Zeitschrift: Wasser Energie Luft = Eau énergie air = Acqua energia aria

Herausgeber: Schweizerischer Wasserwirtschaftsverband

Band: 101 (2009)

Heft: 4

Artikel: Modellierung des Geschiebetransportes mit dem Midell SETRAC für

das Hochwasser im August 2005 in Schweizer Gebirgsflüssen

Autor: Chiari, Michael / Rickenmann, Dieter

DOI: https://doi.org/10.5169/seals-941965

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 24.10.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Modellierung des Geschiebetransportes mit dem Modell SETRAC für das Hochwasser im August 2005 in Schweizer Gebirgsflüssen

Michael Chiari und Dieter Rickenmann

1. Einleitung

Zur Simulation des Geschiebetransportes stehen eine Reihe von Modellen für Flüsse mit Gerinnegefällen bis zu einigen % zur Verfügung. Diese Modelle eignen sich jedoch nur sehr bedingt für die Berechnung der Transportvorgänge in steileren Gerinnen und in Wildbacheinzugsgebieten. Das kann mehrere Gründe haben. Einerseits sind nur in sehr wenigen Modellen Ansätze zur Berechnung des Geschiebetransports implementiert, die sich für steile Gerinne eignen. Ein anderes Problem ist die numerische Stabilität bei wechselnd über- und unterkritischen Abflussbedingungen in Kombination mit den bei steilen Gefällen auftretenden hohen Geschiebetransportkapazitäten. Die damit verbundenen raschen Änderungen der Profilgeometrie können zu numerischen Problemen führen (Chiari, 2008). Die meisten Geschiebetransportmodelle wurden als ergänzendes Modul zu hydraulischen Modellen entwickelt. Hier wird ein Simulationsmodell vorgestellt, welches für die Anwendung in Wildbacheinzugsgebieten und in Gebirgsflüssen entwickelt wurde und ein reduziertes Transportvermögen infolge von Formverlusten berücksichtigt. Eine Modellanwendung wird anhand von Beobachtungen zum Geschiebetransport in drei Gebirgsflüssen während der Hochwasser vom August 2005 in der Schweiz diskutiert.

2. Das Modell SETRAC

2.1 Allgemeine Modellbeschreibung

SETRAC ist das Akronym für Sediment Transport Model in Alpine Catchments. SETRAC ist ein eindimensionales Programm zur Berechnung des Geschiebetransports in Wildbächen und Gebirgsflüssen.

Das eindimensionale Geschiebe-

transportmodell SETRAC (Rickenmann et al., 2006; Chiari et al., akzeptiert) wurde an der Universität für Bodenkultur in Wien entwickelt und anhand von Laborversuchen und gut dokumentierten, geschiebeführenden Hochwasserereignissen auf die Eignung bei steilen Gefällen getestet (Chiari, 2008). Die grafische Benutzerschnittstelle erlaubt eine effiziente und übersichtliche Datenverwaltung. Neben der Visualisierung des Gerinnesystems können auch alle Querprofile sowie Längsprofile dargestellt werden. Des Weiteren können auch die eingegebenen Sedimentdaten als Sieblinien visualisiert werden. Die aufwändige grafische Benutzerschnittstelle dient neben der Abschätzung der Durchflussund Transportkapazität der einzelnen Querprofile (Bild 1) auch zur Plausibilitätsprüfung der Eingabedaten. Ein Topologieprotokoll informiert den Modellanwender über die korrekte Modellanwendung und weistaufunzulässige Modellanwendungen

hin (z.B. gewählte Geschiebetransportformel eignet sich nicht für den Gefällsbereich im Projektgebiet). Die Abflussganglinien werden als kinematische Welle durch das Gerinnesystem geleitet.

Die Querprofile werden zur Berechnung des Pegelschlüssels nach der Streifenmethode aufgeteilt. Die Anzahl der Streifen richtet sich dabei nach der Komplexität des Querprofils. So können auch gegliederte Profile gut abgebildet werden. In jedem Streifen wird neben der Fliessgeschwindigkeit auch der Geschiebetransport berechnet. Ein gegliederter Querschnitt mit Visualisierung des Geschiebetransports ist in Bild 1 dargestellt. In SETRAC können auch rasche Änderungen der Gerinnegeometrie durch Auflandungen bzw. Erosion berücksichtigt, d.h., es kann mit einer beweglichen Sohle gerechnet werden. Weiter stehen für den Geschiebetransport ein Einkorn- sowie ein Mehrkornmodell zur Verfügung. Bei

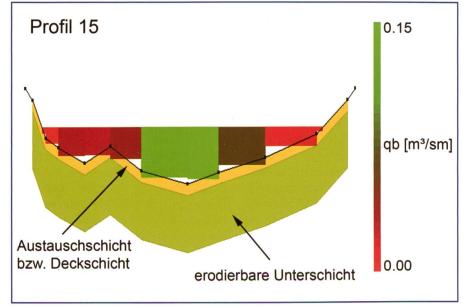


Bild 1. Gegliedertes Querprofil mit Visualisierung des spezifischen Geschiebetransports in den einzelnen Streifen.

der Wahl des Mehrkornmodells (fraktionsweiser Geschiebetransport) wird zwischen einer aktiven Austauschschicht und einer erodierbaren Unterschicht unterschieden (siehe Bild 1). Wenn mit dem Einkornmodell gerechnet wird, können diese zwei Schichten als gemeinsame Schicht betrachtet werden. Mit der Angabe über die Mächtigkeit der Unterschicht kann - über das ganze Gerinne oder auch für jeden Abschnitt einzeln - die verfügbare Geschiebemenge festgelegt werden.

Die Simulationsergebnisse stehen dem Modellanwender als Textdateien zur weiteren Analyse in frei wählbaren Zeitschritten für jeden Berechnungsknoten als Zeitreihe zur Verfügung. Im Weiteren können alle Längsprofile im Gerinnesystem zu jedem gespeicherten Zeitschritt ausgegeben werden. Das vereinfacht die Visualisierung der Simulationsergebnisse, insbesondere der Geschiebefracht und der Sohlhöhenentwicklung. Im letzten Zeitschritt werden Ergebnisse in Längenschnittdarstellung auch als plotfertige DXF-Datei abgespeichert.

2.2 Fliessgeschwindigkeit

Verschiedene Ansätze zur Berechnung des Fliesswiderstands stehen dem Anwender zur Auswahl Eine Formel zur Berechnung der Fliessgeschwindigkeit wurde von Smart u. Jäggi (1983) entwickelt. Diese Formel basiert auf Laborversuchen mit Geschiebetransport bei steilen Gefällen (bis zu 20%). Der erhöhte Fliesswiderstand bei geringen Abflusstiefen wird durch den Faktor in der runden Klammer berücksichtigt:

$$v = 2.5v^* \left(1 - e^{\frac{-0.05h_m}{S^{0.5}d_{90}}} \right)^{0.5} \ln \left[\frac{12.3h_m}{1.5d_{90}} \right]$$
 (1)

Dabei ist v die Fliessgeschwindigkeit und S das Gefälle. Genau genommen sollte für die Berechnung der Fliessgeschwindigkeit und des Geschiebetransportes das Energieliniengefälle verwendet werden. Für Berechnungen in Gebirgsflüssen und Wildbächen wird das Energieliniengefälle häufig durch das Gerinnegefälle angenähert. Die Schubspannungsgeschwindigkeit v^* ist durch $v^* = (ghS)^{0.5}$ definiert. Die relative Überdeckung z₉₀ ist das Verhältnis von Abflusstiefe h und dem charakteristischen Korndurchmesser d_{90} . Die Gemischabflusstiefe h_m berücksichtigt die Erhöhung der Abflusstiefe durch das transportierte Geschiebe. Diese Erhöhung der (virtuellen) Reinwasserabflusstiefe h_f= g/v, ist für Gerinnegefälle grösser als 10% von Bedeutung. Die folgende empirische Beziehung für h_f/h_m (Rickenmann, 1990) ist in SERTRAC implementiert:

$$\frac{h_f}{h_m} = 1 - 1.64S^{0.42} \left(\frac{q_b}{q}\right)^{0.63} \tag{2}$$

wobei q der Abfluss und q_b die Geschiebetransportrate pro Einheitsbreite ist. Das Verhältnis h_f/h_m wird in SETRAC auf minimal 0.2 limitiert, um unrealistische Extrapolationen zu verhindern. Dieser Wert entspricht der maximalen Packungsdichte von natürlichen Sedimenten (und repräsentiert damit eine Sedimentkonzentration wie bei einem Murgang). Es kann auch mit der Manning-Strickler-Formel und mit einem variablen Strickler-Wert in Funktion des Abflusses nach Rickenmann (1996) gerechnet werden. Alternativ kann auch eine empirische Geschwindigkeitsformel als Funktion des Abflusses, einer charakteristischen Korngrösse und des Gerinnegefälles (Rickenmann et al., 2006) gewählt werden.

2.3 Geschiebetransport und Bewegungsbeginn

Rickenmann (1991) unternahm Geschiebetransportversuche bei steilen Gefällen mit unterschiedlichen Fluiddichten. Aus insgesamt 252 Laborversuchen, inklusive die Daten von Meyer-Peter & Müller (1948) und Smart & Jäggi (1983), wurde für Gerinnegefälle im Bereich 0.03 ≤ S ≤ 0.20 die dimensionslose Gleichung entwickelt:

$$\Phi_b = 3.1 \left(\frac{d_{90}}{d_{30}}\right)^{0.2} \theta^{0.5} (\theta - \theta_c) Fr^{1.1} (s - 1)^{-0.5}$$
(3)

wobei $\Phi_b = q_b/[(s-1)gd_m^3]^{0.5}$ die dimensionslose Geschiebetransportrate ist, $s = \rho_s/$ ρ_f ist das Verhältnis der Flüssigkeits- und Feststoffdichte, g ist die Erdbeschleunigung, d_m ist der mittlere Korndurchmesser, d₃₀ ist ein charakteristischer Korndurchmesser (30% des Materials ist feiner). θ ist die dimensionslose Schubspannung $\theta = h_m S/[(s-1)d_m]$, θ_c ist die kritische dimensionslose Schubspannung bei Bewegungsbeginn und Fr ist die Froude-Zahl $Fr = v/(gh_m)^{0.5}$. In SETRAC können auch andere Geschiebetransportformeln nach Rickenmann (1990) oder Smart & Jäggi (1983) gewählt werden.

Deckschicht

Wenn die feinen Anteile der Kornverteilung mobiler sind als die groben Anteile, können Gebirgsflüsse eine Deckschicht bilden. Die kritische dimensionslose Schubspannung für das Aufbrechen der Deckschicht $\theta_{c,D}$ kann nach Hunziker & Jäggi (2002) wie folgt berechnet werden:

$$\theta_{c,D} = \theta_c \left[\frac{d_{m,D}}{d_m} \right]^{2/3} \approx \theta_c \left[\frac{d_{00}}{d_m} \right]^{2/3} \tag{4}$$

wobei $d_{m,D}$ der mittlere Korndurchmesser der Deckschicht ist und d_m der mittlere Korndurchmesser der Unterschicht. Der $d_{m,D}$ kann durch den d_{90} der Unterschicht angenähert werden (Jäggi, 1992).

2.5 Fraktionsweiser Geschiebetransport

Die Geschiebetransportformel (3) von Rickenmann (1991) wurde modifiziert, um fraktionsweisen Transport berechnen zu können. Die Beziehung $(d_{90}/d_{30})^{0.2}$ wird auf den Wert 1.05 gesetzt (Smart & Jäggi, 1983) und θ_i and θ_{cri} werden auf die einzelnen Fraktionen i angewandt. Dadurch kann Gleichung (3) modifiziert werden zu:

$$\Phi_{bi} = 3.26\theta^{0.5} (\theta_i - \theta_{cri}) Fr^{1.1} (s-1)^{-0.5}$$
(5)

$$\theta_i = \frac{hS}{(s-1)d_{gi}} \tag{6}$$

wobei d_{gi} das geometrische Mittel der Kornverteilung ist, θ_{cri} die kritische dimensionslose Schubspannung für den Bewegungsbeginn der Fraktion, der mit einer «hiding function» nach Parker (2008) berechnet wird:

$$\theta_{cri} = \left(\frac{d_{gi}}{d_{50}}\right)^{-\gamma} \theta_{cr50} \tag{7}$$

wobei θ_{cr50} der kritische Bewegungsbeginn der gesamten Geschiebemischung ist. Der Exponent γ kann in SETRAC zwischen 0 und 2 gewählt werden, um das Sortierungsverhalten in einem bestimmten Abschnitt nachzubilden. Für $\gamma = 0$ ist die kritische dimensionslose Schubspannung unabhängig von der Korngrösse (d.h., die absolute kritische Sohlschubspannung hängt nur vom Korndurchmesser der betrachteten Klasse ab), während der Bewegungsbeginn einer bestimmten Korngrösse für $0 < \gamma < 1$ durch die anderen Korngrössen beeinflusst wird, d. h., feinere Fraktionen sind leichter mobilisierbar als gröbere (Parker, 2008). Im Falle $\gamma = 1$ werden alle Körner bei der gleichen absoluten kritischen Sohlschubspannung mobilisiert. Ein Wert $\gamma > 1$ kann für den Fall, dass gröbere Körner mobiler sind als feinere, verwendet werden. Die Arbeiten von Solari und Parker (2000) und Brummer and Montgomery (2003) zeigen, dass dies bei steileren Gefällen der Fall sein kann. Typische werte für θ_{cr50} liegen im Bereich von 0.03 bis 0.06. Die Geschiebetransportrate für die einzelnen Fraktionen kann wie folgt berechnet werden:

$$q_{bi} = F_i \Phi_{bi} \left[g(s-1) d_{gi}^3 \right]^{0.5}$$
 (8)

wobei q_{bi} die Geschiebetransportrate pro Einheitsbreite und Fraktion ist, F_i ist der Anteil an der Kornverteilung und d_{gi} ist das geometrische Mittel der Fraktion.

2.6 Formverluste

Alternativ zum Deckschichtmodul kann der Einfluss der Formrauigkeit auf den Geschiebetransport berücksichtigt werden. Die aus Laborversuchen hergeleiteten Geschiebetransportformeln überschätzen den tatsächlichen Geschiebetransport in Wildbächen oft erheblich. Das kann einerseits durch die limitierte Geschiebeverfügbarkeit erklärt werden, andererseits durch die raue Struktur der Gerinnesohle. Ein Teil der zum Transport zur Verfügung stehenden Energie wird zur Überwindung dieser Formrauigkeit verbraucht und steht nicht mehr für den Geschiebetransport zur Verfügung. Zur Berechnung der Formverluste wird in SETRAC der Anteil der Kornrauigkeit an der Gesamtrauigkeit als Funktion des Gefälles und der relativen Abflusstiefe ausgedrückt. Aus den Daten zur Fliessgeschwindigkeit in Gebirgsflüssen und Wildbächen (Rickenmann, 1996) wurden folgende Gleichungen entwickelt (Rickenmann, 2005; Chiari, 2008):

$$\frac{n_r}{n_{tot}} = 0.092 \, S^{-0.35} \left(\frac{h}{d_{90}}\right)^{0.33} \tag{9}$$

$$\frac{n_r}{n_{tot}} = 0.185 \, S^{-0.22} \left(\frac{h}{d_{90}}\right)^{0.55} \tag{10}$$

Dabei ist n_{tot} der Manning-Beiwert (bzw. Strickler-Kehrwert) bezogen auf die Gesamtrauigkeit und n_r der Manning-Beiwert bezogen auf die Kornrauigkeit. *Bild 2* zeigt die Werte (n_r/n_{tot}) in Abhängigkeit des Gerinnegefälles für die Daten von Rickenmann (1996) sowie eine Trendlinie für unabhängige Daten in Gebirgsflüssen des Himalayas (Palt, 2001). Die Gl. (9) und (10) basieren auf unterschiedlichen Annahmen und illustrieren die Unsicherheit der

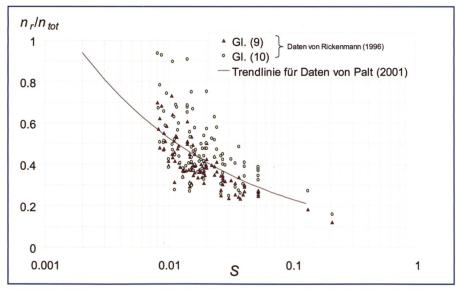


Bild 2. Verhältnis von Kornrauigkeit zu Gesamtrauigkeit (n,/n_{tot}) in Abhängigkeit des Gerinnegefälles (S) für die Daten von Rickenmann (1996). Vergleichend gezeigt ist eine Trendlinie für unabhängige Daten von Gebirgsflüssen des Himalayas (Palt, 2001).

empirischen Abschätzung des Anteils der Formverluste.

Zur Berücksichtigung solcher Ansätze in einer Geschiebetransportformel wird ein reduziertes Energieliniengefälle S_{red} bestimmt (in Analogie zu Ansätzen von Meyer-Peter & Müller [1948] sowie Palt [2001]), welches sich auf den Anteil der Kornrauigkeit bezieht:

$$S_{red} = S \left(\frac{n_r}{n_{tot}} \right)^a \tag{11}$$

Die Herleitung von S_{red} in (11) basierend auf der Manning-Strickler-Gleichung ergibt einen Exponenten a = 2. Meyer-Peter u. Mueller (1948) ermittelten aufgrund ihrer Laborversuche einen empirisch abgestützten Exponenten von a = 1.5 und bestimmten mit einer theoretischen Herleitung auch einen Wert von a = 1.33. Daher können in SETRAC Werte zwischen 1 und 2 für den Exponenten a gewählt werden. Dieser Exponent dient in einem gewissen Rahmen als Kalibrierungsparameter, und der Wertebereich reflektiert auch die Unsicherheiten bei der Abschätzung des Anteils der Formverluste (Rickenmann, 2005; Rickenmann et al., 2006). Weitere Ansätze zur Abschätzung von Formverlusten sind in Chiari (2008) beschrieben.

2.7 Grenzen der Modellanwendbarkeit

SETRAC wurde speziell für die Berechnung des Geschiebetransports in steilen Gerinnen entwickelt. Mögliche Anwendungsgebiete sind somit Wildbacheinzugsgebiete und Gebirgsflüsse. Mit dem Modell SE- TRAC können grundsätzlich keine Murgänge simuliert werden. Jedoch kommt es bei der Modellanwendung in sehr steilen Gerinnen (S > 0.25) durch die Extrapolation der Geschiebetransportformeln zu sehr hohen Sedimentkonzentrationen, die durchaus mit murgangartigem Transport vergleichbar sind; hingegen kann das Fliessverhalten von voll ausgebildeten Murgängen (mit Frontbildung) mit SETRAC nicht simuliert werden. Durch die vereinfachte Hydraulik der kinematischen Welle werden Rückstaueffekte, wie sie durch Sperrenbauwerke oder Brückendurchlässe verursacht werden, vernachlässigt. Gegengefälle können nicht modelliert werden. Die mit SETRAC berechneten morphologischen Veränderungen beziehen sich auf die Änderungen der Sohlenlage im Hauptgerinne eines Querprofiles durch Erosion und Auflandung. Zweidimensionale Effekte wie Ausuferung am Kegel oder die Entwicklung eines neuen Gerinneverlaufs durch Auflandung im ursprünglichen Gerinne können mit dem eindimensionalen Ansatz nicht abgebildet werden.

2.8 Modellverfügbarkeit

Das Modell SETRAC sowie Benutzerhandbücher werden auf www.bedload.at als freie Software zum Herunterladen zur Verfügung stehen.

Modellierung mit SETRAC in Schweizer Gebirgsflüssen

Sehr hohe 48 Stunden Niederschlagssummen (MeteoSchweiz 2006) waren für die Hochwasser vom 19.–23. August 2005 in der Schweiz, Österreich und Deutschland verantwortlich. Eine generelle Analyse der

Bild 3. Übersicht der mit dem Programm SETRAC modellierten Einzugsgebiete. Kartendaten: pixmaps© 2009 swisstopo (DV033492.2), reproduziert mit Bewilligung von swisstopo (JA082265).

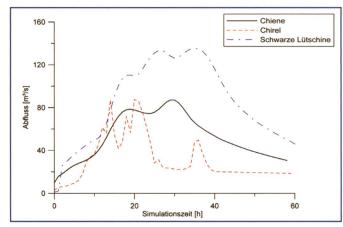


Bild 4. Abflussganglinien beim untersten Punkt der modellierten Einzugsgebiete.

Hochwasserereignisse in der Schweiz ist in Bezzola und Hegg (2007, 2008) dokumentiert. In den Einzugsgebieten der Chiene, der Chirel und der Schwarzen Lütschine führten langandauernde Hochwasser und intensiver Geschiebetransport zu bedeutenden Schäden. Die Gebiete liegen im Berner Oberland (*Bild 3*).

Für diese Einzugsgebiete sind detaillierte Ereignisdokumentationen mit Rekonstruktionen der Abflussganglinien verfügbar (LLE Reichenbach, 2006; LLE Diemtigtal, 2006; LLE Lütschine, 2007). Die Bestimmung der Abflussganglinien in den Teileinzugsgebieten erfolgte anhand der Radarbasierten Niederschlagsdaten der MeteoSchweiz mit dem Hydrologischen Modell HEC-HMS, wobei die Resultate mit den rekonstruierten Abflüssen der Ereignisdokumentationen kalibriert wurden. Die modellierten Abflussganglinien für den untersten Punkt der Einzugsgebiete sind in Bild 4 dargestellt.

Für die Validierung eines Sediment Transport-Modells werden neben hydrologischen Daten auch Daten über die morphologische Veränderung während eines Hochwasserereignisses benötigt. Für die untersuchten Einzugsgebiete stehen räumlich hochaufgelöste Geländemodelle für den Zustand vor und nach dem Hochwasserereignis von 2005 zur Verfügung. Die aus LiDAR-Daten generierten Höhenmodelle entsprechen dem geomorphologischen Zustand der Erdoberfläche zum Zeitpunkt des Fluges. Hat sich nun das geomorphologische Erscheinungsbild in Wildbächen und Gebirgsflüssen nach einem Ereignis stark verändert (Ablagerung, Seitenerosion, Tiefenerosion usw.), so kann die rezente Veränderung durch erneute Befliegung und Messung dokumentiert werden. Durch einfache Subtraktion der Höhenmodelle von unterschiedlichen Zeitpunkten können potenzielle Erosionsund Ablagerungsbereiche identifiziert sowie qualitativ erfasst werden. Zur Berechnung der flächigen Volumenänderung wurden Differenzen-grids erstellt. Um die flächige Information als eindimensionales Geschiebefrachtdiagramm darstellen zu können, wurden die aktiven Gerinnebereiche in 50-m-Abschnitte unterteilt, dafür das Erosions- und Ablagerungsvolumen berechnet und für das ganze Gerinne als Geschiebefracht-Diagramm dargestellt. Dabei ist zu beachten, dass die errechneten Geschiebevolumina Porenanteile und

Feinsedimente beinhalten. Für diese Studie wird angenommen, dass der Porenund Feinsedimentanteil im Fall von Erosion 50% beträgt. Im Falle von Ablagerung wird nur ein Porenanteil von 30% berücksichtigt, da davon auszugehen ist, dass die erodierten Feinsedimente als Schwebstoffe das Gerinnesystem verlassen. Die errechneten Geschiebefrachten wurden mit Angaben über Baggerungen ergänzt, und mit Hilfe von Luftbildern wurden die Prozesse Erosion und Ablagerung verifiziert sowie mit konventionellen Methoden der Sedimentbilanzierung verglichen (Rickenmann et al., 2008). Bei Wildbachgerinnen mit stabilen Sohlstrukturen wird davon ausgegangen, dass massgebliche morphologische Veränderungen nur durch grössere Hochwasser hervorgerufen werden. Im Zeitraum zwischen den beiden Laserscan-Befliegungen sind keine weiteren grösseren Hochwasser in den analysierten Einzugsgebieten bekannt. Einige charakteristische Gerinneabschnitte der drei Gebirgsflüsse sind in Bild 5 illustriert.

3.1 Simulation des Geschiebetransports mit dem Modell SETRAC

Für einen systematischen Vergleich der

Bild 5a (links). Massive Seitenerosion in der Chiene bei km 0.9 mit Geschiebeablagerung in der Innenkurve (Blick flussaufwärts). Bild 5b (Mitte). Erosionsstrecke in der Chirel bei km 6.0 mit zerstörter Brücke (Blick flussaufwärts). Bild 5c (rechts). Erosionsabschnitt in der Steilstrecke der Schwarzen Lütschine bei km 6.2 (Blick flussabwärts) (Quelle LLE Lütschine 2007).

Simulation	Fliess-	Geschiebe-	Deckschicht	Formverluste	Exponent a
	geschwindigkeit	transport			in Gl. (11)
S1	(1)	(3)	-	-	
S2	(1)	(3)	(4)	-	
S3	(1)	(3)	-	(9)	1.0
S4	(1)	(3)	-	(9)	1.5

Tabelle 1. Verwendete Formeln für die SETRAC-Simulationen.

Einzugsgebiete wurden die drei Hochwasserereignisse mit den gleichen Formelkombinationen in SETRAC modelliert. Die möglichen Erosionstiefen wurden anhand einer Feldbegehung angeschätzt, um sedimentlimitierte Transportbedingungen zu simulieren. Die für die Simulationen verwendeten Formelkombinationen sind in Tabelle 1 dargestellt. Die Simulation S1 geht von voller Transportkapazität aus und S2 berücksichtigt einen Deckschichtansatz. Die Simulationen S3 und S5 berücksichtigen Formverluste, wobei der Exponent in Gleichung (11) über die gesamte Gerinnelänge konstant gehalten wird. Es wird von einer konstanten Fluiddichte von 1100 kg/m³ während des Hochwassers ausgegangen. Für die räumliche Diskretisierung der Gerinne wurde in allen drei Einzugsgebieten ein Querprofilabstand von 50 m gewählt.

3.2 Geschiebetransport in der Chiene

Das Einzugsgebiet der Chiene hat eine Grösse von 90.5 km². Die Chiene ist ein steiler Gebirgsfluss mit einem mittleren Gefälle von 5%. Das Gefälle variiert zwischen 0.4% in den flachen Mittelabschnitten und 17% in den steilsten Sektionen. Der Gerinneabschnitt bei km 0.9 mit massiver Seitenerosion und Geschiebeablagerung in der Innenkurve ist in *Bild 5a* dargestellt.

Repräsentative Korngrössenver-

teilungen wurden im Feld mittels Linienzahlanalyse erhoben, nach Fehr (1987) ausgewertet und sind in Bild 6 dargestellt. Die Mächtigkeit der erodierbaren Unterschicht wurde im Feld angeschätzt und ist über dem Längsprofil und dem Gefälle der modellierten Sektionen in Bild 7 dargestellt. Das Hochwasserereignis hatte eine Dauer von ungefähr 58 Stunden und einen Spitzenabfluss von ca. 90 m³/s (Bild 4). Die Geländeanalyse ergab ein mobilisiertes Geschiebevolumen von ca. 120 000 m3 (ohne Porenanteil und Feinsediment). Für die Modellierung wurde das Hauptgerinne und der Zubringer Spiggebach berücksichtigt. Insgesamt wurde eine Gerinnelänge von 9.7 km modelliert (8.2 km Chiene-Hauptgerinne und 1.5 km Spiggebach).

Vergleiche zwischen der rekonstruierten Geschiebefracht und den Resultaten für die Simulationen S1 und S2 sind in *Bild 8* dargestellt. Die Simulation S1 überschätzt die rekonstruierte Geschiebefracht erheblich. Die Berücksichtigung eines Deckschichtansatzes (S2) reduziert die Geschiebefracht, jedoch wird der tatsächliche Transport stark überschätzt. Die Berücksichtigung von Formverlusten (*Bild 9*) führt für dieses Hochwasserereignis zu plausibleren Ergebnissen. Die Simulation S3 mit einem Exponenten von a=1.0 in Gleichung (11) überschätzt den Geschiebetransport, wohingegen durch

einen Exponenten von a=1.5 der tatsächliche Transport in den Gerinneabschnitten zwischen km 0.0 und km 2.5 sehr gut abgebildet werden kann. Zwischen km 2.5 und km 5.5 (steilste Gerinneabschnitte) wird der Transport überschätzt. Die Geschiebeablagerungen im flachen Bereich bei km 5.5 werden von allen Simulationen plausibel abgebildet. Der Geschiebetransport im Oberlauf der Chiene wird durch die Simulation S4 unterschätzt.

3.3 Geschiebetransport in der Chirel

Das Einzugsgebiet der Chirel hat eine Grösse von 130.5 km². Die Chirel ist ein steiler Gebirgsfluss mit einem mittleren Gefälle von 6%. Das Gefälle variiert zwischen 1.5% in den flachsten Abschnitten und 14% in den steilsten Sektionen. Ein Gerinneabschnitt mit Erosion und einer zerstörten Brücke bei km 6.0 ist in *Bild 5b* ersichtlich.

Repräsentative Korngrössenverteilungen wurden im Feld mittels Linienzahlanalyse durchgeführt, nach Fehr (1987) ausgewertet und sind in Bild 10 dargestellt. Die Mächtigkeit der erodierbaren Unterschicht wurde im Feld angeschätzt und ist über dem Längsprofil und dem Gefälle der modellierten Sektionen in Bild 11 dargestellt. Das Hochwasserereignis hatte eine Dauer von ungefähr 59 Stunden und einen Spitzenabfluss von ca. 100 m³/s (Bild 4). Die Geländeanalyse ergab ein mobilisiertes Geschiebevolumen von ca. 150 000 m³ (ohne Porenanteil und Feinsediment), wobei grosse Geschiebemengen durch seitliche Murgänge in das Gerinnesystem gelangten. Die seitlichen Geschiebeeinträge wurden bei der Modellierung durch dreieckförmige Sedimentganglinien mit einer Dauer von 15 Minuten zeitgleich mit

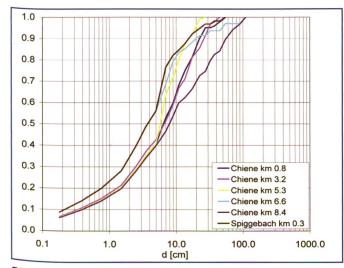


Bild 6. Repräsentative Korngrössenverteilungen für die Chiene.

Bild 7. Längsprofil mit Darstellung des Gerinnegefälles und der Mächtigkeit der erodierbaren Unterschicht für die Chiene.

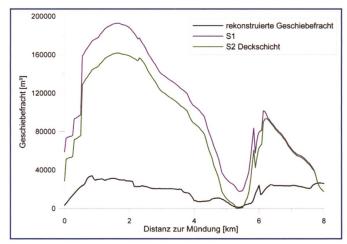


Bild 8. Vergleich zwischen rekonstruierter Geschiebefracht und den Simulationen S1 und S2 für die Chiene.

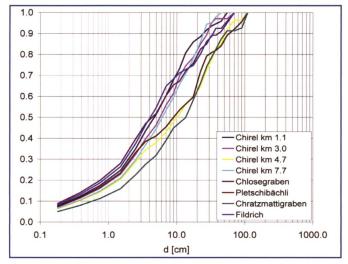


Bild 10. Repräsentative Korngrössenverteilungen für die Chirel.

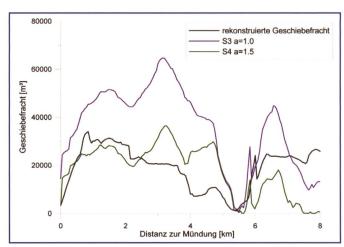


Bild 9. Vergleich zwischen rekonstruierter Geschiebefracht und den Simulationen S3 und S4 für die Chiene.

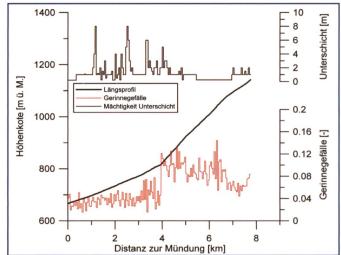


Bild 11. Längsprofil mit Darstellung des Gerinnegefälles und der Mächtigkeit der erodierbaren Unterschicht für die Chirel.

den grössten Regenintensitäten berücksichtigt. Die Volumina wurden durch eine Geländeanalyse der Zubringer bestimmt. Insgesamt wurde eine Gerinnelänge von 7.8 km modelliert.

Vergleiche zwischen der rekonstruierten Geschiebefracht und den Resultaten für die Simulationen S1 und S2 sind in Bild 12 dargestellt. Die Simulation S1 überschätzt die rekonstruierte Geschiebefracht um etwa einen Faktor 2. Die Berücksichtigung eines Deckschichtansatzes (S2) reduziert die simulierte Geschiebefracht und liefert für dieses Hochwasserereignis plausible Ergebnisse. Die Berücksichtigung von Formverlusten (Simulationen S3 und S4 in Bild 13) führt für dieses Hochwasserereignis zu einer Unterschätzung der rekonstruierten Geschiebefracht.

3.4 Geschiebetransport in der Schwarzen Lütschine

Das Einzugsgebiet der Schwarzen Lütschine hat eine Grösse von 180 km². Die Schwarze Lütschine ist ein steiler Gebirgs-

fluss mit einem mittleren Gefälle von 3%. Das Gefälle variiert zwischen 0.3% in den flachen Unterlauf und 19% in den steilsten Sektionen. Die Steilstrecke bei km 6.2 mit massiver Erosion ist in *Bild 5c* ersichtlich.

Repräsentative Korngrössenverteilungen wurden im Feld mittels Linienzahlanalyse durchgeführt, nach Fehr (1987) ausgewertet und sind in Bild 14 dargestellt. Die Mächtigkeit der erodierbaren Unterschicht wurde im Feld angeschätzt und ist über dem Längsprofil und dem Gefälle der modellierten Sektionen in Bild 15 dargestellt. Das Hochwasserereignis hatte eine Dauer von ungefähr 60 Stunden und einen Spitzenabfluss von ca. 140 m³/s (Bild 4). Die Geländeanalyse ergab ein mobilisiertes Geschiebevolumen von ca. 80 000 m³ (ohne Porenanteil und Feinsediment). Für die Modellierung wurde das Hauptgerinne und der Zubringer Weisse Lütschine berücksichtigt. Insgesamt wurde eine Gerinnelänge von 10.8 km modelliert.

Vergleiche zwischen der rekonstruierten Geschiebefracht und den Resul-

taten für die Simulationen S1 und S2 sind in Bild 16 dargestellt. Die Simulation S1 überschätzt die rekonstruierte Geschiebefracht erheblich. Die Berücksichtigung eines Deckschichtansatzes (S2) reduziert die Geschiebefracht, jedoch wird der tatsächliche Transport in der Steilstrecke zwischen km 4 und km 6 deutlich überschätzt, in den flachen Abschnitten (km 3 bis km 4 und km 7 bis km 11) hingegen unterschätzt. Die Berücksichtigung von Formverlusten (Bild 17) mit einem Exponenten von a = 1.0 (Simulation S3) in Gleichung (11) überschätzt den Geschiebetransport in den steileren Abschnitten, dagegen sind die Abweichungen für die Flachstrecken eher akzeptabel. Die Simulation S4 mit einem Exponenten von a = 1.5 bildet den Transport in der Steilstrecke (km 4 bis km 6) insgesamt am besten ab, jedoch wird der Transport in den flachen Gerinneabschnitten zu stark reduziert.

4. Diskussion

Die eindimensionalen Simulationen des

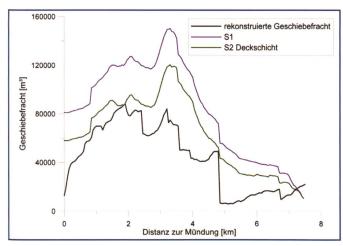


Bild 12. Vergleich zwischen rekonstruierter Geschiebefracht und den Simulationen S1 und S2 für die Chirel.

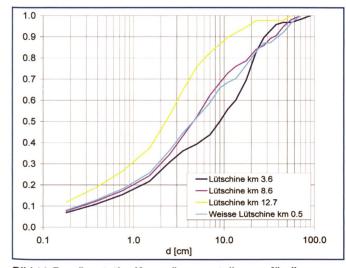


Bild 14. Repräsentative Korngrössenverteilungen für die Schwarze Lütschine.

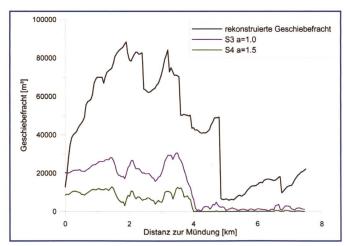


Bild 13. Vergleich zwischen rekonstruierter Geschiebefracht und den Simulationen S3 und S4 für die Chirel.

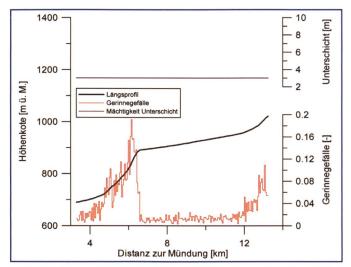


Bild 15. Längsprofil mit Darstellung des Gerinnegefälles und der Mächtigkeit der erodierbaren Unterschicht für die Schwarze Lütschine.

Geschiebetransports mit dem Modell SE-TRAC zeigen eine deutliche Überschätzung der effektiv beobachteten Geschiebefracht während des Hochwasserereignisses von August 2005 für die modellierten Einzugsgebiete, wenn keine Formverluste oder Deckschichteffekte berücksichtigt werden. In kleineren, steilen Einzugsgebieten kann durch die Anwendung von im Labor hergeleiteten Geschiebetransportformeln der tatsächliche Transport um bis zu drei Grössenordnungen überschätzt werden (Rickenmann, 2001). SE-TRAC wurde auch auf Hochwasserereignisse vom August 2005 in steileren Wildbacheinzugsgebieten angewandt, und es zeigt sich ein ähnliches Verhalten (Chiari, 2008). Beim durchschnittlich 25% steilen Sessladbach in Tirol kann der beobachtete Geschiebetransport nur unter Berücksichtigung von Formverlusten plausibel nachgebildet werden (Rickenmann et al., 2006). Ein sehr ähnliches Verhalten zeigen die Simulationen für den Schnannerbach (mittleres Gefälle 24%) in Tirol (Chiari und Rickenmann, 2007) und den Gebirgsfluss Suggadinbach (mittleres Gefälle 5%) in Vorarlberg (Chiari et al., 2008). SETRAC-Simulationen wurden auch für die Hochwasser 2005 im Buoholzbach (mittleres Gefälle 24%) und im Steinibach Dallenwil (mittleres Gefälle 23%) in Nidwalden (Blaser, 2008) sowie im Färmelbach (mittleres Gefälle 16%) im Berner Oberland (Pauli, 2009) durchgeführt. Auch in diesen Fällen wird ohne Berücksichtigung von Formverlusten der beobachtete Geschiebetransport stark überschätzt.

Für die vorgestellten Fallbeispiele wurde für jedes Querprofil die Transportkapazität ohne Berücksichtigung von Formverlusten berechnet und mit dem rekonstruierten Transport verglichen. Damit unlimitierte Transportverhältnisse simuliert werden konnten, wurde die mögliche Erosionstiefe auf 100 m gesetzt und morphologische Änderungen wurden vernachlässigt (d.h., es wurde mit einem

fixen Längenprofil gerechnet). Das Verhältnis zwischen simulierter und rekonstruierter Geschiebefracht ist in Bild 18 für alle Berechnungsquerschnitte dargestellt. Der über die Zeit integrierte Geschiebetransport wird für einige (flachere) Gerinneabschnitte unterschätzt, für die meisten Abschnitte aber wird die Geschiebefracht um bis zu zwei Grössenordnungen überschätzt. Die Unterschätzung in den flachen Gerinneabschnitten kann der für diese Analyse deaktivierten mobilen Gerinnesohle zugeschrieben werden. In dieser Analyse kann allerdings nicht zwischen Geschiebelimitierung und Abminderung der Transportkapazität durch Formverluste unterschieden werden. Ein ähnliches Bild mit generell deutlicher Überschätzung des Geschiebetransportes resultiert auch für Berechnungen für zwei Wildbäche und einen Gebirgsfluss in Österreich, wenn die Formverluste vernachlässigt werden (Chiari, 2008).

Ähnliche Analysen der Hochwas-

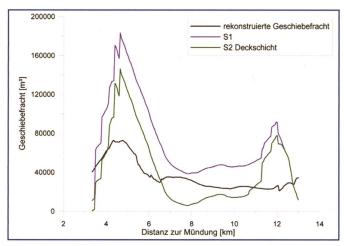


Bild 16. Vergleich zwischen rekonstruierter Geschiebefracht und den Simulationen S1 und S2 für die Schwarze Lütschine.

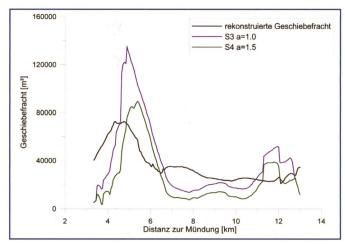


Bild 17. Vergleich zwischen rekonstruierter Geschiebefracht und den Simulationen S3 und S4 für die Schwarze Lütschine.

ser von 1993 und 2000 im Wallis zeigen, dass unter Berücksichtigung von Formverlusten mit einem Exponenten von a = 1 in Gleichung (11) in Kombination mit einer einfachen Geschiebetransportformel eine plausible Rekonstruktion der Geschiebefrachten erreicht wird (Badoux und Rickenmann, 2008). Die Analyse der Hochwasser vom August 2005 in der Schweiz umfasst gegen 40 Ereignisse mit fluvialem Geschiebetransport und sie zeigt, dass für Gerinnegefälle grösser als etwa 5% deutlich geringere Geschiebefrachten beobachtet wurden, als die Abschätzungen mit einer einfachen Geschiebetransportformel ohne Berücksichtigung von Formverlusten ergeben (Rickenmann et al., 2008; Rickenmann & Koschni, accepted). Die mit dem Modell SETRAC durchgeführten Simulationsrechnungen zeigen, dass der Geschiebetransport bei extremen Ereignissen durch die Anwendung von im Labor hergeleiteten Geschiebetransportformeln in Wildbächen und Gebirgsflüssen im Durchschnitt um den Faktor 10 überschätzt wird (Chiari, 2008). Auch Rathburn & Wohl (2001) und Palt (2001) berichten von Überschätzungen der effektiv transportierten Geschiebefrachten. Neben einer möglichen

begrenzten Verfügbarkeit des mobilisierbaren Sedimentes kann diese Tatsache durch das Auftreten von bedeutenden Formverlusten erklärt werden.

Bezüglich der SETRAC-Simulationsergebnisse ist allerdings zu bemerken, dass die Formverluste mit einem groben empirischen Ansatz berücksichtigt werden und hier eine pauschale, einheitliche Reduktion entlang der ganzen Gerinnelänge betrachtet wurde. Es sind weiterführende Untersuchungen nötig, um die Formverluste räumlich differenzierter und mit einem prozessbasierten Ansatz genauer bestimmen zu können. In diese Richtung zielen z.B. neuere Ansätze in der Studie von Yager et al. (2007).

5. Schlussbemerkung

Die Simulationen der extremen Ereignisse von August 2005 bestätigen die grundsätzliche Eignung von SETRAC für die Geschiebetransport-Modellierung bei steilen Gefällen. Die Simulationsergebnisse zeigen, dass neben der limitierten Geschiebeverfügbarkeit der Einfluss von Formverlusten bei der Anwendung von eindimensionalen Geschiebetransport-Modellen bei steilen Gefällen nicht vernachlässigbar ist

bzw. dass zumindest Ansätze zur Berücksichtigung einer Deckschicht (oder eines erhöhten Widerstandes bei Bewegungsbeginn) berücksichtigt werden sollten. Durch eine reine Geschiebelimitierung in den einzelnen Gerinneabschnitten konnte bei den SETRAC-Simulationen der zeitliche Verlauf des Geschiebetransports nicht richtig abgebildet werden, da die Geschiebespeicher zu schnell entleert werden. Die Verwendung des totalen Energieliniengefälles führt zu einer Überschätzung der Transportkapazität in Wildbächen und Gebirgsflüssen. Durch die Einführung eines reduzierten Energieliniengefälles zur Berücksichtigung der durch Formrauigkeit verursachten Energieverluste kann der beobachtete Transport besser nachgebildet werden. Dieses Verhalten wird auch durch Rückrechnungen von stark geschiebeführenden Hochwasserereignissen in Wildbächen und Gebirgsflüssen in Österreich bestätigt. Die Quantifizierung der Formverluste kann und soll unter Berücksichtigung der relevanten Prozesse mit physikalisch basierten Ansätzen verbessert werden.

Anmerkung

Eine ähnliche Version dieses Beitrages findet sich in den Unterlagen zum FAN-Herbstkurs 2009 (Rickenmann et al., 2009); anstelle von Simulationsrechnungen für die Gebirgsflüsse Chiene, Chirel und Schwarze Lütschine werden Berechnungen mit SETRAC zum Steinibach und Buoholzbach im Kanton Nidwalden vorgestellt.

Verdankungen

Die Entwicklung des SETRAC-Modelles wurde vom Österreichischen Wissenschaftsfonds FWF unterstützt (FWF Projekt L147 «Sediment routing model for steep torrent channels»). Das Bundesamt für Umwelt (BAFU) unterstützte die Analyse der Hochwasser 2005 in der Schweiz

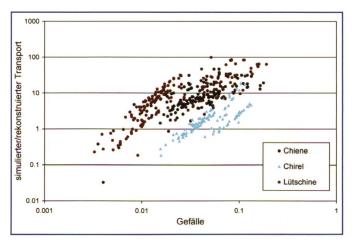


Bild 18. Vergleich zwischen
simulierter und
rekonstruierter
Geschiebefracht
für die Schweizer
Einzugsgebiete.
Die simulierten
Geschiebefrachten
wurden hier ohne
Berücksichtigung
von Formverlusten
berechnet.

und stellte das LiDAR DTM für die Situation nach den Ereignissen zur Verfügung (DTMAV DOM-AV ©2008 BAFU). Das LiDAR DTM für die Situation vor den Ereignissen wurde vom Bundesamt für Landestopographie (swisstopo) zur Verfügung gestellt (DTM-AV DOM-AV ©2008 swisstopo, DV033492.2).

Literatur

Badoux, A., Rickenmann, D. (2008): Berechnung zum Geschiebetransport während der Hochwasser 1993 und 2000 im Wallis. Wasser Energie Luft 100(3), 217–226.

Bezzola, G.R., Hegg, C. (2007): Ereignisanalyse Hochwasser 2005, Teil 1 – Prozesse, Schäden und erste Einordnung. Umwelt-Wissen 0707, Bundesamt für Umwelt BAFU, Eidgenössische Forschungsanstalt WSL. 215 S.

Bezzola, G.R., Hegg, C. (2008): Ereignisanalyse Hochwasser 2005, Teil 2 – Analyse von Prozessen, Massnahmen und Gefahrengrundlagen. Umwelt-Wissen 0825, Bundesamt für Umwelt BAFU, Eidgenössische Forschungsanstalt WSL, 429 S.

Blaser, F. (2008): Geschiebetransportsimulationen in Wildbacheinzugsgebieten für das Hochwasser im August 2005. Diplomarbeit am Departement Umweltwissenschaften, ETH Zürich, September 2008.

Brummer, C.J., Montgomery, D.R. (2003): Downstream coarsening in headwater channels. Water Resources Research 39(10), 1294, doi:10.1029/2003WR001981.

Chiari, M. (2008): Numerical modelling of bedload transport in torrents and Mountain streams, Dissertation an der Universität für Bodenkultur, Wien, 212 S.

Chiari, M., Rickenmann, D. (2007): The influence of form roughness on modelling of sediment transport at steep slopes. In: Kostadinov, St., Bruk, St., Walling, D. (Hrsg.), International Conference, Making 100 years of experience with erosion and torrent control in Serbia, Conference Proceedings on CD, Erosion and torrent control as a factor in sustainable river basin management, 25.–28. September 2007, Belgrad. Chiari, M., Mair, E., Rickenmann, D. (2008). Ge-Schiebetransportmodellierung in Wildbächen und Vergleich der morphologischen Veränderung mit LiDAR Daten. In Schutz des Lebensraumes vor Hochwasser, Muren, Massenbewegungen und Lawinen. Interpraevent, Dornbirn, Vorarlberg, Austria. Conference Proceedings, Volume 1, pp. 295-306.

Chiari, M., Friedl, K., Rickenmann, D. (accepted): A one-dimensional bedload transport model for steep slopes. Journal of Hydraulic Research, accepted for publication.

Fehr, R. (1987): Geschiebeanalysen in Gebirgsflüssen. Mitteilungen der Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie, ETH Zürich, Nr. 92. Hunziker, R., Jäggi, M.N.R. (2002): Grain sorting prozesses. Journal of Hydraulic Engineering 128(12), 1060–1068.

Jäggi, M. (1992): Sedimenthaushalt und Stabilität von Flussbauten. Mitteilungen der Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie, ETH Zürich, Nr. 119.

LLE Diemtigtal (2006): Lokale lösungsorientierte Ereignisanalyse (LLE) Hochwasser 2005 im Diemtigtal. Technischer Bericht, Schälchli, Abegg + Hunzinger, Bern; geo7 AG, Bern, Kissling + Zbinden AG, Spiez, im Auftrag des Tiefbauamtes des Kantons Bern, 53 S. + Anhang. LLE Lütschine (2007): Lokale Lösungsorientierte Ereignisanalyse (LLE) Lütschine. Technischer Bericht, PD Dr. Martin Jäggi, Ebmatingen; Geotest AG, Zollikofen; Dr. Christoph Lehmann, Schönbühl; Mätzener & Wyss AG Interlaken; Dr. Felix Naef, ETH Zürich; Bettschen + Blumer AG, Unterseen, im Auftrag des Tiefbauamtes des Kantons Bern, 124 S.

LLE Reichenbach (2006): Lokale Lösungsorientierte Ereignisanalyse (LLE) Reichenbach. Technischer Bericht, Emch+Berger AG, Spiez; Hunziker, Zarn & Partner AG, Aarau; Geotest AG, Zollikofen, im Auftrag des Tiefbauamtes des Kantons Bern, 62 S.

MeteoSchweiz (2006): Starkniederschlagsereignis August 2005. Arbeitsberichte der MeteoSchweiz 211, Bundesamt für Meteorologie und Klimatologie. 63pp.

Meyer-Peter, E., Müller, R. (1948): Formulas for bedload transport. In Proc. 2nd meeting Int. Assoc. Hydraulic Structures Research, Stockholm, Sweden, pp. 39–64. Appendix 2.

Palt, S. (2001): Sedimenttransporte im Himalaya-Karakorum und ihre Bedeutung für Wasserkraftanlagen. Mitteilungen des Instituts für Wasserwirtschaft und Kulturtechnik, Universität Karlsruhe, Nr. 209.

Parker, G. (2008): Sedimentation Engineering: Theories, Measurements, Modeling, and Practice, ASCE Manuals and Reports on Engineering Practice No. 110, Chapter 3: Transport of gravel and sediment mixtures, pp. 165–252.

Rathburn, S., Wohl, E. (2001): One-dimensional sediment transport modeling of pool recovery along a mountain channel after a reservoir sediment release. Regulated Rivers: Research & Management 17(3), 251–273.

Pauli, M. (2009): Geschiebetransport während des Augusthochwassers 2005. Diplomarbeit an der philosophisch-naturwissenschaftlichen Fakultät der Universität Bern.

Rickenmann, D. (1990): Bedload transport capacity of slurry flows at steep slopes. Mitteilungen der Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie, ETH Zürich, Nr. 103.

Rickenmann, D. (1991): Hyperconcentrated flow and sediment transport at steep slopes. Journal of Hydraulic Engineering 117(11), 1419–1439. Rickenmann, D. (1996): Fliessgeschwindigkeit in Wildbächen und Gebirgsflüssen. Wasser Energie Luft 88(11/12), 298–304.

Rickenmann, D. (2001): Comparison of bed load transport in torrents and gravel bed streams. Water Resources Research 37(12), 3295–3305.

Rickenmann, D. (2005): Geschiebetransport bei steilen Gefällen. In: Mitteilungen der Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie, ETH Zurich, Nr. 190, pp. 107–119.

Rickenmann, D., Chiari, M., Friedl, K. (2006): SETRAC – A sediment routing model for steep torrent channels. In R. Ferreira, E. A. J. Leal, and A. Cardoso (Eds.), RiverFlow 2006, Volume 1, London, pp. 843–852. Taylor & Francis.

Rickenmann, D., Koschni, A., Chiari, M., Scheidl, C., Canuto, N. (2008): Abschätzung von Feststofffrachten in Wildbächen und Gebirgsflüssen. In: Ereignisanalyse Hochwasser 2005, Teil 2 - Analyse von Prozessen, Massnahmen und Gefahrengrundlagen, Bezzola GR, Hegg C (eds). Bern, Bundesamt für Umwelt BAFU, Birmensdorf, Eidgenössische Forschungsanstalt WSL, Umwelt-Wissen Nr. 2508, pp. 152-162. Rickenmann, D., Blaser, F., Chiari, M. (2009): Modellierung des Geschiebetransportes für das Hochwasser im August 2005 im Steinibach und im Buoholzbach (Kt. Nidwalden). In: Unterlagen zum FAN-Herbstkurs 2009 über «Wildbacheinzugsgebiete - Prozesse, Gefahren und Schutzmassnahmen», Fachleute Naturgefahren Schweiz (FAN), 24./25.9.2009, Nidwalden.

Rickenmann, D., Koschni, A. (accepted): Sediment loads due to fluvial transport and debris flows during the 2005 flood events in Switzerland. Hydrological Processes (accepted October 2009).

Smart, G., Jäggi, M. (1983): Sedimenttransport in steilen Gerinnen. Mitteilungen der Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie, ETH Zürich, Nr. 64.

Solari, L., Parker, G. (2000): The curious case of mobility reversal in sediment mixtures. Journal of Hydraulic Engineering 12(3), 198–208.

Yager, E.M., Kirchner, J.W., Dietrich, W.E. (2007): Calculating bed load transport in steep boulder bed channels. Water Resources Research 43, W07418, doi:10.1029/2006WR005432.

Anschrift der Verfasser:

Dr. Michael Chiari

Institut für Alpine Naturgefahren, Universität für Bodenkultur, Peter-Jordan-Strasse 82

A-1190 Wien, Tel. +43 1 47654 4376

michael.chiari@boku.ac.at

www.baunat.boku.ac.at/488.html

Dr. Dieter Rickenmann

Eidgenössische Forschungsanstalt WSL, Gebirgshydrologie und Wildbäche

Zürcherstrasse 111, CH-8903 Birmensdorf Tel. +41 44 739 24 29, rickenmann@wsl.ch, www.wsl.ch