Zeitschrift: Wasser Energie Luft = Eau énergie air = Acqua energia aria

Herausgeber: Schweizerischer Wasserwirtschaftsverband

Band: 97 (2005)

Heft: 3-4

Artikel: Flussaufweitungen lohnen sich! : Ergebnisse einer Erfolgskontrolle aus

ökologischer Sicht

Autor: Rohde, Sigrun

DOI: https://doi.org/10.5169/seals-941740

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 19.10.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Flussaufweitungen lohnen sich! Ergebnisse einer Erfolgskontrolle aus ökologischer Sicht

Sigrun Rohde

Zusammenfassung

Seit rund 12 Jahren werden in der Schweiz Flussaufweitungen gebaut. Im Rahmen des Rhone-Thur-Projektes wurde eine Erfolgskontrolle durchgeführt und die ökologischen Auswirkungen von fünf Gerinneaufweitungen untersucht. Dabei wurden die Gerinneaufweitungen mit kanalisierten und mit naturnahen Fliessgewässerabschnitten verglichen.

Die Ergebnisse zeigen, dass Gerinneaufweitungen grundsätzlich zu einer Aufwertung des Gewässers in Richtung eines naturnäheren Zustandes führen. So werden durch die Aufweitungen Bereiche unterschiedlicher Strömung und Wassertiefen und Raum für die Etablierung von Pionierlebensräumen (Kiesbänke, Pionierkrautgesellschaften und Weichholzgebüsche) geschaffen. Aufgrund der begrenzten Flächenausdehnung der Gerinneaufweitung kann sich jedoch nur ein Teil des gesamten Spektrums auetypischer Lebensräume einstellen. Zudem ist das Landschaftsmosaik der Aufweitungen kleinteiliger und komplexer als das naturnaher Auen. Die Entwicklung einer Aufweitung hin zu naturnahen Verhältnissen hängt jedoch nicht nur von der Grösse der Aufweitung ab, sondern wird auch massgeblich von den übergeordneten naturräumlichen Randbedingungen (Hydrologie, Geschiebeein-

Neben den Untersuchungsergebnissen werden eine Liste «auetypischer Pflanzenarten der Schweiz» und ein Indikatorenset «Landschaftsstrukturmasse» vorgestellt. Damit soll eine Hilfestellung für die Durchführung zukünftiger Wirkungskontrollen gegeben werden.

1. Einleitung

Seit rund 12 Jahren werden in der Schweiz Flussaufweitungen gebaut. Damit soll zum einen die Sohle eines Flusses stabilisiert werden, und zum anderen soll das kanalisierte Gerinne ökologisch aufgewertet werden. Nachdem Hunzinger in seinem Artikel (WEL, Heft 9/10-2004) die Erfahrungen des Wasserbaus dargelegt hat, sollen in diesem Beitrag

Bild 1. Untersuchungsgebiete.

die Erfahrungen aus Sicht der Ökologie (am Beispiel der Lebensraumausstattung und Vegetationsentwicklung) beleuchtet werden. Folgende Fragen stehen dabei im Mittelpunkt:

- Wie k\u00f6nnen die \u00f6kologischen Auswirkungen von Flussaufweitungen gemessen werden?
- Können Aufweitungen Lebensraum für auetypische Arten- und Lebensgemeinschaften schaffen?
- Welche Naturnähe kann mit Gerinneaufweitungen erreicht werden?

In diesem Artikel werden die Ergebnisse eines im Rahmen des Rhone-Thur-Projektes (www.rhone-thur.eawag.ch) durchgeführten Projektes vorgestellt. Es wurden fünf Flussaufweitungen untersucht und jeweils

mit einem kanalisierten Abschnitt (= regulierte Referenz = Nullzustand) und einem naturnahen Abschnitt (= naturnahe Referenz = Zielzustand) verglichen (Bild 1, Tabelle 1). Diese vergleichende Untersuchung ermöglicht die Beurteilung der durch die Gerinneaufweitung erreichten Naturnähe.

Indikatoren f\u00fcr die Erfolgskontrolle

2.1 Landschaftsstrukturmasse

Die in einem Gebiet vorhandenen Habitattypen, ihre Grenzstrukturen und Nachbarschaftsbeziehungen bestimmen sowohl das Wander- bzw. Ausbreitungsverhalten von Organismen als auch Material- und Energieflüsse. Es besteht also eine enge Verbindung

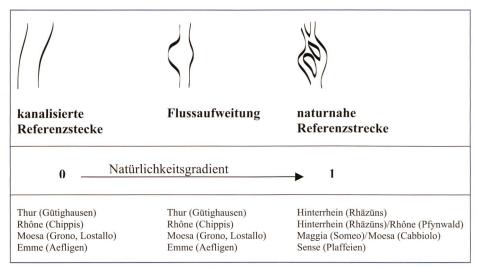


Tabelle 1. Untersuchungsdesign.

Indikator	Definition ¹	Bezug zu Ökosystemfunktionen und -prozessen
Landschafts- komposition		
PR	Patch Richness: misst die Habitatvielfalt.	Habitatvielfalt ist die Voraussetzung für Artenvielfalt.
%Area	Flächenanteil eines Habitattyps.	Die Fläche eines Lebensraumes hat einen grossen Einfluss auf die Populationsgrösse einer Art.
Landschafts- konfiguration		
MSI	Mean Shape Index: misst die Komplexität einer Fläche im Vergleich zu einer Standardform (Kreis bzw. Quadrat).	Die Artenzahl wird nicht nur durch die Grösse einer Fläche, sondern auch durch ihre Form beeinflusst (Hamazaki 1996).
medPS	Median Patch Size: Mittlere (Median) Flächengrösse eines Habitattyps.	Die Flächengrösse ist ein Schlüsselfaktor hinsichtlich der Habitateignung.
MNN	Mean Nearest Neighbour: misst den Abstand zwischen zwei Flächen des gleichen Habitattyps.	Ausbreitungsmöglichkeiten und damit Wieder- besiedlung und der Schutz von so genannten Metapopulationen werden durch die Entfernung zwischen geeigneten Lebensräumen bestimmt.
MPI	Mean Proximity Index: misst den Isolations- bzw. Fragmentierungsgrad. Neben der Distanz zur nächstgelegenen Fläche des gleichen Habitattyps wird auch die Grösse der einzelnen Flächen berücksichtigt.	siehe oben
IJ	Interspersion and Juxtaposition Index: misst Nachbarschaftsverhältnisse. IJI = 100, wenn alle Habitattypen gleichermassen an alle anderen Habitattypen angrenzen.	Viele Arten sind auf die Verzahnung verschiedener Habitattypen angewiesen.
ED	Edge Density: Grenzliniendichte. Standardisierung der gesamten Grenzlinie zwischen verschiedenen Habitattypen auf eine Flächeneinheit (m/ha).	 Der Wasseraustausch ist abhängig von der Uferlänge. Die Fläche des Interface zwischen Wasser und Substrat ist positiv mit dem Stickstoffrückhalt korreliert (Pinay et al. 2002). Bei Fischen, aquatischen Wirbellosen und auetypischen Laufkäfern ist die Artenvielfalt positiv mit der Uferlänge korreliert (Wintersberger 1996, Rempel et al. 1999, Hering & Plachter 1997, Tockner et al. 2005).

Tabelle 2. Landschaftsstrukturmasse als Indikatoren für Ökosystemfunktionen und -prozesse.

Landschaftsstrukturmass k (siehe Tabelle 2)	Fall 1 Emme	Fall 2 Emme	Fall 3 Sense	Fall 1 - Fall 2	Fall 3 - Fall 2
Untersuchungstyp	kanalisiert	Aufweitung	naturnah		护跨军场联动动态 。
PR (Habitatdiversität)	4	17	18	13.00	1.00
MSI	4.73	2.41	2.07	2.32	0.34
medPS	0.63	0.02	0.05	0.61	0.03
MNN	41.3	37.2	59.6	4.10	22.40
MPI	3.75	328.3	372.99	324.55	44.69
Ш	61.31	68.57	66.02	7.26	2.55
ED	1081.3	1459.84	1221.28	378.54	238.56
Manhattan Masszahl (d _{ij})	104.34	44.22			

erreichte Naturnähe der Aufweitung = $\frac{dij|Fall1-Fall2|}{\sum dij}$ = $\frac{104.34}{148.56}$ = 0.7023 (siehe Bild 8)

Rechenbeispiel. Berechnung der «Manhatten»-Masszahl d $_{ij}$ und anschliessende Standardisierung.

zwischen der Struktur einer Landschaft bzw. eines Landschaftsausschnittes und den darin ablaufenden, ökologischen Prozessen und Funktionen. Mit Gerinneaufweitungen möchte man unter anderem auetypische Lebensräume und Strukturen im und am Gewässer wiederherstellen. Damit soll die Voraussetzung für den Ablauf natürlicher Prozesse und die Wiederbesiedlung durch auetypische Arten geschaffen werden. Inwieweit die neu geschaffenen Strukturen denen

naturnaher Auen entsprechen, lässt sich mittels so genannter Landschaftsstrukturmasse bestimmen. Mit Hilfe dieser Landschaftsstrukturmasse lässt sich die Struktur einer Landschaft in Zahlen fassen. Diese Quantifizierung der Landschaftsstruktur ermöglicht den Vergleich zwischen kanalisierten, aufgeweiteten und naturnahen Flussabschnitten. Anhand dieses Vergleichs lässt sich anschliessend die erreichte Naturnähe einer Gerinneaufweitung bestimmen.

Welche Landschaftsstrukturmasse sich besonders gut als Indikatoren für eine Erfolgskontrolle bei Flussrevitalisierungsprojekten (Gerinneaufweitungen) eignen, zeigt Tabelle 2.

Als Grundlage für die Berechnung der Landschaftsstrukturmasse wird lediglich ein GIS mit digitalen Biotoptypen-/Habitattypenkarten der betrachteten Flussabschnitte benötigt (Bild 2). Für die Berechnung selbst stehen verschiedene Computerprogramme zur Verfügung. Dabei hat sich der PatchAnalyst 3.1 als besonders praxistauglich erwiesen. Der PatchAnalyst ist eine anwenderfreundliche Erweiterung zu ArcView, welche unter http://flash.lakeheadu.ca/~rrempel/patch/ind ex.html kostenlos heruntergeladen werden kann.

Für den Vergleich zwischen kanalisierten, aufgeweiteten und naturnahen Abschnitten lassen sich die einzelnen Landschaftsstrukturmasse wie folgt zu einem einzigen Indikator («Manhattan»-Masszahl d_{ij}) zusammenfassen:

$$d_{ij} = \frac{\sum_{k} \left| \chi_{ik} - \chi_{jk} \right|}{\sum_{k}}$$

Dabei ist x_{ik} der Wert des Indikators (Landschaftsstrukturmasses) k im Fall i und x_{jk} der Wert des Indikators (Landschaftsstrukturmasses) k im Fall j. Bei einer Erfolgskontrolle gibt die «Manhattan»-Masszahl (d_{ij}) einen Überblick zur erreichten Naturnähe eines Revitalisierungsprojektes. Eine globale Bewertung sollte jedoch immer in Zusammenschau mit den zugrunde liegenden Werten der einzelnen Landschaftsstrukturmasse vorgenommen werden.

Das nebenstehende Rechenbeispiel zeigt die Berechnung der «Manhattan»-Masszahl d_{ij}. Die anschliessende Standardisierung ermöglicht die Bewertung verschiedener Projekte entlang eines Natürlichkeitsgradienten, der von kanalisiert (Wert «0») bis naturnah (Wert «1») reicht (Bild 8).

2.2 Liste auetypischer Pflanzenarten der Schweiz

Pflanzen sind sehr publikumswirksam und lassen sich mit verhältnismässig geringem Aufwand erheben. Sie eignen sich daher besonders gut als Indikatoren für eine Erfolgskontrolle.

Vergleicht man nun Vegetationsaufnahmen (z.B. Kartierungen nach Braun-Blanquet) aus Aufweitungen mit Vegetationsaufnahmen aus kanalisierten bzw. naturnahen Flussabschnitten, kann die Naturnähe der Aufweitung erfasst werden. Je ähnlicher sich die Vegetationsaufnahmen der Aufweitung

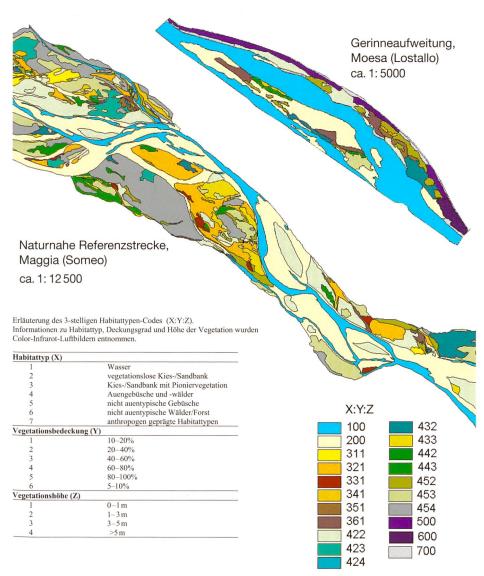


Bild 2. Habitattypenkartierung.

und des naturnahen Abschnitts sind, umso grösser ist der Revitalisierungserfolg.

Die Anzahl und Habitatbindung (Stenökie) der einzelnen, in einem revitalisierten Abschnitt angetroffenen Arten sind ebenfalls Zeiger für den Revitalisierungserfolg. Je mehr auetypische Arten in einer Aufweitung angetroffen werden, umso grösser ist der zu verzeichnende Revitalisierungserfolg. Zu den auetypischen Arten gehören beispielsweise Fleischers Weidenröschen (Epilobium fleischeri) und das Rohrglanzgras (Phalaris arundinacaea) (Bilder 3 und 4). Für die Durchführung zukünftiger Erfolgskontrollen wurde deshalb eine Liste «auetypischer Pflanzenarten der Schweiz (ohne Wasserpflanzen)» erstellt (Tabelle 3).

Dabei wurden die Arten, gemäss ihrer Habitatbindung, in drei verschiedene Klassen eingeteilt:

Klasse 1: auenabhängige Arten sensu stricto: Arten, deren Vorkommen stark an Auen gebunden ist.

Klasse 2: auenabhängige Arten sensu lato: Arten, deren natürlicher Lebensraum die Auen sind, die aber heute auch in so genannten Sekundärhabitaten (z.B. Kiesgruben) auftreten können.

Klasse 3: weitere, charakteristische Arten: Arten, die regelmässig in Auen vorkommen (ohne Arten des Intensivgrünlandes), aber deren Bestand nicht von Auen abhängig ist.

Diese hier vorgestellte Liste basiert auf den Ausführungen von Kuhn (1987), Pantke (2003), Moor (1958), Ellenberg (1996) und Oberdorfer (1992, 1993).

3. Ergebnisse

3.1 Wiederherstellung auetypischer Lebensraumtypen und Strukturen

Die Untersuchungen zeigen, dass Aufweitungen zu einem erhöhten Angebot an (auetypischen) Lebensräumen führen (Bild 5, Tabelle 4). Insbesondere die Aufweitungen an der Emme (Aefligen) und der Moesa (Lostallo) brachten eine wesentliche Verbesserung hinsichtlich der Schaffung auetypischer Habitattypen mit sich. Jedoch liegt auch hier die Ha-

bitatvielfalt, aufgrund der geringen Flächenausdehnung der Aufweitungen, unter jener der naturnahen Referenzstrecken.

Betrachtet man die Habitattypen, die durch Gerinneaufweitungen geschaffen werden, so fällt auf, dass sich insbesondere Pionierlebensräume wie Kiesbänke und Weichholzgebüsche etablieren. Ältere Entwicklungsstadien, wie z.B. Auwälder, fehlen weitgehend, ausser es handelt sich um ältere Bestände, die in die Aufweitung integriert wurden. Das Fehlen von Auwäldern lässt sich mit der geringen Flächenausdehnung der Aufweitungen erklären. Auwälder treten natürlicherweise an höher gelegenen Auenbereichen auf, die nur episodisch überflutet werden. Aufweitungen beschränken sich bisher iedoch auf den dynamischen und damit häufig überfluteten Teil des Flusses, so dass sich hier keine Auwälder etablieren können.

Vergleicht man die Landschaftskonfiguration von Aufweitungen mit jener der naturnahen Referenzstrecken, so sieht man, dass das Landschaftsmosaik der Aufweitungen im Allgemeinen deutlich kleinteiliger und komplexer ist als das der naturnahen Auen. So beträgt die mittlere Flächengrösse (medPS) der Aufweitungen an der Emme (Aefligen) und Moesa (Lostallo) weniger als die Hälfte der mittleren Flächengrösse der dazugehörigen, naturnahen Referenzstrecke (Bild 6). Anders sieht es bei den Aufweitungen an der Thur (Gütighausen) und Rhone (Chippis) aus. Der Unterschied liegt hier in der Tatsache begründet, dass die Aufweitungen im Wesentlichen aus dem Flusslauf selbst und zwei grossen Kiesbänken bestehen.

Allen Aufweitungen gemeinsam ist jedoch eine höhere Flächenkomplexität, welche sich in einem hohen Wert des Mean Shape Index (MSI) niederschlägt. Auch die Grenzliniendichte ist in den Aufweitungen durchwegs höher als in den naturnahen Referenzabschnitten (Tabelle 4).

Bild 3. Fleischers Weidenröschen (Epilobium fleischeri).

107

Klasse1: auenabhängige Arten sensu stricto: Arten, deren Vorkommen stark an Auen gebunden ist

Calamagrostis pseudophragmites

Carex acutiformis

Salix elaeagnos

Salix triandra Salix viminalis

Salix daphnoides Salix myrsinifolia

Myricaria germanica Salix alba

Hippophaë rhamnoides Lysimachia thyrsiflora

Epilobium dodonaei Epilobium fleischeri

Aegopodium podagraria	Carduus personata	Cotoneaster tomentosus	Isolepis setacea	Linaria vulgaris	Polygonum lapathifolium su	Scrophularia canina
Alopecurus aequalis	Carex pseudocyperus	Crepis setosa	Juncus bufonius	Lythrum portula	Polygonum minus	Sium latifolium
Alnus glutinosa	Centaurea diffusa	Cruciata laevipes	Juncus capitatus	Melilotus albus	Prunus mahaleb	Sparganium emersum
Alnus incana	Centaurium pulchellum	Cyperus fuscus	Juncus tenageia	Melilotus altissimus	Ranunculus sceleratus	Sparganium erectum
Amelanchier ovalis	Chaerophyllum aureum	Daucus carota	Lamium maculatum	Melilotus officinalis	Reseda luteola	Sparganium erectum
Anagallis minima	Chaerophyllum bulbosum	Echium vulgare	Linaria vulgaris	Montia fontana subsp. chon	Rhamnus alpina	Tanacetum vulgare
Artemisia vulgaris	Chenopodium ficifolium	Epilobium roseum	Lythrum portula	Myosotis cespitosa	Riccia glauca	Tragopogon dubius
Atriplex prostrata	Chenopodium glaucum	Equisetum hyemale	Melilotus albus	Oenothera biennis	Rorippa amphibia	Typha angustifolia
Barbarea vulgaris	Chenopodium polyspermum	Erigeron annuus	Melilotus altissimus	Oenothera glazioviana	Rosa micrantha	Typha latifolia
Berberis vulgaris	Chenopodium rubrum	Erigeron annuus	Melilotus officinalis	Oenothera parviflora	Rosa villosa	Viburnum lantana
Berteroa incana	Chondrilla chondrilloides	Erigeron annuus subsp. str	Montia fontana subsp. chon	Petasites hybridus	Rumex aquaticus	
Bidens cernua	Colutea arborescens	Glyceria maxima	Myosotis cespitosa	Phalaris arundinacea	Salix fragilis	
Bidens connata	Cornus mas, sanguinea	Hieracium piloselloides	Juncus bufonius	Phragmites australis	Salix purpurea	
Bidens radiata	Corrigiola litoralis	Hieracium staticifolium	Juncus capitatus	Picris hieracioides	Salix x rubens	
Bidens tripartita	Cotinus coggygria	Hippocrepis emerus	Juncus tenageia	Polygonum hydropiper	Sambucus ebulus	
Rutomus umbellatus	Cotoneaster integerrimus	Humulus humilus	Lamium maculatum	Polygonum lapathifolium s.	Schoenoplectus lacustris	

Klasse 3: Weitere, charakteristische Arten: Arten, die regelmässig in Auen vorkommen (ohne Arten des Intensivgrünlandes), aber deren Bestand nicht von Auen abhängig ist.

Achinea minejonam	Caramine praiensis	Erucusirum gaincum	imputeris non-tungere	Cayii opis cumpesti is.	Korippa x	Southern out accus
Agropyron repens	Cardamine resedifolia	Erucastrum nasturtiifolium	Impatiens parviflora	Papaver rhoeas	Rorippa islandica	Sorbus aria
Agropyron repens	Carduus acanthoides	Erysimum cheiranthoides	Iris pseudacorus	Pastinaca sativa.	Rorippa sylvestris	Stachys sylvatica
Agrostis gigantea	Carduus defloratus	Euonymus europaeus	Isatis tinctoria	Petasites paradoxus	Rosa canina	Stellaria media
Agrostis rupestris	Carex acuta	Euphorbia cyparissias	Juniperus communis.	Picea abies	Rubus caesius	Stereocaulon alpinum
Agrostis stolonifera	Carex alba	Euphorbia peplus	Lactuca serriola	Pinus sylvestris	Rumex acetosa	Symphytum officinale
Alchemilla vulgaris	Carex ornithopoda	Euphrasia salisburgensis	Lamium album	Plagiomnium undulatum	Rumex crispus	Teucrium chamaedrys
Alliaria petiolata	Carex vesicaria	Eurhynchium striatum	Lamium purpureum	Plantago major subsp. intermedia Rumex maritimus	Rumex maritimus	Thuidium tamariscinum
Alopecurus geniculatus	Carex vulpina	Fallopia convolvulus	Leontodon hispidus.	Poa alpina	Rumex scutatus	Thymus praecox.
Amaranthus blitum	Cerastium arvense	Festuca arundinacea	Leontodon hispidus	Poa angustifolia	Sagina saginoides	Thymus serpyllum aggr.
Amaranthus caudatus	Chaenorrhinum minus	Festuca gigantea	Lepidium campestre	Poa annua aggr.	Salix appendiculata	Tortella tortuosa
Amaranthus retroflexus	Chaerophyllum hirsutum	Festuca rubra aggr.	Leucanthemopsis alpina	Poa compressa	Sambucus nigra	Trifolium pallescens
Angelica sylvestris	Chelidonium majus	Festuca rupicola	Ligustrum vulgare	Poa glauca	Sanguisorba minor .	Trifolium saxatile
Anthriscus sylvestris	Chenopodium album	Filipendula ulmaria	Plantago major	Poa palustris	Saponaria ocymoides	Tripleurospermum perforatum
Anthyllis vulneraria	Chenopodium bonus-henricus	Fragaria vesca	Linaria alpina	Polygonum amphibium	Saponaria officinalis	Tussilago farfara
Arabis alpina	Cirsium arvense	Frangula alnus	Lonicera xylosteum	Polygonum aviculare	Saxifraga aizoides	Urtica dioica
Arctium tomentosum	Cirsium oleraceum	Fraxinus excelsior	Lotus corniculatus	Polygonum mite	Saxifraga bryoides	Valeriana montana
Arenaria serpyllifolia aggr.	Cirsium vulgare	Galeopsis tetrahit	Lycopersicon esculentum	Polygonum persicaria	Saxifraga oppositifolia	Valeriana officinalis
Artemisia campestris	Clematis vitalba	Galium aparine	Lysimachia nummularia	Populus nigra.	Scrophularia nodosa	Verbascum densiflorum
Astragalus alpinus	Conyza canadensis	Galium palustre	Lysimachia vulgaris	Portulaca oleracea.	Scrophularia umbrosa	Verbascum nigrum
Atriplex patula	Cornus sanguinea	Geranium pyrenaicum	Lythrum salicaria	Potentilla anserina	Sempervivum arachnoideum	Verbascum phlomoides
Bidens frondosa	Corylus avellana	Geranium robertianum	Malva neglecta	Prunus avium	Senecio vulgaris	Verbascum thapsus.
Brachypodium pinnatum	Crataegus laevigata	Geum rivale	Matricaria recutita	Prunus padus.	Setaria pumila	Veronica anagallis-aquatica
Brachypodium sylvaticum	Crataegus monogyna	Geum urbanum	Medicago lupulina	Prunus spinosa	Setaria viridis	Veronica beccabunga
Brassica oleracea	Crepis capillaris	Glechoma hederacea	Melica nutans	Quercus petraea	Silene dioica	Veronica bellidioides
Calamagrostis epigejos	Deschampsia cespitosa	Glyceria fluitans	Mentha aquatica	Quercus pubescens	Silene pratensis	Veronica chamaedrys
Calamagrostis varia	Digitaria sanguinalis	Gypsophila repens	Mentha longifolia	Quercus robur	Silene vulgaris.	Veronica persica
Caltha palustris	Echinochloa crus-galli	Helianthus annuus	Myosotis arvensis	Racomitrium canescens	Sinapis arvensis	Vicia cracca.
Calystegia sepium	Epilobium hirsutum	Heracleum sphondylium	Myosotis scorpioides	Ranunculus lingua	Sisymbrium officinale	Viola tricolor
Campanula cochleariifolia	Equisetum arvense	Hieracium intybaceum	Myosoton aquaticum	Raphanus raphanistrum	Solanum dulcamara	
Capsella bursa-pastoris	Equisetum fluviatile	Hylocomium splendens	Nasturtium officinale	Reseda lutea	Solanum nigrum	
Cardamine amara	Equisetum ramosissimum	Hypericum perforatum	Origanum vulgare	Rhamnus cathartica	Solidago gigantea	
Cardamino hirenta	Friagran acer	Hunnin curressiforme	Oxalis fontana	Rhytidiadelphus triauetrus	Sonchus asper	

Tabelle 3. Auetypische Pflanzenarten der Schweiz (ohne Wasserpflanzen). Indikatoren für die ökologische Erfolgskontrolle von Revitalisierungsmassnahmen an Fliessgewässern.

Landschaftsstrukturmass	Emme	Emme	Sense	Moesa (Grono)	Moesa (Grono)	Maggia	Moesa (Lostallo)	Moesa (Lostallo)	Maggia	Thur	Thur	Hinterrhein	Rhône	Rhône	Hinterrhein
Untersuchungstyp	kanalisiert	Aufweitung	naturnah	kanalisiert	Aufweitung	naturnah	kanalisiert	Aufweitung	naturnah	kanalisiert	Aufweitung	naturnah	kanalisiert	Aufweitung	naturnah
PR (Habitatdiversität)	4.00	17.00	18.00	2.00	4.00	19.00	3.00	14.00	19.00	3.00	6.00	20.00	2.00	6.00	20.00
MSI	4.73	2.41	2.07	2.68	2.50	2.33	3.94	2.41	2.33	3.22	2.63	2.03	1.58	2.18	2.03
medPS	0.63	0.02	0.05	1.84	0.06	0.09	1.53	0.04	0.09	0.99	0.12	0.05	1.49	0.07	0.05
MNN	41.30	37.20	59.60	8.30	39.80	78.20	0.00	40.10	78.20	29.10	85.40	68.20	0.00	9.40	68.20
MPI	3.75	328.30	372.99	6089.37	396.06	1334.58	0.00	176.79	1334.58	5.85	1.76	193.24	0.00	71.39	193.24
IJI	61.31	68.57	66.02	0.00	29.35	71.37	63.08	68.90	71.37	25.99	47.51	56.01	0.00	66.14	56.01
ED	1081.30	1459.84	1221.28	623.36	812.82	759.16	699.47	1470.91	759.16	782.47	795.15	634.91	411.14	1025.26	634.91

Tabelle 4. Landschaftsstruktur (Komposition und Konfiguration) der untersuchten Aufweitungen im Vergleich zu kanalisierten bzw. naturnahen Referenzstrecken (Sommer 2001). Die Analyse beruht auf digitalen Habitattypenkarten (PR: Patch Richness, MSI: Mean Shape Index, medPS: Median Patch Size, MNN: Mean Nearest Neighbour, MPI: Mean Proximity Index, IJI: Interspersion & Juxtaposition Index, ED: Edge Density).

Bild 4. Rohrglanzgras (Phalaris aurundinacaea).

3.2 Vorkommen auetypischer Pflanzenarten

Die bisherigen Erfahrungen zeigen, dass Aufweitungen einen wichtigen Beitrag zu Förderung und Schutz auetypischer Arten leisten können. So wurden an den untersuchten Aufweitungen insgesamt 30 auetypische Pflanzenarten der Klassen 1 und 2 gefunden (Tabelle 5). Mit sechs auetypischen Arten der Klasse 1 weist die Aufweitung an der Moesa ebenso viele auetypischen Arten auf, wie die dazugehörige, naturnahe Referenzstrecke (Bild 7). Während die Aufweitungen an der Thur und Emme zwei bzw. drei Arten weniger aufweisen als die naturnahen Referenzstrecken, sind es bei der Aufweitung an der Rhone deren fünf weniger.

Bei den vorgefundenen Arten der Gerinneaufweitungen handelt es sich hauptsächlich um (Pionier-)Arten der Kiesbänke und Ufer. Diese sind nicht nur in der Lage Trockenperioden zu überdauern, sondern überstehen auch zeitweilige Überflutung ohne Dauerschaden oder vermögen sich rasch zu regenerieren. Ein Paradebeispiel hiefür sind die verschiedenen Weiden-Arten. Arten, die nicht an die wechselnden und teilweise völlig unberechenbaren Bedingungen

der Kiesbänke und Ufer angepasst sind, tun sich hingegen schwer und sind entsprechend selten anzutreffen. Zu diesen Arten gehören insbesondere die Arten der Auwälder.

Neben den in Tabelle 5 aufgeführten Arten profitieren insbesondere die Schwarzpappel (Populus nigra) und die Gräser Weisses Straussgras (Agrostis stolonifera), Gemeine Quecke (Agropyron repens), Wiesen-Knäuelgras (Dactylus glomerata) und Rasenschmiele (Deschampsia cespitosa) von dem Bau von Aufweitungen.

3.3 Erreichte Naturnähe

Bei der Beurteilung der erreichten Naturnähe dient ein Referenzsystem als Messlatte. Diese Messlatte entspricht einem Natürlichkeitsgradienten. Dabei steht der regulierte Zustand (= kanalisierte Strecke) am Anfang, und der naturnahe Zustand (= naturnahe Referenzstrecke) bildet das Ende der Messlatte (Tabelle 1). Auf diesem Natürlichkeitsgradienten entspricht der Wert «0» dem kanalisierten Ausgangszustand und der Wert «1» dem angestrebten Zielzustand. Die untersuchten Aufweitungen erreichen durchschnittlich eine Naturnähe von 0,46 hinsichtlich der Landschaftsstruktur und eine Naturnähe der Pflanzenbestände von 0,56 (Bild 8).

Es gibt jedoch beträchtliche Unterschiede zwischen den einzelnen Flussaufweitungen. So erreicht die Aufweitung an der Thur (Gütighausen) bei der Landschaftsstruktur lediglich eine Naturnähe von 0,03. Die Gerinneaufweitung an der Emme (Aefligen) hingegen erzielt einen Wert von 0,7 und schuf damit die naturnahsten Landschaftsstrukturverhältnisse.

Artname	Aufweitung							
lateinisch	deutsch	Emme (Aefligen)	Moesa (Grono)	Moesa (Lostallo)	Thur (Gütighausen)	Rhône (Chippis)		
Klasse 1: Arten, die für ihr Überle	eben im Wesentlichen auf Aue	en angewiese	en sind					
Calamagrostis pseudophragmites	Schilfähnliches Reitgras					x		
Epilobium dodonaei	Dodonaeus' Weidenröschen		Х	х				
Myricaria germanica	Tamariske		х	х		х		
Salix alba	Silber-Weide, Weiss-Weide	x	х	х	x	x		
Salix elaeagnos	Lavendel-Weide	x	х	х		х		
Salix myrsinifolia	Schwarz-Weide	x	х	x				
Salix triandra	Mandel-Weide			х	X			
Salix viminalis	Hanf-Weide, Korb-Weide	х			x			
Klasse 2: Arten, die ihren natürli Sekundärhabitaten) vorkommen		kt in Auen ha	aben, aber a	uch ausserha	alb von Auen (in sc	genannten		
Alnus incana	Grau-Erle, Weiss-Erle	х	х	х		х		
Artemisia vulgaris	Gemeiner Beifuss	X	X	x	x	x		
Barbarea vulgaris	Gemeine Winterkresse		х	х	X			
Chenopodium polyspermum	Vielsamiger Gänsefuss				x			
Daucus carota	Möhre		Х	х	x			
Echium vulgare	Natterkopf			х	x	х		
Erigeron annuus	Borstiges Berufkraut		х	х				
Epilobium roseum	Rosenrotes Weidenröschen							
Hieracium piloselloides	Florentiner Habichtskraut		X			x		
Humulus lupulus	Hopfen			х	X	х		
Juncus bufonius	Kröten-Binse		х	х				
Melilotus albus	Weisser Honigklee	x	х	х		х		
Melilotus officinalis	Echter Steinklee							
Oenothera biennis	Gemeine Nachtkerze		Х	х	x			
Phalaris arundinacea	Rohr-Glanzgras	х			X			
Picris hieracioides	Bitterkraut		х	х				
Polygonum hydropiper	Wasserpfeffer-Knöterich				×			
Polygonum lapathifolium	Ampferblättriger Knöterich			х	×			
Polygonum minus	Kleiner Knöterich		х					
Prunus mahaleb	Felsenkirsche, Steinweichsel				x			
Salix purpurea	Purpur-Weide	х	х	х		х		
Scrophularia canina	Hunds-Braunwurz		x	x				

Tabelle 5. Auetypische Arten, die im Sommer 2002 an Gerinneaufweitungen nachgewiesen werden konnten.

Grosse Unterschiede ergeben sich auch hinsichtlich der Naturnähe der angetroffenen Pflanzenbestände. Während die Aufweitung an der Thur (Gütighausen) eine Naturnähe der Pflanzenbestände von 0,23 aufweist, etablierten sich in der Aufweitung der Moesa (Grono) die naturnahsten Pflanzenbestände (Natürlichkeitsgrad 0,73). Dieser Unterschied lässt sich mit dem unterschiedlichen Vernetzungsgrad der Aufweitungsprojekte erklären. Während die Thur oberhalb der Aufweitung weitestgehend begradigt und kanalisiert ist, befindet sich ca. 10 km oberhalb der Aufweitungen an der Moesa ein naturnaher Abschnitt. Wie Bild 9 zeigt, führt diese Vernetzung mit einer naturnahen Flussstrecke dazu, dass die Pflanzenbestände der Aufweitungen an der Moesa von diesem naturnahen Abschnitt beeinflusst («geimpft») werden. Die naturnahe Strecke dient also als Besiedlungsquelle für die stromabwärts gelegenen, neu geschaffenen Lebensräume der Aufweitungen. An der Thur hingegen werden die neu geschaffenen, relativ isolierten Lebens-

räume, mangels Nähe zu naturnahen Auengebieten, von Arten der Umgebung (insbesondere Arten der Waldränder) besiedelt (Bild 10).

4. Schlussfolgerungen

Basierend auf den Erkenntnissen, die im Rahmen der Erfolgskontrolle des Forschungsprojektes Rhône-Thur gewonnen wurden, lassen sich folgende Schlussfolgerungen ziehen:

Indikatoren und Methode einer Erfolgskontrolle

(1) Eine naturnahe Landschaftsstruktur ist die Voraussetzung für den Ablauf auetypischer Prozesse und Funktionen und dafür, dass sich auetypische Arten- und Lebensgemeinschaften einstellen. Die Landschaftsstruktur lässt sich mittels der vorgestellten Landschaftsstrukturmasse quantifizieren und anschliessend bewerten. Landschaftsstrukturmasse eignen sich also besonders gut als Indikatoren für die ökologische Erfolgskon-

0.14

trolle. Zudem lassen sich Landschaftsstrukturmasse mit Hilfe eines GIS schnell und einfach berechnen, und die transparente Vorgehensweise erleichtert die Kommunikation mit allen Beteiligten eines Revitalisierungsprojektes.

(2) Die Habitatbindung einer Art und die Anzahl vorgefundener Arten mit enger Habitatbindung sind Zeiger für den Revitalisierungserfolg einer Massnahme. Die vorgestellte Liste «auetypischer Pflanzenarten der Schweiz (ohne Wasserpflanzen)» ermöglicht eine schweizweit einheitliche Beurteilung von Gerinneaufweitungen.

(3) Bei einer Erfolgskontrolle wird ein hierarchisches Vorgehen empfohlen. Eine Erfolgskontrolle sollte sowohl Untersuchungen auf Habitatniveau (Landschaftsstruktur) als auch auf Artniveau (ökosystemtypische Arten) umfassen.

Untersuchungen auf Habitatniveau ermöglichen eine umfassende Beurteilung, ob lokal die Voraussetzungen für den Ablauf natürlicher Prozesse geschaffen wurden.

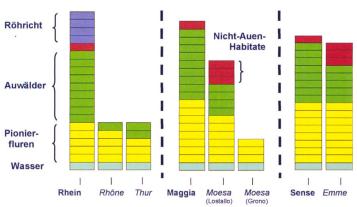


Bild 5. Habitattypen der untersuchten Aufweitungen (kursiv) und der dazugehörigen, naturnahen Referenzstrecken (fett).

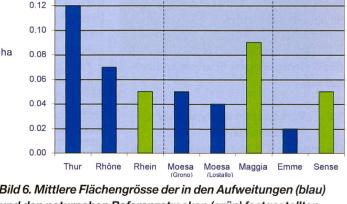


Bild 6. Mittlere Flächengrösse der in den Aufweitungen (blau) und den naturnahen Referenzstrecken (grün) festgestellten Habitattypen.

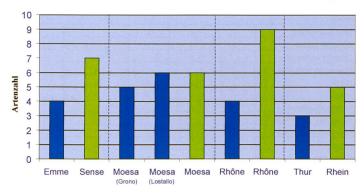


Bild 7. Anzahl der in den untersuchten Gerinneaufweitungen (blau) und dazugehörigen, naturnahen Referenzstrecken (grün) nachgewiesenen, auetypischen Arten der Klasse 1 (siehe Tabelle 3).

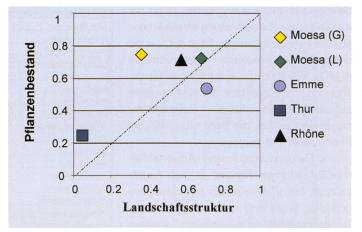


Bild 8. Naturnähe der untersuchten Gerinneaufweitungen (0 = kanalisierter Zustand, 1 = naturnaher Zustand). Die Werte entstammen der Berechnung von Landschaftsstrukturmassen («Manhattan»-Masszahl) und Ähnlichkeitsberechnungen der erhobenen Vegetationsaufnahmen (Van der Maarel) (Details siehe Rohde 2004).

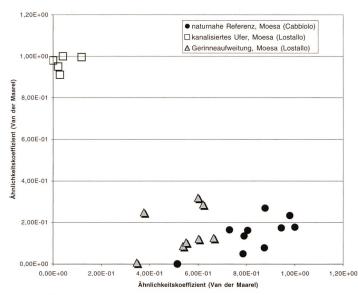


Bild 9. Ähnlichkeit zwischen den Vegetationsaufnahmen der Gerinneaufweitung an der Moesa (Lostallo) und der dazugehörigen regulierten bzw. naturnahen Referenzstrecke. Je näher die Punkte beieinander liegen, umso ähnlicher sind sich die Pflanzenbestände.

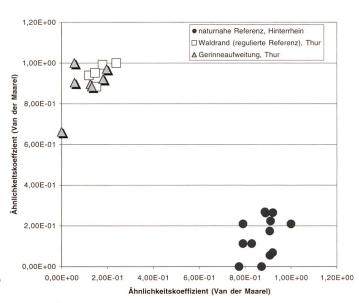


Bild 10. Ähnlichkeit zwischen den Vegetationsaufnahmen der Gerinneaufweitung an der Thur und der dazugehörigen kanalisierten bzw. naturnahen Referenzstrecke. Je näher die Punkte beieinander liegen, umso ähnlicher sind sich die Pflanzenbestände.

Untersuchungen auf Artniveau zeigen, ob die neu geschaffenen Flächen tatsächlich von ökosystemtypischen Arten besiedelt werden. Ist dies nicht der Fall, kann dies ein Hinweis darauf sein, dass es Faktoren gibt, die ausserhalb des Einflussbereiches des lokalen Projektperimeters liegen. Damit werden wertvolle Erkenntnisse für weitere Massnahmen im Einzugsgebiet gewonnen (Einzugsgebietsmanagement).

(4) Naturnahe und kanalisierte Referenz-/Kontrollstrecken sind wichtige Bestandteile einer Erfolgskontrolle. Mittels eines solchen Referenzsystems ist es möglich, die Frage zu beantworten, wie viel Naturnähe mit einem Revitalisierungsprojekt erreicht wurde.

Flussaufweitungen als Revitalisierungsmassnahme

(5) Der Erfolg von Gerinneaufweitungen ist im Wesentlichen abhängig von der Grösse der Aufweitung, der Nähe zu naturnahen Bereichen und dem Geschiebehaushalt.

(6) Grundsätzlich zeigt sich, dass Gerinneaufweitungen geeignete Massnahmen zur Förderung und Wiederherstellung auetypischer Arten- und Lebensgemeinschaften sind. Die untersuchten Aufweitungen weisen jedoch, aufgrund der geringen Flächenausdehnung, nur einen Ausschnitt des natürlichen Spektrums an Auenlebensräumen auf. Aufweitungen fördern im Wesentlichen Pionierhabitate und -arten.

(7) Im Vergleich zu naturnahen Auen ist das Lebensraummosaik der Aufweitungen kleinteiliger und komplexer.

Damit ist festzuhalten, dass Aufwei-

tungen zwar naturnahe Auen nicht ersetzen können, aber einen wertvollen Beitrag zu Schutz und Förderung auetypischer Lebensräume leisten, deren Potenzial in der Schweiz bei weitem noch nicht ausgeschöpft ist!

Literatur

Ellenberg, H. (1996): Vegetation Mitteleuropas mit den Alpen in ökologischer, dynamischer und historischer Sicht. 5., stark veränderte und verb. Aufl. ed. Ulmer, Stuttgart, 1095 S.

Hamazaki, T. (1996): Effects of patch shape on the number of organisms. Landscape Ecology 11: 299–306.

Hering, D. & Plachter, H. (1997): Riparian ground beetles (Coleoptera, Carabidae) preying on aquatic invertebrates: a feeding strategy in alpine floodplains. Oecologia 111: 261–270.

Hunzinger, L. (2004): Flussaufweitungen: Möglichkeiten und Grenzen. Wasser, Energie, Luft 9/10: 243–249.

Kuhn, N. (1987): Schematische Darstellung der Vegetation Mitteleuropas. Natur und Landschaft 62: 484–485.

McGarigal, K. & Marks, B. (1995): FRAGSTATS: spatial pattern analysis program for quantifying landscape structure. U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station, 122 S.

Moor, M. (1958): Pflanzengesellschaften schweizerischer Flussauen. Mitteilungen der Schweizerischen Anstalt für das forstliche Versuchswesen 34: 221–360.

Oberdorfer, E. (1992): Süddeutsche Pflanzengesellschaften. Teil I: Fels- und Mauergesellschaften, alpine Fluren, Wasser-, Verlandungs- und Moorgesellschaften. Gustav Fischer Verlag, Jena, Stuttgart, New York, 314 S. Oberdorfer, E. (1993): Süddeutsche Pflanzengesellschaften. Teil III: Wirtschaftswiesen und Unkrautgesellschaften. Gustav Fischer Verlag, Jena, Stuttgart, New York, 455 S.

Pantke, R. (2003). Pflanzengesellschaften der Schweiz. Juni 2003. http://131.152.161.2/veghelv/index.html

Pinay, G., Clément, J. C. & Naiman, R. J. (2002): Basic Principles and Ecological Consequences of Changing Water Regimes on Nitrogen Cycling in Fluvial Systems. Environmental Management 30: 481–491.

Reich, M. (1994): Kies- und schotterreiche Wildflusslandschaften – primäre Lebensräume des Flussregenpfeifers (Charadrius dubius). Vogel und Umwelt 8: 43–52.

Rempel, L. L., Richardson, J. S. & Healey, M. C. (1999): Flow refugia for benthic invertebrates during flooding of a large river. Journal of the North American benthological Society 18: 34–48.

Rohde, S. (2004): River widenings: Potential and limitations to re-establish riparian landscapes. Assessment and planning. Diss ETH no. 15496.

Tockner, K., A. Paetzold, U. Karaus, C. Claret & J. Zettel (2005): Ecology of braided rivers, in G. H. Sambrock Smith, J. L. Best, C. S. Bristow, and G. Petts, editors. Braided Rivers – IAS Special Publication. Blackwell, Oxford. In press.

Wintersberger, H. (1996): Spatial resource utilisation and species assemblages of larval and juvenile fish. Archiv für Hydrobiologie/Supplement 115: 29–44.

Anschrift der Verfasserin

Dr. Sigrun Rohde, WSL, Zürcherstrasse 111, CH-8903 Birmensdorf.