Zeitschrift: Wasser Energie Luft = Eau énergie air = Acqua energia aria

Herausgeber: Schweizerischer Wasserwirtschaftsverband

Band: 96 (2004)

Heft: 1-2

Artikel: Neubau Kraftwerk Rheinfelden

Autor: Kesselring, Peter

DOI: https://doi.org/10.5169/seals-939542

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 24.10.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Neubau Kraftwerk Rheinfelden

Peter Kesselring

Bild 1. Luftbild des heutigen Kraftwerks Rheinfelden.

Vorgeschichte

Das Rheinkraftwerk Rheinfelden war die erste grosse Wasserkraftanlage in der Geschichte der europäischen Elektrizitätsgewinnung. Industrielle und Techniker erkannten schon in den Siebzigerjahren des 19. Jahrhunderts die Möglichkeit, die Kräfte des Rheins zwischen Bodensee und Basel zu nutzen. Die Gegend von Rheinfelden fiel besonders wegen des grossen Gefälles des Flusses auf kurzer Strecke auf. Erste Konzessionsgesuche scheiterten vor allem an mangelnden Finanzierungsmöglichkeiten.

Im April 1894 erteilten der Kanton Aargau und im Mai 1895 das Grossherzogtum Baden der Kraftübertragungswerke Rheinfelden Aktiengesellschaft (KWR) die notwendigen Konzessionen für eine Laufzeit von 90 Jahren, beginnend im Jahre 1898. Damit nahm eine bedeutende Epoche der Wasserkraftnutzung am Hochrhein ihren Anfang und als Folge davon der Beginn der Industrialisierung dieser damals sehr armen Rand- und Grenzregion.

Schon rund 20 Jahre nach der Inbetriebnahme wurden erste Überlegungen zu einem Neubau unternommen:

1921 Erste Pläne zum «baldigen» vollständigen Neubau des Kraftwerkes Rheinfelden.

1926 Das Berner Amt für Wasserwirtschaft berichtet über das Werk «Neu-Rheinfelden».

1935 Das Rheinfelder Werk gilt als völlig veraltet. Pläne zur Schiffbarmachung des Rheins von Basel bis zum Bodensee bringen Bewegung in das Neubauvorhaben. Motor Columbus führt Projektstudien aus.

1940 Erste Probebohrungen.

1943 Elektrowatt legt ein Bauprojekt vor.

1944 Konkrete Modellversuche an der ETH Zürich über 4 Jahre.

1949 Einreichung des neuen Konzessionsgesuches und weitere Modellversuche an der TH Karlsruhe.

1959 Offenlegung der Baupläne.

1960 Elektrowatt gibt grünes Licht zum Bau von Neu-Rheinfelden.

1964 Nach 20-jähriger Detailplanung wird das Projekt fallen gelassen wegen zu hoher Kosten und Aussicht auf billigen Atomstrom.

Das Konzessionsprojekt 1989

Nachdem die Konzession für das Kraftwerk Rheinfelden im Jahre 1988 abgelaufen war, erteilten der schweizerische Bundesrat und das Regierungspräsidium Freiburg am 20. Dezember 1989 eine neue Konzession für weitere 80 Jahre Kraftwerksbetrieb (im Folgenden Konzessionsprojekt 1989 genannt). Die neue Konzession gestattet es der KWR, übrigens seit 2002 umbenannt in Energiedienst AG (im Folgenden ED genannt), das vorhandene Kraftwerk zunächst weiter zu betreiben. Bis Ende des Jahres 2004 sollte jedoch ein neues Kraftwerk in Betrieb genommen werden, welches eine Verdreifachung der heutigen Produktion ermöglicht. Unverzüglich wurde daraufhin bei ED mit der Planung des zweitgrössten Laufwasserkraftwerkes Deutschlands begonnen.

Das Projekt 1989 war getragen vom politischen Willen auf beiden Seiten des

Bild 2. Blick in den Maschinensaal des Kraftwerks Rheinfelden.

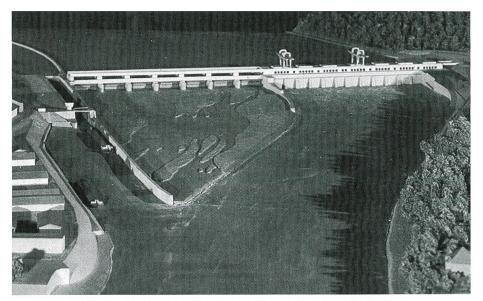


Bild 3. Modell für den Neubau des Kraftwerks Rheinfelden (Projekt 1958).

Rheins, die regenerativen Energien besser zu nutzen. Wirtschaftlich basiert das Projekt auf den damaligen Rahmenbedingungen (geschlossene Versorgungsgebiete) und auf besonderen vertraglichen Beziehungen mit dem Kanton Aargau.

Die neue Konzession schreibt eine Vergrösserung der turbinierten Wassermenge von derzeit 600 m³/s auf bis zu 1500 m³/s vor und gestattet die Erhöhung des nutzbaren Gefälles durch einen Höherstau im Oberwasser und eine Eintiefung im Unterwasser. Da ein neues Kraftwerk unvermeidliche Veränderungen in Natur und Landschaft mit sich bringt, wurden der ED in der neuen Konzession technische und terminliche Auflagen erteilt. Wichtigstes ökologisches Anliegen waren der Erhalt der natürlichen Flusslandschaft - «Gwild» genannt - zu mindestens 50% und der Bau eines naturnahen Umgehungsgewässers auf der rechten Seite.

Das neue Werk besteht im Wesentlichen aus einem quer zum Fluss errichteten Stauwehr mit sieben Wehrfeldern und einem auf der gleichen Achse angeordneten Krafthaus, das sich aus hydraulischen Gründen am linken Ufer befindet. Die Anordnung der neuen Anlage liegt etwa 130 m stromabwärts des heutigen Stauwehrs. Der Wasserspiegel die so genannte Rheineintiefung, eine ausgegehend übernehmen.

Das projektierte Kraftwerk wird vier grosse Rohrturbinen aufweisen, die zusammen eine Leistung von 114 MW haben werden. Eine fünfte, kleinere Dotierturbine mit nur 2 MW Leistung wird in den so genannten Wehrpfeiler integriert.

technischen Daten und der Erzeugungssteigerung gegenüber dem alten Kraftwerk.

September 1994 an die Genehmigungsbe-

des Oberwassers wird um 1,40 m gegenüber heute erhöht werden. Direkt im Anschluss an das Maschinenhaus beginnt im Unterwasser tiefte Abflussrinne, in der das turbinierte Wasser abgeführt wird. Durch diese Eintiefung wird der mittlere Wasserspiegel unterhalb des Kraftwerkes, also im Bereich der Felslandschaft Gwild, um etwa 50 cm gegenüber dem heutigen Mittelwasserstand abgesenkt. Dies führt dazu, dass Teile des heutigen Flussgrundes im Bereich der flachen Stellen sichtbar werden und damit die biologische Funktion der heutigen Stromschnellen weit-

Die Tabelle 1 zeigt einen Vergleich der

•	Die Konzession fordert eine Erhöhung der
	Schluckwassermenge von 600 auf bis zu
	1500 m ³ /s. Dadurch wird ein Neubau not-
	wendig, eine Ertüchtigung der Altanlage ist
	nicht möglich

abgegeben. Am 28. September 1998 wurde die Baugenehmigung für den Neubau erteilt. Als Genehmigungsdauer waren ursprünglich zwei Jahre veranschlagt gewesen. Alle Beteiligten sind sich einig, dass die in der Konzession verlangten Realisierungsfristen nicht eingehalten werden können, weil sich das Bewilligungsverfahren in der Schweiz massiv verzögert hatte. Deshalb gewährten die Behörden eine Verlängerung der Frist des Bau-

Tatsächlich wurde am 31. März 2003 mit der eigentlichen Wehrbaustelle begonnen.

Kosten und Wirtschaftlichkeit des Konzessionsprojektes 1989 Die projektierten Gesamtkosten für die Neuanlage betragen ca. 430 Mio. Euro (Preis-

stand 1994). Für den Erhalt der Konzession und für die Planung der Baugenehmigungsunterlagen inklusive der Umweltverträglich-

keitsuntersuchungen hat ED bereits 48 Mio.

net mit Stromgestehungskosten von etwa 9

Cent/kWh. Behörden und Unternehmen gin-

gen damals davon aus, dass das Projekt

durch eine vorübergehende Tariferhöhung im

ED-Gebiet (ED hatte früher immer Tarife unter

dem Preisniveau von Baden-Württemberg)

aber als unwirtschaftlich bezeichnet werden.

Die neuen Bedingungen im Elektrizitäts-

markt haben das Projekt unwirtschaftlich

gemacht. Die Beschaffungsmöglichkeiten

für Strom auf dem Markt liegen zurzeit um

das Dreifache tiefer, und auch mittelfristig

ist davon auszugehen, dass die Strompro-

duktion mit fossilen Brennstoffen (z.B.

Kohle) höchstens ein Viertel der Geste-

hungskosten des Konzessionsprojektes

2. Rahmenbedingungen der neuen Konzes-

Aus heutiger Sicht muss das Projekt

Gründe für die schlechte Beurteilung

finanziert werden könne.

der Wirtschaftlichkeit sind:

1989 kosten wird.

1. Strommarktliberalisierung

Das Konzessionsprojekt 1989 rech-

Euro (inklusive Zinsen) ausgegeben.

beginnes bis Juni 2003.

- nicht möglich. • Die Konzession sieht eine Erhöhung des
- Stauzieles um 1,4 m sowie eine Austiefung und Spiegelabsenkung im Unterwasser vor. Diese haben auch Auswirkungen auf das Grundwasser und bestehende Trinkwasserfassungen der Region.
- Ökologische Ausgleichsmassnahmen, wie die Anlage eines naturnahen Fischaufstiegs- und Laichgewässers, Schaffung

Baugenehmigung 1998

Die Bauantragsunterlagen wurden am 30. hörden in Deutschland und in der Schweiz

	Bestehendes (altes) Kraftwerk	Neubauprojekt 1989
Inbetriebsetzung	1898	geplant 2004
Werktypus	Kanalkraftwerk	Flusskraftwerk
Anzahl Stauwehrfelder	12	~
	(inklusive Flossgasse und Grundablässe)	7
Anzahl Turbinen	20	4+1
Ausbauwassermenge	600 m ³ /s	1500 m ³ /s
Staukote m ü.M.	269,10	270,50
Leistung	26 MW	116 MW
Mittlere Jahresproduktion	185 GWh	600 GWh

Tabelle 1. Vergleich der Kraftwerksdaten des alten und des geplanten Kraftwerks.

von Auenwäldern usw., belasten das Projekt durch Zusatzkosten.

- Ferner ist die Erstellung von neuen Infrastrukturmassnahmen (Verkehrswege, Schifffahrt usw.) zu nennen, welche ebenfalls die Gestehungskosten negativ beeinflusst.
- 3. Bautechnische Ursachen
- Grosse Bauvolumina (1,8 Mio. m³ Felsaushub) führen zu hohen Baukosten.
- Die permanente Hochwassergefährdung erfordert aufwändige Baugrubenumschliessungen und Massnahmen zur sicheren Hochwasserabfuhr.
- Die geologischen Gegebenheiten erfordern umfangreiche Sicherungsmassnahmen (z.B. Injektionsschleier).

Das etappierte Projekt Neu-Rheinfelden

Trotz der geänderten Marktsituation und der schlechten wirtschaftlichen Beurteilung im heutigen Umfeld will ED an der Wasserkraft und an dem Projekt Rheinfelden als Zukunftsoption festhalten. Aus diesem Grund wurden rechtzeitig Alternativen erarbeitet.

Als beste Lösung bietet sich eine Realisierung des Projektes in Etappen an. Damit soll die Option offen bleiben, um zu einem späteren Zeitpunkt, wenn sich die Marktverhältnisse geändert haben, das Gesamtprojekt zu verwirklichen. In einem ersten Schritt soll ein neues Stauwehr an dem für den Neubau geplanten Ort gebaut werden. Daneben sollen das bestehende Maschinenhaus und der Kanal so ertüchtigt werden, dass sie sicher weiter betrieben werden können. Später könnten dann das neue Maschinenhaus und die geplanten Veränderungen im Flusslauf gebaut werden.

Für den ersten Schritt, Neubau des Stauwehrs und Ertüchtigung der übrigen Anlagen, muss mit einer Investition in der Grössenordnung von 75 Mio. Euro gerechnet werden; zusätzlich zu den bereits ausgegebenen Vorbereitungskosten von 47 Mio. Euro. Die Gestehungskosten werden auch bei dieser Variante sehr hoch sein (etwa 6 Cent/kWh). ED will aber damit einen deutlichen Beitrag zum Erhalt der Wasserkraftnutzung am Hochrhein leisten und ist zuversichtlich, bei allen Beteiligten die dazu notwendige Unterstützung zu bekommen.

Die Etappen im Einzelnen

Am 30. April 1999 und am 29. Oktober 1999 hat ED deshalb einen Änderungsantrag zum genehmigten Bauprojekt vom 28. September 1998 gestellt. Dieser sieht folgende Realisierung vor:

In einer ersten Bauetappe werden vom deutschen Ufer ausgehend das neue Stauwehr und – anstelle des Maschinenhauses – ein Abschlussdamm gebaut und das alte Stauwehr sowie der Grobrechen rückgebaut. Zudem wird die Mauer entlang des Oberwasserkanals saniert und ein neuer Grobrechen mit Geschwemmselentsorgung im Kanal, oberhalb der Krafthausbrücke, erstellt.

Während einer Übergangszeit soll das bestehende Kraftwerk mit der neuen Stauanlage, aber dem heutigen Stauziel, weiter betrieben werden.

In einer zweiten Bauetappe werden dann die restlichen Anlagen erstellt mit dem Maschinenhaus auf der linken Rheinseite, der Unterwassereintiefung und dem naturnahen Fliessgewässer im Bereich des bestehenden Oberwasserkanals. Der späteste Zeitpunkt

der Fertigstellung dieser Bauetappe ist in der Änderungsbewilligung der Konzession beschrieben (Jahr 2019).

Im Mai 2002 wurde der Antrag bewilligt und Ende März 2003 mit dem Bau des Stauwehrs begonnen. Die Fertigstellung des Stauwehrs ist für das Jahr 2006 vorgesehen. Im Januar 2004 begann die Detailplanung für das neue Maschinenhaus. Für dessen Realisierung sollen zwei Varianten vorgeschlagen werden:

- Variante 1 Beschluss Pause: Fertigstellung des Stauwehrs bis 2006, anschliessend Bauunterbruch und Fertigstellung des Gesamtprojekts bis 2019
- Variante 2 Beschluss Weiterbau: Fertigstellung der Gesamtanlage ohne Unterbruch der Bauarbeiten nach der Inbetriebnahme des Stauwehrs bis 2011.

Noch bevor die letzten Wehrfelder begonnen werden, wird die grundsätzliche Entscheidung zum direkten Weiterbau nach Variante 2 zu treffen sein, damit die Bauabläufe, speziell die Anbindung des Stauwehres an das künftige Maschinenhaus, technisch sauber und risikofrei ausgeführt werden können.

Ausblick

Wie schon erwähnt, liegen die Gestehungskosten während einer langen Zeit weit über den auf dem liberalisierten Markt erzielbaren Stromerlösen. Deshalb – und dies gilt nicht nur für Rheinfelden, sondern für die grosse Wasserkraft allgemein – braucht auch die «grosse» Wasserkraft Unterstützung: direkte Unterstützung durch gesetzliche Förderung, durch zinsverbilligte Darlehen, Landesbürgschaften oder Ähnliches sowie indirekte Unterstützung z.B. durch Emissionshandel.

ED ist zuversichtlich, dass die Problematik des Weiterbestandes der grossen Wasserkraft als wesentlicher Pfeiler einer nachhaltigen Energiepolitik von weiten Teilen der politischen Entscheidungsträger verstanden worden ist.

Die in Deutschland anstehende Novellierung des Erneuerbare-Energie-Gesetzes sieht im Referentenentwurf eine Anschubförderung vor für Investionen, die die Erzeugung aus regenerativen Quellen vergrössern. Sollte dieser Gesetzesentwurf in Rechtskraft erwachsen, bestehen gute Aussichten, nach der Phase 1 «Stauwehr» ohne Pause in die Phase 2 «Maschinenhaus» überzuleiten.

Anschrift des Verfassers

Peter Kesselring, Dipl. Ing., Leiter Bereich Bau, Energiedienst AG, Rheinbrückstrasse 5–7, D-79618 Rheinfelden, Telefon 07623-92 46 31, Fax 07623-92 46 30

E-Mail: peter.kesselring@energiedienst.de

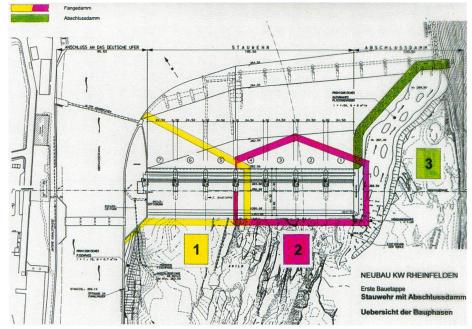


Bild 4. Übersicht über die Bauphasen des Wehrneubaus Rheinfelden.