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Numerische Modellierung von
Erdrutschen und Schlammlawinen

Matthias Preisig, Thomas Zimmermann

Zusammenfassung
Immerhäufiger werden grosse Erdrutsche und Schlammlawinen registriert, die durch
Regen oderunterirdische Infiltration von Regenwasserausgelöst werden. In unseren
stark überbauten Siedlungsgebieten verursachen solche Ereignisse zum Teil heftige
Schäden. Geeignete Software ist deshalb notwendig, die es uns erlaubt, mögliche
Konsequenzen solcher Ereignisse vorherzusagen. In diesem Aufsatz stellen wir ein
einfaches undgleichzeitig robustes numerisches Modell vor, das aufden Grundgleichungen

viskoser, inkompressibler Flüssigkeiten und einer Euler-Lagrange'schen
Beschreibung der Bewegung basiert [3], Das Modell stützt sich aufdie Mechanik von
Zweiphasenmischungen ab und verfolgt das Ziel, detailgetreu die Bewegung sowie
die von derFliessmasse ausgelösten Kräftezu ermitteln. Auch wenn momentan lediglich

zweidimensional, geht das Modell deutlich weiterals existierende Modelle, deren
Anspruch im Allgemeinen darauf begrenzt ist, Risikozonen identifizieren zu können.
Der Aufsatz beginnt mit einer kurzen Beschreibung des Modells, gefolgt von zwei
Anwendungsbeispielen; das erste dient der Validierung, das zweite stellt die Simulation

einer Schlammlawine dar. Der interessierte Leser wird aufdie Referenzen [4,5,6]
verwiesen, in welchen die ausführliche Theorie und eine ausführlichere Validierung
des Modells zu finden ist.

- Einführung
Eine grosse Anzahl möglicher Ansätze zur
numerischen Analyse von Rutschungen
sind Teil einer reichhaltigen Literatur
zum Thema. Die meisten modellieren die
Rutschzone in zwei (horizontalen)
Dimensionen, wobei dem Modell die Hypothese
einer geeigneten vertikalen Geschwindig-
keits- und Druckverteilung zugrunde liegt.
Solche Modelle erlauben es, die räumliche
Ausbreitung eines Ereignisses zu bestimmen.

Andere Ansätze benützen mechanische

Grundgesetze im Kontinuum, wie
dies auch bei uns der Fall ist, bleiben aber
bei einem Einphasenmodell. Solche
Modelle bringen oft hochentwickelte Stoffgesetze

zur Anwendung, die sehr schwer auf
die Realität zu kalibrieren sind.

Das vorliegende Modell basiert
auf den Grundgesetzen der Fluidmecha-
nik. Der Algorithmus ist neuartig in seiner
Formulierung. Er ist gleichfalls robust und
erlaubt das Verfolgen eines Ereignisses
vom Anfang bis zum Ende. Das
Zweiphasenmodell gründet auf der Annahme einer
Mischung zweier viskoser Flüssigkeiten.
Das zweidimensionale Modell benutzt
ein lineares Stoffgesetz und präsentiert

sich deshalb konzeptuell sehr einfach.
Die Euler-Lagrange'sche Beschreibung
der Bewegung wie auch der sehr generell
gehaltene Algorithmus ermöglichen eine

Erweiterung auf drei Dimensionen sowie

dieAnwendungkomplexererStoffgesetze
ohne grundlegende Schwierigkeiten.

Eine Rutschung beginnt, wenn ein

Hang seine Stabilität verliert. Die Masse,
die sich bei einer Rutschung in Bewegung
setzt, kann mittels eines Computerpro-
grammes wieZSOIL.PC [8] bestimmt werden.

Diese Masse besteht, schematisch
betrachtet, aus einer «pseudo-festen»
Phase und einer flüssigen Phase. Das hier

präsentierte Modell erlaubt das Verfolgen
der instabilen Masse (Bild 1), nachdem das
Volumen dieser sowie ihre Eigenschaften
definiert worden sind.

2. Theorie
Wir treffen die Annahme einer Mischung
zweier inkompressibler Phasen
unterschiedlicher Viskosität. Der «pseudofeste»

Anteil wird durch eine erhöhte
Viskosität simuliert, während die andere
Phase mit geringer Viskosität Wasser mit
feinen Schwebestoffen darstellt. Obwohl
die beiden Phasen hier linearen Stoffgesetzen

folgen, stellt dies in der Folge keine

Einschränkung der Methode dar. Die beiden

Phasen formen eine Mischung, die
einzig durch die Konzentration ihrer
Komponenten charakterisiert wird. Zwischen
den Phasen erfolgt kein Massenaustausch.

Beide Phasen sind flüssig, mit
unterschiedlichen Dichten und Viskositäten.
Beide Phasen nehmen den selben Raum
ein und sind in jedem Punkt des Modellbereichs

gemeinsam präsent. In der Folge ist
der Druck p in beiden Phasen identisch.

2.1 Grundgleichungen
Ausgehend von den oben genannten
Annahmen kann gefolgert werden, dass die
Summe der Konzentrationen C„ der beiden

Phasen überall 1 beträgt:

Cs + Cf
1 (s : solid, f : fluid) ^

Bild 1. Bestimmung der instabilen Masse (links), Bereich, der für Rutschanalyse
berücksichtigt wird (rechts). Verschiebungsamplitude: rot maximal, blau 0.
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Die Massenerhaltung wird für jede Phase

separat formuliert. Kombiniert mit der
obigen Gleichung sowie der Annahme,
dass beide Flüssigkeiten inkompressibel
sind, lässt sich die Massenerhaltung der
Mischung wie folgt schreiben:

V • (Au, )+ V • (C/-u/)= 0
(2)

ua stellt die Geschwindigkeit der Phase a
dar (s oder f für solid oder fluid), V den

Divergenzoperator.
Der Impulserhaltungssatz wird für

beide Phasen separat geschrieben. Es

handelt sich dabei um zwei Gleichungen
des Typs Navier-Stokes, die durch einen

Impulsaustauschterm, m(I (siehe weiter
unten) ergänzt werden:

CaPa ^1 V * (O + CapJ + m y

a s,f ^
wobei pa die Dichte der Phase a ist. Der
Term

Dt steht für die totale Ableitung der

Geschwindigkeit des Massenpunktes
der Phase a, das heisst seiner Beschleunigung.

aa ist die lokale Spannung, die
über eine Viskositätskonstante an den

Geschwindigkeitsgradienten der Phase a
gebunden ist.

v7«) ist die über ein Kontrollvolumen
gemittelte Spannung in der Phase a.

Der Impulserhaltungssatz stellt die

Bewegung einer Menge Massenpunkte
dar, die sich in einer viskosen Flüssigkeit

bewegen. Die linke Seite der
Gleichung hat somit einen Lagrange'schen
Charakter (das Bezugssystem folgt dem

Massenpunkt), während die Spannung in

einem Euler'schen Bezugssystem (fixiert
im Raum) ausgedrückt wird. Diese auf den
ersten Blick scheinbare Inkohärenz wird
durch die gewählte algorithmische
Vorgehensweise beseitigt.

Der Impulsaustauschterm wird als

das Produkt eines konzentrationsabhängigen

Parameters und der Differenz der

Geschwindigkeiten der beiden Phasen

ausgedrückt. Verschiedene auf einfache
Situationen basierte Argumente erlauben

es, die Form des Terms wie folgt zu
beschreiben:

(4)

Wobei K'dmg eine neue Materialeigenschaft
ist, die von den Viskositäten sowie den

Konzentrationen abhängt.

Der interessierte Leser wird auf

[4,5,6] verwiesen, worin die detaillierte

Herleitung nachschlagbar ist. Zudem
erläutert [7] den mehr allgemeinen theoretischen

Zusammenhang.

2.2 Numerische Formulierung
Die Formulierung einer Matrixform mithilfe
der Finite-Elemente-Methode folgt der
klassischen Vorgehensweise und führt zur
gewohnten Form eines Systems von
Bewegungsgleichungen, die zu jedem
Zeitpunkt f„+1=(n+1)Af erfüllt sein müssen {At

ist der Zeitschritt):

M(x„+l,C„+l)a„+1+ K(x„+1,C„+1)v„+1 F"',

(5)

M ist die Massenmatrix, K die Viskositätsmatrix,

beide sind Funktion der Knotenposition

sowie der entsprechenden Konzentration.

a ist der Beschleunigungsvektor
in den Knoten der Diskretisierung beider
Phasen, v beinhaltet die Knotengeschwindigkeiten

sowie den Druck. ist der Vektor

der aufgebrachten Lasten, hauptsächlich

der Schwerkraft und der Reaktionen

an den Grenzen des Modellbereichs. Die

Lösung dieses Gleichungssystems ergibt
das Geschwindigkeitsfeld zum Zeitpunkt
fn+1, aufgrund dessen die neuen Positionen
der Partikel ermittelt werden können.

2.3 Algorithmus
Die Problemstellung wird mitteis direkter
Zeitintegration gelöst. Die räumliche
Diskretisierung durch Finite Elemente wird in

jedem Zeitschritt aktualisiert. Da die
Geschwindigkeiten in beiden Phasen
unterschiedlich sind, führt die Lagrange'sche
Aktualisierung der Koordinaten eines
Massenpunktes für die Massenanteile eines

ursprünglich einzelnen Knotens zu zwei

neuen Knoten, je einer pro Phase:

xs"+l =x" + Ads

wobei Adu die inkrementale Verschiebung
der Phase a darstellt.

Um die Anzahl der Knoten nicht in

jedem Zeitschritt zu vervielfachen, wird
die Lösung auf ein neues Netz interpoliert.
Dieses neue Netz, das fix oder beweglich
sein darf, ist identisch für beide Phasen. Da

die Aktualisierung der Knotenpositionen
aufgrund der Phasengeschwindigkeiten
zu einer stark unregelmässigen Verteilung
der Knoten führt, ist die Konstruktion eines

optimisierten Netzes auch deshalb
unabdingbar, um jederzeit geometrisch reguläre

Elemente zu gewährleisten (Bild 2).

Schliesslich müssen noch die
Konzentrationen beider Phasen in den Knoten

Netz, Netz nach einigen Zeitschritten, mit und ohne Regenerierung des Netzes.
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Bild 3a. Geometrie, die Zonen mit hoher absoluter Geschwindigkeit sind in Grau

dargestellt, b) freie Oberfläche zu verschiedenen Zeitpunkten: Beginn, im Anfangsstadium

der Wellenbewegung, bei der Reflektion.

des neuen Netzes bestimmt werden. Im

Prinzip ist diese Aufgabe sehr einfach, es

genügt, die totale Masse beider Phasen in

der unmittelbaren Umgebung eines Knotens

zu bestimmen und aus deren Verhältnis

die Konzentration zu berechnen. In der
Praxis ist es nicht ganz einfach, einen
Algorithmus zu formulieren, der keine
chaotisch variierenden Resultate liefert. Wie
in der Folge aber deutlich wird, ist dies
durchaus möglich.

2.4 Implementierung
Im Moment ist das vorliegende Modell in

Form eines zweidimensionalen Prototypen
basierend auf dem frei zugänglichen,
objektorientierten Finite-Element-Programm
FEM_Object [2] implementiert. Der
Algorithmus für die Regenerierung des Netzes
benützt die Geometriesoftware Cgal [1],

3- Anwendungen
Zwei Anwendungsbeispiele des
vorgestellten Modells werden in der Folge
präsentiert: die Fortpflanzung eines Solitons
sowie der Aufprall einer Zweiphasenmischung

auf ein Hindernis. Die komplette

Validierung ist in den Referenzen [5] und
[6] präsentiert.

3.1 Validierung: Soliton
Wir betrachten den rechteckigen Tank in

Bild 3a. Ein Soliton wird erzeugt, indem
die linke Wand folgend einer speziellen
Funktion [3] horizontal verschoben wird.
Die Flüssigkeit besteht aus einer einzigen
Phase. Die erzeugte Welle pflanzt sich mit
Geschwindigkeit c fort und wird an der
rechten Wand reflektiert:

c
ïgho

1 + ^-
V V K (7)

wobei g die Erdbeschleunigung, h0 die
Tanktiefe und % die Wellenhöhe ist.

Eine genauere Betrachtung der
Resultate der Simulation zeigt, dass nur
Massenpunkte nahe des Solitons in Bewegung
sind {Bild 3a, graue Zone). Der Fehler der

Fortpflanzungsgeschwindigkeit beträgt
2.8% und die Amplitude verringert sich um
7.2% in 28 Sekunden. Beide Werte sind

vergleichbar mit Resultaten in [3] und kön¬

nen als akzeptabel betrachtet werden für
die Problemstellungen, die uns interessieren.

Die Wasseroberfläche bleibt während
der ganzen Simulation gleichmässig und

glatt.

3.2 Illustration: Dammbruch und
Aufprall auf ein Hindernis

Hier gehen wir ein Problem mit starkem
Praxisbezug an. Die Ausgangsgeometrie
des Problems ist in Bild 4 abgebildet. Die
Masse besteht aus einer Mischung aus
Wasser (Dichte p 500, Viskosität g 2)

und Feststoffen (Schlamm, Geröll etc. mit
Dichte p 1000 und Viskosität p 100), mit
einer anfänglich einheitlichen Konzentration

von 0.5 beider Phasen. K'drag beträgt
10 000. Nach dem Auslösen der Mischung
zum Zeitpunkt t 0 ergiesst sich die Masse
über den Abhang, trifft auf das Hindernis,
schiesst darüber hinweg und sammelt sich
schliesslich hinter der Verbauung an. Wir
können auch eine Segregation der
Komponenten «pseudo-fest» und flüssig sowie
eine fortschreitende Sedimentation erkennen.

Die auf das Hindernis einwirkende
Kraft kann durch Integration des Druckes
in der Mischung entlang der
Hindernisoberfläche berechnet werden (Bild 5). Die
maximale Kraft ist kurz nach dem Aufprall
erreicht, in der Folge nähert sie sich asymptotisch

einer hydrostatischen Lösung. In

der Figur wird der einphasige Fall mit dem

zweiphasigen verglichen. Ein Resultat mit
einer feineren Diskretisation weist auf eine

konvergente Lösung hin.

4. Schlussfolgerungen
Ein Zweiphasenmodell zum Untersuchen
von Erdrutschen und Schlammlawinen
wurde vorgestellt, bei dem beide Phasen

inkompressibel sind und einem einfachen
viskosen Stoffgesetz folgen. Das präsentierte

Modell ist sogleich einfacher und
universeller als tiefengemittelte Modelle
und erlaubt Vorhersagen einer grösseren

Bild4. Erguss einer Zweiphasenmischung undAufprall aufein
Hindernis.

Bild 5. Resultierende Kraft, die senkrecht auf das Hindernis
einwirkt, als Funktion derZeit.
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Anzahl Parameter. Es erlaubt das Verfolgen

der Bewegung einer Schlammmasse
bis zu deren Ablagerung sowie der auf ein

Hindernis einwirkenden Kräfte. Das hier

vorgestellte zweidimensionale Modell ist

direkt auf drei Dimensionen und auf

komplexere Stoffgesetze erweiterbar, was für

realgetreue Simulationen absolut
unabdingbar ist. Eine zusätzliche Erweiterung,
die sich lückenlos in das vorliegende Modell

integrieren lässt, ist die Interaktion mit

flexiblen Hindernissen. Das Modell erlaubt

eine gesamthafte Betrachtung des

Rutschereignisses und geht damit weiter als bisher

existierende Modelle, welche über die

Grundgleichungen über die Tiefe mittein

und in erster Linie der Identifizierung von

Gefahrenzonen dienen. Unser Modell soll

es in seiner Vollendung erlauben,
Schutzbauwerke zu bemessen.
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