Zeitschrift: Wasser Energie Luft = Eau énergie air = Acqua energia aria

Herausgeber: Schweizerischer Wasserwirtschaftsverband

Band: 91 (1999)

Heft: 7-8

Artikel: Sanierung der Staumauer Enguri

Autor: Bossoney, Claude

DOI: https://doi.org/10.5169/seals-940059

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 24.10.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Sanierung der Staumauer Enguri

Claude Bossoney

Georgien: Politik – ökonomische Situation

Die Stauanlage Enguri befindet sich in der Republik Georgien, einer der Kaukasus-Republiken der ehemaligen UdSSR. Dieses Land zählt etwas mehr als 5 Millionen Einwohner auf einer Gesamtfläche von rund 70 000 km². Es grenzt im Norden an die Kaukasuskette, im Westen an das Schwarze Meer, im Süden an die Türkei und an Armenien und im Osten an Aserbaidschan. Zwischen der Kaukasuskette im Norden und dem kleinen Kaukasus in Armenien im Süden breitet sich eine Art fertiles Plateau aus, das früher eine Landwirtschaftsregion der ehemaligen UdSSR war und für Früchte und Wein sorgte. Die Aufteilung der UdSSR hat die Ökonomie dieses kleinen Landes stark beeinflusst. Es war für die Elektrizitätsversorgung mit den angrenzenden Republiken vernetzt. Die thermische Produktion war in Aserbaidschan (Erdöl- und Gasquellen), die Nuklearproduktion in Armenien (begrenzte Energiequellen) und die hydraulische Produktion vor allem in Georgien konzentriert. Seit dem Niedergang der Sowjetunion ist der Stromaustausch unterbunden. Heute ist die Verbindung mit den angrenzenden Netzen, wegen der sehr schlechten Verfügbarkeit der Anlagen, die eine ungenügende Qualität von Spannungsund Frequenzniveau verursacht, nicht mehr möglich.

1988 erreichte die Elektrizitätsproduktion fast 14000 GWh, davon mehr als die Hälfte (56 %) aus Wasserkraft.

1995 ist die Produktion auf die Hälfte zurückgefallen, und die Wasserkraft repräsentiert 80 %. Enguri funktioniert nur noch mit 70 % seiner nominellen Leistung, liefert damit aber noch 50 % der hydroelektrischen Produktion des Landes.

Nach dem Niedergang der ehemaligen UdSSR und dem Bürgerkrieg zwischen zwei Unabhängigkeitsbewegungen (Südossetien im Norden des Landes und Abchasien im Westen) hat die Ökonomie von Georgien eine schwere Krise erlitten. 1994 war die Nachfrage nach Elektrizität nur noch 40 % derjenigen von 1988, und die Systemverluste waren von 13 % auf 30 % der Produktion angewachsen. Während der Verbrauch der Haushalte stabil geblieben ist, beträgt der Industrieverbrauch nur noch 14 % des früheren Wertes, und der Landwirtschaftsverbrauch ist sogar bis auf 9 % zurückgefallen.

Die Staumauer und die Zentrale Enguri liegen im Waffenstillstandsgebiet, das

nach dem Bürgerkrieg entstanden ist. Russische Truppen sichern die Einhaltung des Waffenstillstandes.

Um jedoch von der Staumauer zur Zentrale zu gelangen, sind spezielle Ausweise nötig. Die Anlagen sind beschädigt worden oder leiden an Unterhaltsmangel, nachdem das qualifizierte Betriebspersonal sie verlassen hat.

2. Beschreibung der Anlagen

2.1 Generelle Eigenschaften

Die Staumauer von Enguri liegt im Osten von Georgien am Fluss desselben Namens. Der Fluss fliesst von der Kaukasuskette (Elbrouz-Berg 5642 m ü. M.) hinunter gegen Süden bis zum Schwarzen Meer.

Die Anlage ist Teil einer Reihe anderer Anlagen längs der Flüsse Enguri und Eristskali. Diese sind für die wirkungsvolle hydraulische Bewirtschaftung dieser Flüsse vorgesehen. Der Enguri-Fluss wird durch einen 15 km langen Stollen in den Eristskali-Fluss umgeleitet. Die verschiedenen Kraftwerke der Kette umfassen die Zentrale Enguri, die im Gebiet Abchasiens liegt, den Wasserspeicher und die Zentrale Vardnili 1 mit einer installierten Leistung von 220 MW und drei weitere Zentralen entlang des Flusses (Vardnili 2 bis 4) mit jeweils 40 MW installierter Leistung. Zurzeit sind diese drei letzten Zentralen entlang des Flusses überschwemmt, und die Zentrale Vardnili 1 läuft nur mit einem Drittel ihrer maximalen Leistungsfähigkeit. In der Zentrale Enguri sind drei Maschinensätze betriebsfähig.

2.2 Hydrologie und Stausee Enguri

Emzugsgebiet	4062 KM
Mittlerer Abfluss bei den Staus	seen 155 m ³ /s
Höchstes registriertes	
Hochwasser	$950 \text{m}^3/\text{s}$
Zehntausendjährliches	
Hochwasser	$2500 \mathrm{m}^3/\mathrm{s}$
Totales Staubeckenvolumen	$1,1 \times 10^9 \text{m}^3$
Nutzbares Volumen	$0,68 \times 10^9 \text{m}^3$
Oberfläche des Stausees	13,5 km ²
Normales Stauziel	510 m
Höchstes Stauziel	511,5 m
Absenkziel	410 m
Minimales Stauniveau	322 m

2.3 Triebwassersystem, Zentrale

Länge des Druckstollens	15 km
Durchmesser	9,5 m
Entwurfsabfluss bei max. Brutto-	
fallhöhe	$450 \mathrm{m}^3/\mathrm{s}$
Maximale Bruttofallhöhe	410 m
Fünf unterirdische Druckleitungen	
von 5 m Durchmesser und 680 m l	_änge
Fünf Francisturbinen	265 MW
Installierte Leistung	1300 MW
Jahresproduktion	4430 GWh
Unterirdische Zentrale	

2.4 Staumauer

Es handelt sich um die höchste Bogenmauer der Welt. Die Mauer ist doppelt gekrümmt, besteht aus 38 Blöcken und stützt sich seitlich auf zwei künstlichen 60 m langen Widerlagern ab. Sie enthält eine Umfangsfuge und einen Sockel und ist mit einer zentralen Fuge der Länge nach bis etwa zur Kote 425 erbaut worden. Ein paraseismischer Gürtel wurde im

Bild 1. Übersicht über die Staumauer Enguri.

oberen Viertel der Mauer realisiert. Die wichtigsten Eigenschaften sind:

Gesamthöhe

ab Fundamentkote 271,5 m 221,5 m Höhe ab Sockel 605 m Kronenlänge der Mauer 728 m Kronenlänge mit den Widerlagern $3.9 \times 10^6 \,\mathrm{m}^3$ Betonvolumen 10 m Kronenbreite 56 m Maximale Mauerbreite Breite an der Sockelbasis 90 m

- Definition der Geometrie, mit Hilfe von zwei unabhängigen Polynomfunktionen.
- Umfangsfuge wasserseitig injiziert mit Bitumenkitt, zusätzlich ein bis drei Fugenbänder
- Fugenverpressung normalerweise bei 8 bis 10 °C ausser zwischen den Koten 380 und 392 m ü. M., wo die Fugeninjektionstemperatur zwischen 10 und 14 °C war.
- Dimensionierung während des Entwurfes mittels «Trial-Load»-Methode und eines physischen Modells.
- 1991: Finite-Elemente-Modell: Berücksichtigung der Bauphase und des thermischen Verhaltens, um die Unterschiede zwischen gemessenen und berechneten Spannungen zu erklären.

2.5 Geologie

Die Staumauerfundation besteht aus Kalkdolomiten. Mangelnde tektonische Störungen haben Brüche, Verwerfungen und Falten verursacht.

Im Staumauerbereich erscheint der Kalkstein (der in sechs stratigrafische Einheiten eingeteilt werden kann) in der Tiefe ziemlich massiv, im oberen Bereich aber mittelmässig bis stark gebrochen und geklüftet. Die offenen Klüfte sind mit Ton und Mylonit (Karkirit) gefüllt.

Die Verwitterungs- und Entspannungszonen haben eine veränderliche Breite von 5 bis 10 m respektive 10 bis 50 m. Die Flussablagerungen sind 35 bis 40 m tief. Eine regionale Verwerfung ist zirka 1,0 km nordöstlich der Staumauer lokalisiert worden. Ein sekundärer Bruch, der 2 bis 9 m breit ist, durchquert die Mauergründung am rechten Ufer, 100 m talwärts der Krone. Er hat eine Neigung von etwa 80° südwärts. Vier andere tektonische Störungen haben spezielle Behandlungen erfordert.

Der Elastizitätsmodul schwankt zwischen 13 GPa am Flussgrund, 7 GPa an den Ufern und 1 bis 4 GPa in der Nähe der Krone. Die mittleren Bruchfestigkeiten von Bohrkernen schwanken zwischen 100 und 140 MPa (1000 bis 1400 kg/cm $^{-2}$), die Scherparameter tg ϕ = 0,8 bis 0,9 und die Kohäsion von 2 bis 4 kg cm $^{-2}$. Karsterscheinungen sind mässig vorhanden, die Durchlässigkeit, generell

mittel bis stark, ist am rechten Flussufer am grössten. Sie ist vom Spannungszustand abhängig und vermindert sich mit zunehmender Tiefe.

2.6 Seismologie

Die komplexen, seismotektonischen Verhältnisse der Region und die bekannten historischen Ereignisse haben zu einer Schätzung der seismischen Risiken entsprechend einer Intensität 8 am Standort geführt. Wegen der Grösse der Mauer wurde aber mit der Intensität über 9 (entsprechend ungefähr einer Richter-Magnitude von 6) gerechnet.

Folgende Eigenschaften wurden für das «Betriebserdbeben» festgehalten:

Maximale Beschleunigung	0,2 bis 0,3 g
Überwiegende Frequenz	4 Hz
Maximale Verschiebung	9 mm
Massgebende Dauer	4 bis 5 s

3. Besondere Eigenschaften der Anlage

3.1 Provisorische Umleitung

Mit ersten Studien wurde 1960 begonnen.

1965 wurde mit den Aushubarbeiten des provisorischen Umleitungsstollens am linken Flussufer begonnen: Länge 492 m, Durchmesser 10,5 m, Betonbelag von 30 cm. Dieser Stollen erlaubte die Umleitung von 950 m³/s. Die wasser- und luftseitigen Fangdämme sind mit Steinschüttmaterial und Tonkern gebaut worden.

3.2 Fundamentsockel, Umfangsfuge

Der Bau der Staumauer auf einem Fundamentsockel wurde gewählt, um die Geometrie des Fundamentes der Tragfähigkeit des Felsmassivs anzupassen. Die Auslegung wurde durch die folgende Fundamentbehandlung vervollständigt: Ausbesserung und Plombierung der Verwerfungen, Befestigungsinjektionen bis zu einer maximalen Tiefe von 20 m (3 m Abstände in jede Richtung zwischen den Bohrungen).

3.3 Dichtungsschleier

Es wurden zwei Reihen Bohrungen mit 1,5 bis 1,7 m Entfernung ausgeführt, ausser am linken Flussufer, wo nur eine Reihe existiert. Die Abstände zwischen den Bohrungen messen 4 m. Die luftseitigen Bohrungen sind 150 m, die wasserseitigen 100 m tief. In der Nähe der Verwerfung am rechten Flussufer sind die Bohrungen alle 2 m verfestigt worden. Die Aufnahme von Injektionsgut war sehr unterschiedlich und betrug 33 bis 686 kg/ml, durchschnittlich 280 kg/ml am rechten Flussufer und 120 kg/ml am linken Flussufer. Die Verwerfung am rechten Flussufer wurde über

150 m Länge und 75 m Tiefe behandelt. Ein Dichtungsschleier erstreckt sich über 150 bis 200 m an jedem Flussufer.

3.4 Entwässerung

Das Entwässerungssystem ist beeindrukkend, bedingt durch das karstige Gelände mit einer mittleren bis starken Durchlässigkeit. Die grosse Durchlässigkeit des Felsens und die häufigen Durchsickerungen machten die Betonierung der Entwässerungsstollen nötig! Die Durchsickerungen im Fundament sind zahlreich und erreichen bis zu 2 m³/s. Es besteht ein hohes internes Erosionsrisiko, das durch grössere Sand- und Siltablagerungen im Kontrollgang am rechten Flussufer (auf Niveau 365 m ü.M.) und in der tiefsten Galerie (auf Niveau 265 m ü.M.) dokumentiert ist. Wahrscheinlich kommt ein Anteil der Durchsickerungen in der tiefsten Galerie vom luftseitigen Tosbecken.

3.5 Paraseismischer Gürtel

Diese Vorrichtung soll die gegenseitige Verschiebung der Blöcke vermeiden. Der Gürtel wurde mit 50 000 Tonnen Bewehrung erbaut, die in 1,5 m hohen Armierungskäfigen aus Rundstählen von 40 mm Durchmesser verteilt wurden. Es befinden sich pro Betonschicht zwei oder drei Käfige auf jeder Seite.

Zwischen den Blöcken befinden sich Eisenstangen von 70 mm Durchmesser, die frei auf einbetonierten Futterrohren gleiten, die 5 m in jeden Block eindringen.

3.6 Kontrolleinrichtungen

Es wurde ein sehr ausgedehntes Messsystem installiert. Mehr als 3200 Messapparate wurden zur Kontrolle des Verhaltens der Mauer und ihres Fundamentes eingerichtet.

Bild 2. Detail eines Lotes zur Verformungsmessung.

Symposium am 25./26. November 1999 im Kornhaus in Ulm

Wasserkraft im 21. Jahrhundert – Bestandsaufnahme und Zukunftsperspektiven

Einladung

Die «Arbeitsgemeinschaft Alpine Wasserkraft», in der Wasserkraftwerksgesellschaften und Verbände aus Baden-Württemberg, Bayern, Österreich und der Schweiz zusammengeschlossen sind, veranstaltet am 25. und 26. November 1999 das Symposium «Wasserkraft im 21. Jahrhundert, Bestandsaufnahme und Zukunftsperspektiven». Der inhaltliche Schwerpunkt der Veranstaltung liegt auf den aktuellen Rahmenbedingungen und heute erkennbaren Zukunftsperspektiven der Wasserkraft zu Beginn des neuen Jahrhunderts, welche insbesondere durch die Öffnung der Strommärkte geprägt sein wird. Die Arbeitsgemeinschaft lädt alle Fachleute sowie weitere Interessenten aus Betreiberfirmen, Behörden, Ingenieur- und Beratungsbüros, Wissenschaft und Forschung nach Ulm ein.

Programm

Donnerstag, 25. November 1999

Begrüssung und Eröffnung

08.00 Uhr Registrierung 09.00 Uhr Begrüssung Manfred Rost

09.05 Uhr Alpine Wasserkraft - Veranlassung

> und Ziele Hans Haas

09.15 Uhr Grusswort (Österreich) Herbert Schröfelbauer

09.20 Uhr Grusswort (Schweiz)

Georg Weber

09.25 Uhr Wasserwirtschaft und Wasserkraft

in Baden-Württemberg heute und morgen

Otto Finkenbeiner

Kraft aus Wasser - eine Annäherung

09.45 Uhr Vorsitz: Gerhard Schiller

09.50 Uhr Wasser und Wasserkraft aus künstlerischer

Sicht

Hans Muhr

10.15 Uhr Ein Wasserkraftwerk prägt eine Stadt

Hans Haas

10.40 Uhr Kaffeepause

Aktuelle technische Aspekte

11.10 Uhr Vorsitz: Jürgen Giesecke

11.15 Uhr Kleinwasserkraft im regionalen Bereich -

Wasserbauprojekte der Stadtwerke

Ulm/Neu-Ulm Andreas Plasch

11.40 Uhr Matrixturbine

Gerhard Wedam

12.05 Uhr Zustandsorientierte Instandhaltung

am Beispiel der Wasserkraftwerke

des Verbundkonzerns Herbert Schröfelbauer

12.30 Uhr Diskussion Mittagspause 12.40 Uhr

Rahmenbedingungen für die Wasserkraft in Europa

14.15 Uhr Vorsitz: Hans Haas

Wieviel Raum braucht ein Fliessgewässer? 14.20 Uhr

Christian Furrer

14.45 Uhr EU- Elektrizitäts-Binnenmarktrichtlinie -

Umsetzung und Erfahrungen aus Österreich

Wolfgang Stalzer

15.10 Uhr Verlängerung wasserrechtlicher

> Genehmigungen Reinhard Hendler

15.35 Uhr Diskussion

Kaffeepause 15.45 Uhr

Wirtschaftlichkeit - Kosten- und Nutzenaspekte

16.05 Uhr Vorsitz: Gerhard Haury

16.10 Uhr Externe Effekte der Wasserkraftnutzung

Walter Hauenstein

16.35 Uhr Pumpspeicherkraftwerke - Aufgaben

und Zukunft im Stromwettbewerb

Manfred Rost

17.00 Uhr Neue Rahmenbedingungen für Kraftwerke

im liberalisierten Strommarkt

Klaus Kasper

17.25 Uhr Diskussion

ca. 17.45 Uhr Ende des Tagesprogramms

Empfang, Abendessen

19.30 Uhr Empfang/Aperitif 20.00 Uhr Abendessen

Freitag, 26. November 1999

Zukunftsperspektiven

09.00 Uhr Vorsitz: Manfred Rost

09.05 Uhr Kleinwasserkraft - Chancen und Markt

> aus Herstellersicht Wolfgang Wührer

09.30 Uhr Zukunft der Wasserkraft - Erwartungen

der Hersteller an ihre Kunden

Arno Hoepner

09.55 Uhr Wasserkraft und Wasserbau -

Ziele für Ausbildung und Forschung

an den Universitäten Franz Nestmann

Diskussion

10.20 Uhr 10.40 Uhr Kaffeepause

11.05 Uhr Grüner Strom - Regenerative Energie-

erzeugung aus Wasserkraft im Spannungs-

feld zwischen Ökologie und Markt

Peter Kesselring

Podiumsdiskussion

Die Zukunft der Wasserkraft zu Beginn des

21. Jahrhunderts

11.30 Uhr Moderation: Christian Schneider

Teilnehmer: Peter Fuhrmann. Hans Haas.

Walter Hauenstein, Arno Hoepner Franz Nestmann, Gerhard Schiller

12.30 Ende der Vortragsveranstaltung

Exkursion

Im Anschluss an die Vortragsveranstaltung findet am Freitag, 26. November 1999, eine Exkursion mit Werksbesichtigung zur Firma Voith Hydro in Heidenheim/Brenz statt.

14.00 Uhr	Abfahrt Busse am Kornhaus
15.00 Uhr	Ankunft Heidenheim
	Werksbesichtigung Firma Voith
17.00 Uhr	Rückfahrt nach Ulm
18.00 Uhr	Ankunft Ulm

Rahmenprogramm

Donnerstag, 25. November 1999

ca. 14.15 Uhr Stadtführung ab Kornhaus mit Orgelkonzert im Münster

Kaffeepause

ca. 17.30 Uhr Ende der Stadtführung und Rückkehr zum Kornhaus

Freitag, 26. November 1999

09.00 Uhr Busfahrt ab Kornhaus zum Besuch

der Firma IVECO

(Busse und LKW-Aufbauten)

ca. 12.00 Uhr Rückkehr zum Kornhaus

An der Tagung Beteiligte

Otto Finkenbeiner, Ministerialdirektor, Ministerium für Umwelt und Verkehr, Baden-Württemberg, D-70182 Stuttgart

Peter Fuhrmann, Dipl.-Ing., Ministerialdirigent, Ministerium für Umwelt und Verkehr, Baden-Württemberg, D-70182 Stuttgart

Christian Furrer, Dr., Direktor Bundesamt für Wasserwirtschaft, CH-2501 Biel

Jürgen Giesecke, Prof. Dr.-Ing. habil. Dr.-Ing. E. h., Direktor des Instituts für Wasserbau, Universität Stuttgart, D-70550 Stuttgart

Hans Haas, Dipl.-Ing., Mitglied des Vorstands der Bayernwerk Wasserkraft AG, D-84034 Landshut

Gerhard Haury, Dr. rer. nat., Mitglied des Vorstands Kraftübertragungswerke Rheinfelden AG, D-79618 Rheinfelden Walter Hauenstein, Dr., dipl. Ing. ETH, Direktor, Schweizerischer Wasserwirtschaftsverband, CH-5401 Baden

Reinhard Hendler, Prof. Dr., Direktor des Instituts für Umwelt- und Technikrecht, Universität Trier, D-54286 Trier Arno Hoepner, Dipl.-Ing., Geschäftsführer der Voith Hydro Kraftwerkstechnik GmbH, D-89522 Heidenheim

Klaus Kasper, Dr.-Ing., Mitglied des Vorstands der Energie Baden-Württemberg AG und Vorsitzender des Vorstands der EnBW Kraftwerke AG, D-76011 Karlsruhe

Peter Kesselring, Dipl.-Ing., Leiter Bereich Technische Projekte, EnergieDienst GmbH, D-79618 Rheinfelden

Hans Muhr, Professor, Wasserbildhauer, A-1220 Wien

Franz Nestmann, Prof. Dr.-Ing. Dr. h.c., Direktor des Instituts für Wasserwirtschaft und Kulturtechnik, Universität Karlsruhe, D-76128 Karlsruhe

Andreas Plasch, Dipl.-Ing., Regierungsbaumeister, SWU Energie GmbH, D-89028 Ulm

Manfred Rost, Dr.-Ing., Mitglied der Vorstände der Schluchseewerk AG und der Rheinkraftwerk Albbruck-Dogern AG, D-79098 Freiburg i. Br.

Gerhard Schiller, Univ.-Prof. Dipl.-Ing., Dr., Vorstandsmitglied der Österreichisch-Bayerischen Kraftwerke AG und der Donaukraftwerk Jochenstein AG, A-1010 Wien Christian Schneider, Redakteur, D-81243 München

Herbert Schröfelbauer, BR h.c. Dipl.-Ing. Dr., Vorstandsdirektor der Österreichische Elektrizitätswirtschafts AG (Verbundgesellschaft), A-1010 Wien

Wolfgang Stalzer, Univ.-Prof. Dipl.-Ing. Dr., Bundesministerium für Land- und Forstwirtschaft, A-1010 Wien

Georg Weber, ehemaliger Direktor Schweizerischer Wasserwirtschaftsverband, CH-8053 Zürich

Gerhard Wedam, Dipl.-Ing., Verbund-Elektrizitätserzeugungs GmbH, A-1010 Wien

Wolfgang Wührer, Dr.-Ing. Geschäftsführer der Sulzer-Hydro GmbH, D-88183 Ravensburg

Ort der Tagung

Die Vortragsveranstaltung findet im Kornhaus in Ulm, Kornhausgasse, statt. Ein Tagungsbüro im Kornhaus ist am 25. und 26. November 1999 ab 8.00 Uhr bis zum Ende der Vortragsveranstaltung eingerichtet. Telefon im Tagungsbüro: **49 / (0) 731 / 627 89

Anmeldung

Um Anmeldung mit dem beiliegenden Anmeldeformular bis zum 30. September 1999 wird gebeten. Eine Anmeldebestätigung wird nicht versandt. Bei Stornierungen, die bis zum 30. September 1999 eingegangen sind, wird der bezahlte Teilnehmerbeitrag abzüglich einer Bearbeitungsgebühr von 50.– DM (25,56 EURO) pro Teilnehmer zurückerstattet. Bei Stornierungen nach dem 30. September, 1999 kann keine Erstattung erfolgen. Ersatzteilnehmer können selbstverständlich benannt werden.

Teilnahmekosten	Preis	e pro Person	
	DM	Euro	CHF
Vortragsveranstaltung			
25./26. November.1999	310	158,50	260
für Studierende			
(mit gültigem Nachweis)	80	40,90	65
Begleitpersonen Abendverans	taltung		
25. November. 1999	60	30,68	50
Exkursion 26. November 1999	60	30,68	50
für Studierende			
(mit gültigem Nachweis)	30	15,34	25
Rahmenprogramm Donnerstag	g,		
25. November 1999	30	15,34	25
Rahmenprogramm Freitag,			
26. November 1999	30	15,34	25

Der reduzierte Beitrag für Studierende von 80.– DM (40,90 Euro/65.– CHF) kann nur gewährt werden, sofern ein gültiger Immatrikulationsnachweis mit der Anmeldung übersandt wird.

Im Tagungsbeitrag ist der Tagungsband mit den Vorträgen, die Teilnahme am Abendempfang inkl. Abendessen sowie die Verpflegung in den Kaffeepausen enthalten.

Zahlung

Den jeweiligen Gesamtbetrag bitten wir auf eines der folgenden Konten zu überweisen:

für Teilnehmer aus Deutschland:

Wasserwirtschaftsverband Baden-Württemberg Baden-Württembergische Bank, Filiale Heidelberg Konto-Nr. 530 4312 00, BLZ 672 200 20

für Teilnehmer aus Österreich:

Verein für Ökologie und Umweltforschung

Creditanstalt Bankverein, Konto-Nr. 0423-01010/00

für Teilnehmer aus der Schweiz:

Schweizerischer Wasserwirtschaftsverband, Aargauische Kantonalbank, Baden, Konto-Nr. 16 757.200.14 oder PC 80-1846-5

Tagungsunterlagen

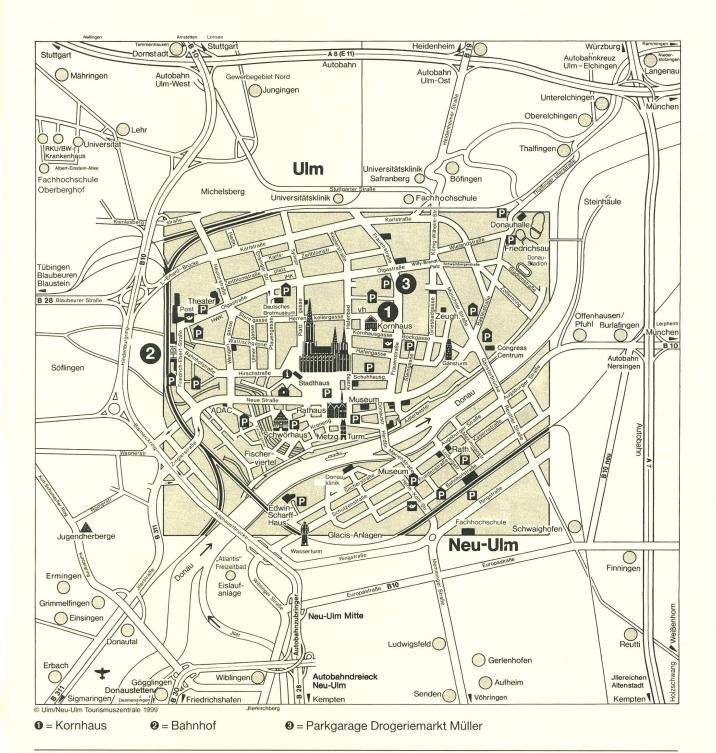
Die Teilnehmer erhalten die Tagungsunterlagen bei der Registrierung am Tagungsbüro. Gleichzeitig wird eine Teilnahmebestätigung und Rechnung ausgegeben, sofern die Teilnahmegebühren bis zum Beginn der Veranstaltung bezahlt wurden.

Unterkunft

Die Tourismuszentrale in Ulm hat die Unterkunftsvermittlung übernommen und Zimmerkontingente für die Tagungsteilnehmer reserviert. Bitte verwenden Sie das beiliegende Formular.

Ausstellung

Präsentationsmöglichkeiten für Firmen oder Poster sind in begrenztem Umfang vorhanden.


Auskunft/Anmeldung

Wasserwirtschaftsverband Baden-Württemberg e.V., Mannheimer Str. 1, D-69115 Heidelberg, Telefax **49/(0) 6221/16 09 77.

Anreise

Mit der Bahn: Ulm ist ICE-Haltepunkt und mit der Bahn gut zu erreichen. Vom Bahnhof zum Kornhaus sind es ca. 15 Minuten Fussweg.

Mit dem Auto: Ulm liegt an der A8 (E11) Stuttgart-München. Am Kornhaus selbst bestehen keinerlei Parkmöglichkeiten. Für Tagungsteilnehmer werden im Parkhaus am Drogeriemarkt Müller (Einfahrt Ecke Frauenstrasse/Rosengasse) in beschränktem Umfang Parkplätze zu Sonderkonditionen reserviert.

Arbeitsgemeinschaft Alpine Wasserkraft

in Ulm, Kornhaus	rhundert – Bestandsaufnahme n» am 25./26. November 1999	Name Vorname
Ritto pro Person ein Formu	ılar bzw. Kopien hiervon verwen-	
den	nai bzw. Kopieri filervori verweri-	<u>Titel</u>
		Institut/Firma
Anmeldung ☐ Stu (bitte ankreuzen bzw. eintre	udierende(r) (Nachweis beifügen) agen)	Anschrift
☐ Teilnahme Vortragsvera DM Euro		PLZ, Ort
□ Exkursion		Telefon
DM Euro	CHF	Fax
Begleitperson Abendve DM Euro		Den Gesamtbetrag von DM Euro CHF habe(n) ich/wir auf das angegebene Konto in (bitte angeben)
☐ Rahmenprogramm 25. DM Euro		☐ Deutschland ☐ Österreich ☐ Schweiz überwiesen
		Ort, Datum
Rahmenprogramm 26. DM Euro		Unterschrift
Arbeitsgemeinscha	ft Alpine Wasserkraft	
«Wasserkraft im 21. Jah	rhundert – Bestandsaufnahme	
in Ulm, Kornhaus		
	en» am 25./26. November 1999	Anreise: Abreise: Anzahl Nächte:
		Anreise: Abreise: Anzahl Nächte: mit Bahn PKW Garage
Zimmerreservierung		mit 🗆 Bahn 🗅 PKW 🗅 Garage
Zimmerreservierung Bitte nehmen Sie folgende	en» am 25./26. November 1999	
Bitte nehmen Sie folgende	en» am 25./26. November 1999 e Reservierung vor:	mit 🗆 Bahn 🗅 PKW 🗅 Garage
	en» am 25./26. November 1999	mit
Bitte nehmen Sie folgende	en» am 25./26. November 1999 Reservierung vor: in Preisgruppe/au prix	mit
Bitte nehmen Sie folgende	en» am 25./26. November 1999 Reservierung vor: in Preisgruppe/au prix pro Person/par personne (Zimmer mit Bad oder	mit
Bitte nehmen Sie folgende Einzelzimmer Doppelzimmer	en» am 25./26. November 1999 Reservierung vor: in Preisgruppe/au prix pro Person/par personne (Zimmer mit Bad oder Dusche/WC) DM 220 bis DM 280 DM 160 bis DM 210 DM 120 bis DM 150 DM 100 bis DM 120	mit
Bitte nehmen Sie folgende Einzelzimmer Doppelzimmer Dreibettzimmer	en» am 25./26. November 1999 Reservierung vor: in Preisgruppe/au prix pro Person/par personne (Zimmer mit Bad oder Dusche/WC) DM 220 bis DM 280 DM 160 bis DM 210 DM 120 bis DM 150	mit
Bitte nehmen Sie folgende Einzelzimmer Doppelzimmer Dreibettzimmer Frühstück, Bedienung ur Preisen inbegriffen.	en» am 25./26. November 1999 Reservierung vor: in Preisgruppe/au prix pro Person/par personne (Zimmer mit Bad oder Dusche/WC) DM 220 bis DM 280 DM 160 bis DM 210 DM 120 bis DM 150 DM 100 bis DM 120 DM 100 bis DM 120 DM 80 bis DM 100 Mehrwertsteuer sind in den mmerkategorie nicht möglich ist,	Mame Vorname Adresse Telefon Telefax

Bitte das ausgefüllte Formular bis spätestens 30. September einsenden an:

Tourismuszentrale Ulm/Neu-Ulm, z. Hd. Frau Möschen, Neue Strasse 45, D-89073 Ulm, Telefon **49 / (0) 731/161-2811, Telefax **49 / (0) 731/161-1646

Für die Baukontrolle wurden 2500 Apparate plaziert. Folgende Grössen wurden gemessen:

- die Verschiebung der Mauer und ihres Fundamentes, die Bewegungen der Fugen (Geodäsie, Pendel, Klinometer, Extensometer),
- die Sickerwassermenge,
- die Auftriebsdrücke,
- die Deformationen und Spannungen der Staumauer (Rosetten, kurze Extensometer),
- die geophysikalischen Eigenschaften (elektrische, thermische, seismische) des Fundamentes,
- die Betontemperaturen und die Spannungen in den Armierungen.

Bild 3. Luftseitige Ansicht der Mauer mit Kontroll-Laufstegen.

3.7 Nebenanlagen

Die Staumauer ist mit einer Hochwasserentlastung und einem Grundablass ausgestattet.

Die Hochwasserentlastung besteht aus 12 Öffnungen mit einer Totalleistung von 2500 m³/s bei der höchsten Wasserkote (511,5 m). Das Verschliessen der Öffnungen erfolgt mit Tafelschützen, die von einem Portalkran aus bedient werden. Der Grundablass besteht aus sieben runden Öffnungen von 5 m Durchmesser. Vier davon dienen der Hochwasserentlastung während des Baus und sollten den Speicher leeren können; die drei anderen sollten einer Pumpinstallation dienen, die aber nie verwirklicht wurde. Die Leistung einer Öffnung beträgt je nach befragten Informanten 465 m³/s oder 750 m³/s.

Die Wasserfassung liegt am rechten Flussufer. Sie enthält zwei Öffnungen von 10×35 m, die 450 m³/s Wasser in den Betriebsstollen entleeren können. Sie sind mit einem Dammbalken und stromabwärts mit einer Drosselklappe ausgestattet.

4. Der Bauablauf und die ersten Betriebsjahre

Der Bau und der Betrieb wurden hauptsächlich durch folgende Meilensteine geprägt:

1960: erste Studien

1965: Beginn der provisorischen Umleitungsarbeiten am linken Flussufer

- 1967: Beginn der Aushubarbeiten
- 1969: Flussableitung durch den Stollen
- 1971: Beginn der Betonierungsarbeiten
- 1972: Felsabsturz am rechten Flussufer, oberhalb der Kote 390 m ü.M., bedingt durch die steile Böschung und Stützmängel.
- 1977: Ende der Erstellung des Tosbeckens, Umleitung durch Staumauer, durch drei provisorische Öffnungen.
- 1978: Staumauer bis zur Kote 442 m ü.M. erbaut, Becken bis Kote 410 m ü.M., Inbetriebnahme der drei ersten Maschinensätze.

Grosse Durchsickerungen in den tieferliegenden Kontrollgängen. Die Sikkerwassermengen erreichen 600 l/s, wenn das Becken bis Kote 410 m ü. M. gefüllt ist.

Verschluss der provisorischen Öffnungen und Inbetriebnahme von vier der sieben Grundablässe.

Die Messungen des Nivellementes zeigen eine Hebung der luftseitigen Fundamente, die 7 mm erreicht.

1979: Durch die Stauhaltung induzierte seismische Aktivität, 100 registrierte Stösse in drei Monaten. Der stärkste Stoss wurde mit einer Magnitude von 4,2 18 km von der Staumauer entfernt gemessen.

1981: Injektionsarbeiten im Druckstollen

1982: Der Stau erreicht die Kote 446,8 m ü M

1983: Maximale Staukote: 464,3 m ü. M.

1984: Maximale Staukote: 484,4 m ü. M. Es werden Durchsickerungen im unteren Kontrollgang am Kontakt zum Fundament am linken Flussufer festgestellt. Höhere Drücke in den Piezometern.

1985: Maximale Staukote: 496,9 m ü. M.

1986: Verstärkungsarbeiten im aufgeklafften Teil des unteren Kontrollgangs durch einen armierten Betonring. Die Durchsickerungen und die Klaffung treten kurz danach wieder auf. Ansteigen der Auftriebe hinter dem Dichtungsschleier. Ende der Bauarbeiten der Staumauer.

Sehr rasche Absenkung des Wasserspiegels: 2 m pro Tag, 101 m Totalabsenkung.

1987: Der Wasserspiegel erreicht fast das Stauziel von 510 m ü. M. Die Durchsikkerungen steigen bis zu 2,6 m³/s an.

1988: Injektionsarbeiten in den Kontrollgängen. Die Durchsickerungen werden bis auf 1,9 m³/s zurückgebracht.

1989 bis 1991: Die Durchsickerungen bringen grosse Mengen an Sand und Silt in die Gänge.

1991: Erdbeben einer Magnitude von 7,1, 135 km von der Staumauer entfernt. Es wurde am Bauort selbst mit einer Intensität von 5 bis 6 notiert. Schäden wurden keine gemeldet.

1992: Sehr unsichere politische Situation in der Region; die Überwachung der Staumauer wird eingestellt; die verlassenen Kontrollanlagen sind dem Vandalismus ausgeliefert.

Der untere Kontrollgang ist wegen der Stillegung der Entwässerungspumpen überschwemmt.

Die Schützen des Grundablasses sind undicht, der Wasserverlust wird auf 1 m³/s geschätzt.

1994: Sturz des Portalkrans in den Stausee beim Heben eines Grundablassdammbalkens, wobei fünf Personen ums Leben kommen. Die Hochwasserentlastung ist wegen des Einbruchs der Fahrbahn des Portalkranes unbrauchbar.

1995: Expertenmission der Gruppe E7 (sieben Länder, vertreten in einer Expertengruppe für den globalen Umweltschutz: Kanada, Frankreich, Deutschland, Italien, Japan, die USA, Grossbritannien).

Einschätzungsmission durch EWE – Stucky, nach Auftrag des Bundesamtes für Aussenwirtschaft (Bawi).

1996: Start von Studien und Realisierungsarbeiten der Wiederinstandsetzung der Kontrollanlagen, die zur Sicherung der Anlage notwendig sind.

1997: Durchführbarkeitsstudie der Rehabilitierungsarbeiten durch die Arbeitsgruppe EWE – Stucky mit dem Mandat der Europäischen Bank für Rekonstruktion und Entwicklung.

1999: Vergabe eines Mandates derselben Bank und Nachfolgestudien für die Ausführungsarbeiten an eine Arbeitsgruppe EWE – EdF – Stucky.

Bild 4. Talquerung des Druckstollens mit Stahlrohr auf Aquädukt.

5. Befund der Expertenmissionen seit 1995

Anfang 1995 befindet sich die Anlage in einem kritischen Zustand; ihr Betrieb wird nicht mehr beherrscht.

Im selben Jahr entschliessen sich zum ersten Mal ausländische Berater und Finanzinstitute, die Elektrizitätsgesellschaft bei der Rehabilitierung dieses wichtigen Werkes zu unterstützen.

Nach dem Unfall mit dem Portalkran konnte keine Öffnung der Hochwasserentlastung mehr betätigt werden, da auch die Fahrbahn des Portalkranes beschädigt war.

Die Verfügbarkeit der vier Grundablässe war und ist immer noch sehr unsicher. Die Schütze auf der rechten Flussseite ist gegenwärtig wegen eines wasserseitig blokkierten Dammbalkens unbrauchbar. Die anderen Schützen weisen grosse Undichtigkeiten auf, und ihr Verschluss unter Druck bleibt unsicher. Zudem ist die Stromversorgung nicht garantiert, so dass die Wasserspiegelschwankungen nicht sicher beherrscht werden können. Das Ansteigen des Wasserspiegels konnte nur durch das Turbinieren mit maximaler Leistung beider Maschinensätze eingeschränkt werden. Trotzdem stieg der Wasserspiegel in Hochwasserperioden schneller an, als es in den Betriebsanleitungen verzeichnet war.

Aus verschiedenen Gründen wurden die Bauarbeiten der Staumauer nie richtig beendet. Zudem hat die Anlage an Vandalismus und Unterhaltsmangel während des Bürgerkrieges gelitten. Die Beobachtungs- und Entwässerungsgänge in der Staumauer und im Fundament sind immer noch in einem schlechten Zustand, vor allem auf den tieferen Niveaus; einige sind nur unter Gefahr oder gar nicht zugänglich. Die Entlastungspumpen funktionieren nur teilweise. Die Sicherheit ihrer Versorgung wurde neulich durch die Stationierung eines mobilen Notstromgenerators auf einem Anhänger verbessert.

Die Staumauer und ihr Fundament litten an grossen Wasserverlusten; einige Piezometer zeigten Drücke an, die beinahe den hydrostatischen Druck erreichten. Feine Sedimente wurden in grossen Mengen in den Kontrollgängen abgelagert.

Anfang 1996 waren die Kontrollinstrumente zur Überwachung der Staumauer in einem sehr schlechten Zustand, sie waren oft unbrauchbar. Sanierungs- und Verbesserungsarbeiten der Kontrollinstrumente wurden seit 1996 unternommen, aber aus verschiedenen Gründen kommt die Arbeit nur langsam voran. Ein Abschluss der Arbeiten wird für 1999 erwartet.

Die unterirdische Zentrale benötigt zusätzliche Unterhalts- und Reparaturarbei-

ten. Die Feuchtigkeit und der Lichtmangel machen den Betrieb schwierig und gefährlich. Die mangelhafte Belüftung hat einen schlechten Einfluss auf die Arbeit und schadet der elektromechanischen Ausstattung.

Die wichtigste Sanierungsarbeit wird die elektromechanischen Anlagen betreffen. Zurzeit funktionieren nur zwei Maschinensätze richtig, und sie haben ihre Zielleistung von 260 MW noch nie erreicht. Die wirklich verfügbare Leistung schwankt zwischen 180 und 240 MW.

Die Generatoren müssen repariert oder ersetzt werden. Die Kommando- und Kontrollinstrumente sind am Ende ihrer Funktionstüchtigkeit, und die Transformatoren brauchen umfangreiche Reparaturen.

Der Druckstollen ist mit Beton ausgekleidet. Er quert zwei Täler mittels Stahlleitungen, die auf einem Aquädukt liegen. Wasserverluste wurden an drei Stellen beobachtet. Zusätzliche Injektionsarbeiten wurden 1997 unternommen. Ihre Wirkung auf die Wasserverluste ist noch nicht bekannt, aber weitere Befestigungsarbeiten werden sicher noch nötig sein, um den Stollen zu verdichten (Injizierungen, Stahlverkleidung, PVC-Membrane). Studien werden nötig sein, um die genaue Erweiterung dieser Sanierungsarbeiten zu definieren. Die zwei Einlaufschützenpaare, die die Abflussmenge im Inneren des Stollens kontrollieren, sind in einer Kaverne am rechten Flussufer untergebracht. Zurzeit funktionieren diese Schützen nicht unter vollem Druck (volles Becken) oder im fliessenden Wasser. Sie müssen angepasst und repariert werden. Die Schützenkaverne muss abgedichtet werden.

6. Die wichtigsten noch auszuführenden Arbeiten

6.1 Staumauer

- Beobachtung und Analyse der neuen Messresultate, wenn das Überwachungssystem wieder funktionsfähig ist, um das Verhalten der Staumauer besser zu verstehen.
- Analyse der Fundation, um Massnahmen für die Verminderung der Sickerwassermengen und des internen Erosionsrisikos zu definieren.
- Vervollständigen und Verbessern des Entwässerungssystems mit den Entwässerungspumpen.
- Statische und dynamische Kontrollanalyse.
- Stabilität der Widerlager wenn nötig verbessern.
- Reinigen und Sichern der Kontrollgänge und Laufstege.
- Sanierung der Grundablassschützen und Verschliessen der überzähligen Öffnungen.

- Bau und Montage eines Dammbalkens, um die Grundablässe unterhalten und reparieren zu können.
- Betrieb der Hochwasserentlastungsschützen durch die Aufstellung von Servomotoren verbessern.
- Abnützung der Sohle des Tosbeckens, die über längere Perioden den Einwirkungen des Wassers aus dem Grundablass ausgesetzt ist, kontrollieren.

6.2 Druckstollen

- Verschlüsse am Einlauf verbessern und reparieren.
- Schützenkammer abdichten; angepasstes Entwässerungssystem für das Sickerwasser anbringen.
- Dichtigkeit des Stollens vor allem in der Nähe der Talquerungen verbessern, um Unstabilitäten am Stollenausgang zu vermeiden.

Die Realisierung dieser Arbeiten muss sorgfältig geplant werden, denn sie benötigen grösstenteils eine Entleerung des Stollens und bedingen dadurch einen Betriebsunterbruch.

6.3 Kraftwerk

Unterhalts- und Verbesserungsarbeiten der Struktur sind notwendig, um die Arbeitsbedingungen und die Sicherheit des Personals zu verbessern und die Funktionsdauer der elektromechanischen Ausstattung zu verlängern.

Die elektrische Ausstattung, die am meisten unter dem Unterhaltsmangel gelitten hat, muss ersetzt oder gewartet werden.

- Die Generatoren müssen kontrolliert und ganz oder teilweise ersetzt werden.
- Die Transformatoren müssen kontrolliert und einige Elemente ersetzt werden.
- Die Schützen und Turbinen müssen kontrolliert und Ersatzteile geliefert werden.
- Zahlreiche Nebeninstallationen müssen saniert oder ersetzt werden; so die Ausstattung für Feueralarm und Brandabwehr, die Dieselnebengeneratoren sowie das Belüftungs- und Beleuchtungssystem.

Adresse des Verfassers: Claude Bossoney, Stucky Ingénieurs Conseils S.A., Rue du Lac 33, Case postale, CH-1020 Renens VD 1.

