungsvektor
in den Knoten der Diskretisierung beider
Phasen, v beinhaltet die Knotengeschwin-
digkeiten sowie den Druck. F, ' istder Vek-
tor der aufgebrachten Lasten, hauptséch-
lich der Schwerkraft und der Reaktionen
an den Grenzen des Modellbereichs. Die
Lésung dieses Gleichungssystems ergibt
das Geschwindigkeitsfeld zum Zeitpunkt
t,.1,aufgrund dessen die neuen Positionen
der Partikel ermittelt werden kénnen.

2.3  Algorithmus

Die Problemstellung wird mittels direkter
Zeitintegration gel6st. Die rdumliche Dis-
kretisierung durch Finite Elemente wird in
jedem Zeitschritt aktualisiert. Da die Ge-
schwindigkeiten in beiden Phasen unter-
schiedlich sind, flihrt die Lagrange’sche
Aktualisierung der Koordinaten eines Mas-
senpunktes fir die Massenanteile eines
urspringlich einzelnen Knotens zu zwei
neuen Knoten, je einer pro Phase:

1
X! =x"+Ad,

nil n
Xf =X +Ad/ (6)

wobei Ad,, die inkrementale Verschiebung
der Phase a darstellt.

Um die Anzahl der Knoten nicht in
jedem Zeitschritt zu vervielfachen, wird
die Lésung auf ein neues Netz interpoliert.
Dieses neue Netz, das fix oder beweglich
seindarf, istidentisch fir beide Phasen. Da
die Aktualisierung der Knotenpositionen
aufgrund der Phasengeschwindigkeiten
zu einer stark unregelmassigen Verteilung
derKnoten fiihrt, ist die Konstruktion eines
optimisierten Netzes auch deshalb unab-
dingbar, um jederzeit geometrisch regu-
|&re Elemente zu gewahrleisten (Bild 2).

Schliesslich miissen noch die Kon-
zentrationen beider Phasen in den Knoten

<

Lagransche'sches Netz - ohne Netzregenerierung

Lagransche'sches Netz - mit Netzregenerierung

Bild 2. Lagrange’sches Netz fiir den Fluss nach einem Dammbruch: Urspriingliches
Netz, Netz nach einigen Zeitschritten, mit und ohne Regenerierung des Netzes.
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Bild 3a. Geometrie, die Zonen mit hoher absoluter Geschwindigkeit sind in Grau
dargestellt, b) freie Oberfliche zu verschiedenen Zeitpunkten: Beginn, im Anfangs-
stadium der Wellenbewegung, bei der Reflektion.

des neuen Netzes bestimmt werden. Im
Prinzip ist diese Aufgabe sehr einfach, es
genlgt, die totale Masse beider Phasen in
der unmittelbaren Umgebung eines Kno-
tens zu bestimmen und aus deren Verhélt-
nis die Konzentration zu berechnen. In der
Praxis ist es nicht ganz einfach, einen Al-
gorithmus zu formulieren, der keine cha-
otisch variierenden Resultate liefert. Wie
in der Folge aber deutlich wird, ist dies
durchaus méglich.

2.4 Implementierung

Im Moment ist das vorliegende Modell in
Form eines zweidimensionalen Prototypen
basierend auf dem frei zugénglichen, ob-
jektorientierten Finite-Element-Programm
FEM_Object [2] implementiert. Der Algo-
rithmus fiir die Regenerierung des Netzes
beniitzt die Geometriesoftware Cgal [1].

3.  Anwendungen

Zwei Anwendungsbeispiele des vorge-
stellten Modells werden in der Folge pra-
Sentiert: die Fortpflanzung eines Solitons
Sowie der Aufprall einer Zweiphasenmi-
Schung auf ein Hindernis. Die komplette

Validierung ist in den Referenzen [5] und
[6] prasentiert.

3.1 Validierung: Soliton

Wir betrachten den rechteckigen Tank in
Bild 3a. Ein Soliton wird erzeugt, indem
die linke Wand folgend einer speziellen
Funktion [3] horizontal verschoben wird.
Die Flussigkeit besteht aus einer einzigen
Phase. Die erzeugte Welle pflanzt sich mit
Geschwindigkeit ¢ fort und wird an der
rechten Wand reflektiert:

un
= ghn[l + ——]
hy @)

wobei g die Erdbeschleunigung, h, die
Tanktiefe und ng die Wellenhdhe ist.

Eine genauere Betrachtung der Re-
sultate der Simulation zeigt, dass nur Mas-
senpunkte nahe des Solitons in Bewegung
sind (Bild 3a, graue Zone). Der Fehler der
Fortpflanzungsgeschwindigkeit  betragt
2.8% und die Amplitude verringert sich um
7.2% in 28 Sekunden. Beide Werte sind
vergleichbar mit Resultaten in [3] und kon-

nen als akzeptabel betrachtet werden fir
die Problemstellungen, die uns interessie-
ren. Die Wasseroberfldche bleibt wahrend
der ganzen Simulation gleichméssig und
glatt.
3.2  |lllustration: Dammbruch und
Aufprall auf ein Hindernis
Hier gehen wir ein Problem mit starkem
Praxisbezug an. Die Ausgangsgeometrie
des Problems ist in Bild 4 abgebildet. Die
Masse besteht aus einer Mischung aus
Wasser (Dichte p = 500, Viskositéat p = 2)
und Feststoffen (Schlamm, Geréll etc. mit
Dichte p=1000 und Viskositat = 100), mit
einer anfénglich einheitlichen Konzentra-
tion von 0.5 beider Phasen. K’y betragt
10000. Nach dem Ausldsen der Mischung
zum Zeitpunktt =0 ergiesst sich die Masse
Uber den Abhang, trifft auf das Hindernis,
schiesstdartber hinwegund sammelt sich
schliesslich hinter der Verbauung an. Wir
konnen auch eine Segregation der Kom-
ponenten «pseudo-fest» undfllissig sowie
einefortschreitende Sedimentation erken-
nen.

Die auf das Hindernis einwirkende
Kraft kann durch Integration des Druckes
in der Mischung entlang der Hindernis-
oberflache berechnet werden (Bild 5). Die
maximale Kraft ist kurz nach dem Aufprall
erreicht, inder Folge néhert sie sichasymp-
totisch einer hydrostatischen Lésung. In
der Figur wird der einphasige Fall mit dem
zweiphasigen verglichen. Ein Resultat mit
einer feineren Diskretisation weist auf eine
konvergente Lésung hin.

4. Schlussfolgerungen

Ein Zweiphasenmodell zum Untersuchen
von Erdrutschen und Schlammlawinen
wurde vorgestellt, bei dem beide Phasen
inkompressibel sind und einem einfachen
viskosen Stoffgesetz folgen. Das préasen-
tierte Modell ist sogleich einfacher und
universeller als tiefengemittelte Modelle
und erlaubt Vorhersagen einer grésseren

Feststoff-
konzentration

Zeitt=0.002 s

Zeitt=0.554s

10000 T T

4000 -

2000

Resultierende Kraft auf Hindernis

8000 F —

T T T T T T T
Einphasenmaterial
————— Zweiphasenmaterial

Zwei Phasen, feines Netz

Zeitt=1s

Zeitt=148s

Zeit [s]

Bild 4. Erguss einer Zweiphasenmischung und Aufprall auf ein
Hindernis.

Bild 5. Resultierende Kraft, die senkrecht auf das Hindernis
einwirkt, als Funktion der Zeit.
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Anzahl Parameter. Es erlaubt das Verfol-
gen der Bewegung einer Schlammmasse
bis zu deren Ablagerung sowie der auf ein
Hindernis einwirkenden Kréfte. Das hier
vorgestellte zweidimensionale Modell ist
direkt auf drei Dimensionen und auf kom-
plexere Stoffgesetze erweiterbar, was flr
realgetreue Simulationen absolut unab-
dingbar ist. Eine zusatzliche Erweiterung,
die sich ltckenlos in das vorliegende Mo-
dell integrieren lasst, ist die Interaktion mit
flexiblen Hindernissen. Das Modell erlaubt
eine gesamthafte Betrachtung des Rutsch-
ereignisses und geht damit weiter als bis-
her existierende Modelle, welche tber die
Grundgleichungen Uber die Tiefe mitteln
und in erster Linie der Identifizierung von
Gefahrenzonen dienen. Unser Modell soll
es in seiner Vollendung erlauben, Schutz-
bauwerke zu bemessen.
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