Zeitschrift: Wasser Energie Luft = Eau énergie air = Acqua energia aria

Herausgeber: Schweizerischer Wasserwirtschaftsverband

Band: 86 (1994)

Heft: 3-4

Artikel: Wasserkraftanlage Samanalawewa, Sri Lanka

Autor: Minor, Hans-Erwin / Molinari, Peter / Öhmichen, Volker

DOI: https://doi.org/10.5169/seals-940778

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 24.10.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Wasserkraftanlage Samanalawewa, Sri Lanka

Erfahrungen beim Ausbruch des Druckstollens

Hans-Erwin Minor, Peter Molinari, Volker Öhmichen

Zusammenfassung

Ein wesentliches Element der Wasserkraftanlage Samanalawewa in Sri Lanka mit einer installierten Leistung von 120 MW ist der 5,5 km lange Druckstollen.

Dieser musste unter schwierigen und komplexen geologischen Bedingungen ausgebrochen werden. Der Wasseranfall an der Ortsbrust betrug teilweise bis zu 450 l/s. Das Ausbruchprofil und die Felssicherungsmassnahmen mussten an diese Gegebenheiten angepasst werden. Sogar eine kleine Änderung der Linienführung war vorzunehmen.

Ein wesentlicher Aspekt des Ausbruchvorgangs war das Drainieren des Gebirges vor dem eigentlichen Ausbruch und die kontrollierte Wasserabführung. Trotz allen ergriffenen Massnahmen konnte eine Zeitverzögerung von 9,7 Monaten für den Ausbruch nicht verhindert werden. Diese Verzögerung ist nicht nur auf technische Gründe zurückzuführen. Durch Verschachtelung verschiedener Arbeitsvorgänge wurde die Zeitverzögerung bis zum Beginn des Auskleidungsvorgangs auf 5,5 Monate reduziert. Mit einem kontinuierlichen Betonierverfahren konnte auch dieser restliche Verzug noch aufgeholt werden, so dass der Druckstollen zum ursprünglich vorgesehenen Termin für die Inbetriebnahme zur Verfügung stand.

Summary

One of the major elements of the Samanalawewa Hydroelectric Project in Sri Lanka with an installed capacity of 120 MW is the 5.5 km long pressure tunnel.

This tunnel had to be excavated under difficult and complex geological conditions. At times the water inflow at the tunnel front reached 450 l/s. The section of excavation as well as the rock support measures had to be adapted to the conditions. Even the tunnel axis had to be changed slightly.

A major aspect of the excavation procedure was the drainage of the rockmass before excavating and the drainage of the tunnel itself. But all the measures taken could not prevent an overall delay of 9.7 months in excavation. This delay can not only be attributed to technical matters. By carrying out different activities in parallel the delay at the time of the beginning of tunnel lining could be reduced to 5.5 months. Applying a continuous concreting procedure the remaining delay was made up so that the pressure tunnel was ready for commissioning at the initially foreseen date.

Résumé

Le 5,5 km long tunnel est un des éléments prédominants du projet hydroélectrique de Samanalawewa, au Sri Lanka, avec une capacité de 120 MW.

L'excavation de ce tunnel s'est fait dans des conditions géologiques difficiles et complexes. A des moments l'irruption d'eau à la face atteignait 450 l/s. La section du tunnel ainsi que les mesures de support de la roche ont dû être adaptés à ces conditions, et même l'alignement du tunnel a dû être changé légèrement.

Un aspect principal de la procédure d'excavation était le drainage de la roche en avant de la face ainsi que le drai-

nage du tunnel même. Malgré toutes les mesures prises, un délai de 9,7 mois dans le percement du tunnel était inévitable. Ce délai ne peut toutefois pas être attribué uniquement à des raisons techniques. En regroupant certains activités et en les exécutant simultanément, le délai a pu être réduit à 5,5 mois jusqu'au commencement des travaux de revêtement en béton. Avec une méthode de placement continue de béton, le délai résiduel a pu être rattrapé ainsi que le tunnel fusse prêt pour la mise en opération à la date initialement prévue.

1. Das Projekt

Die Wasserkraftanlage Samanalawewa in Sri Lanka am Fuss des zentralen Hochlandes (Bilder 1 und 2) liegt im Einflussgebiet der Regenzeit des Südwest- als auch des Nordostmonsuns. Das Projekt nutzt das hohe Gefälle zwischen den streckenweise parallel fliessenden Flüssen Walawe Ganga (dem drittgrössten Sri Lankas) und dem Katupat Oya, indem das Wasser durch einen ca. 5,5 km langen Druckstollen übergeleitet wird.

Die technischen Daten des Projekts können der Tabelle 1 entnommen werden. Bild 3 zeigt einen Schnitt durch den Damm, Bild 4 durch die Hochwasserentlastungsanlage. Lage und Längsschnitt durch die Wasserwege ist in Bild 5 dargestellt.

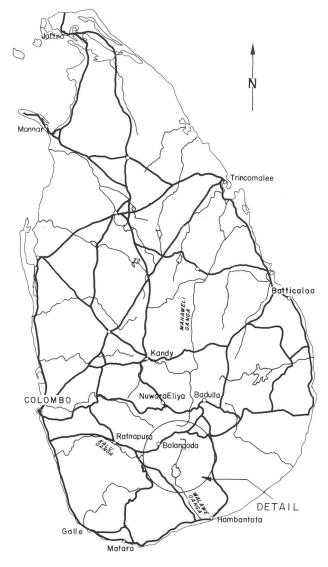
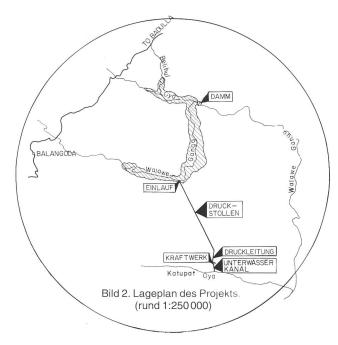



Bild 1. Übersichtsplan Sri Lanka (rund 1:3000000).

Nach ersten Studien in den frühen sechziger Jahren wurde 1978 von der russischen Staatsagentur Technopromexport ein Bauprojekt erstellt. Doch erst Mitte der achtziger Jahre fand sich eine Gruppe von japanischen und britischen Firmen zusammen, die dem Kunden, dem Ceylon Electricity Board, eine Paketofferte einschliesslich Finanzierung abgab.

Durch diese Paketofferte fand nicht für alle Lose eine offizielle Ausschreibung statt. Die Verträge, deren Finanzierung aus Grossbritannien erfolgte, wurden freihändig vergeben. Die anbietenden Firmen reichten mit den Offerten die technischen Spezifikationen ein. Dies trifft auch für den Druckstollen zu.

Die Aufteilung der Bau- und Lieferlose sowie die beteiligten Firmen sind in Tabelle 2 angegeben.

Der Bau des Druckstollens wurde im März 1987 begonnen und im April 1991 abgeschlossen.

2. Geologie

Das Projektgebiet liegt innerhalb der mittleren Rumpffläche der metamorphen Gesteinsmassen des präkambrischen kristallinen Komplexes. Dieser Komplex präsentiert verschiedene Gesteinsarten, welche anfänglich schichtweise aufgebaut waren, später aber einer regional gut abgegrenzten Metamorphose unterlagen. Die vier folgenden Hauptgesteinsarten bestimmen die Stratigraphie des Projektgebiets:

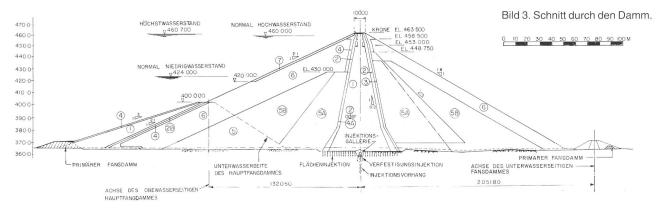
- Migmatisierter Biotit-Charnockit und Charnockit-Gneis
- Migmatisierter, granathaltiger Biotit-Gneis
- Quarz, abwechselnd mit Biotit-Gneis und granathaltigem Gneis
- Marmorisierter Kalkstein, Dolomit und Kalk-Gneis.

Das strukturell tektonisch wichtigste Element ist die sogenannte übergeordnete «Balangoda-Mulde», in welcher sich das Projekt befindet. Sie ist charakterisiert durch ihr Nord-West-Streichen und die leicht asymmetrische Neigung der muldenförmigen Ausläufer. Die übergeordnete Faltung neigt leicht in nordwestliche Richtung. Durch untergeordnete Faltungen und Verschiebungen mit Unterbrechungen der Kontinuität ergibt sich eine komplexe Struktur.

Das Tunneltrassee quert insgesamt 14 grössere Verwerfungen mit Ausdehnungen von 15 bis 170 m entlang der Tunnelachse. Diese Verwerfungen waren meistens

Tabelle 1. Die wichtigsten technischen Daten.

razono ii zio monagotori toominoonon zatori.	
Staubecken Einzugsgebiet Mittlerer Jahresabfluss Nutzbares Volumen Hochwasserspiegel Stauziel Absenkziel	341,7 km ² 598 Mio m ³ 254 Mio m ³ 460,7 m 460,7 m 424,0 m
Staudamm: Felsschüttdamm mit Tonkern (Schnitt: siehe Bild 3) Höhe Kronenlänge Schüttvolumen	105,0 m 530,0 m 4,5 Mio m ³
Hochwasserentlastung (Längsschnitt: siehe Bild 3) Kapazität Anzahl Drucksegmentschützen Breite Höhe	3600 m ³ /s 3 12 m 14 m
Umleitstollen und Grundablass Anzahl Umleitstollen Hufeisenförmige Betonauskleidung, Durchmesser Länge Kapazität bei Wasserstand 413 m = 100jähriges Hochwasser	2 7 m 540,0 m 1450 m ³ /s
Druckstollen Kreisförmig, betonausgekleidet, Durchmesser Länge Sohlenniveau bei der Fassung Gefälle Stärke der Betonauskleidung	4,5 m 5354 m 417,0 m 1 % 35 cm
Wasserschloss: Vertikalschacht mit Drossel Höhe Schachtdurchmesser Öffnungsdurchmesser Stärke der Betonauskleidung	105,0 m 18,0 m 6,0 m 65 cm
Druckleitung Anzahl Ankerblöcke Durchmesser Länge	5 4,5-2,85 m 850,0 m
Krafthaus (oberirdisch) Turbinen Vertikalachsige Francis-Turbinen Installierte Leistung Nennfallhöhe	2 2×60 MW 320 m
<i>Unterwasserkanal</i> Länge	585,0 m


vollständig verwittert, d.h. die anstehenden Gneise waren zu wassergesättigtem sandigem Silt oder siltigem Sand zersetzt. Bild 6 zeigt die angetroffene Stollengeologie im Detail sowie die Lage der grösseren Störungszonen.

3. Angewandte Felssicherungsmassnahmen

Im Gegensatz zu der in der Schweiz üblichen Beschreibung der Ausbruchklassen war im Leistungsverzeichnis des Vertrags für den Tunnelausbruch (Los III) nur eine einfache Klassifizierung für vier verschiedene Felssicherungs-Massnahmen vorgesehen. In Anbetracht der Komplexität der tatsächlich angetroffenen geologischen Verhältnisse erwies sich diese Klassifizierung als nicht ausreichend und die Einführung von fünf weiteren Hauptausbauklassen wurde notwendig.

In Tabelle 3 sind die angewandten Felssicherungsmassnahmen der Ausbruchsklassifizierung nach SIA-Norm 198 sowie der Gebirgsklassifikation nach *L. Müller*

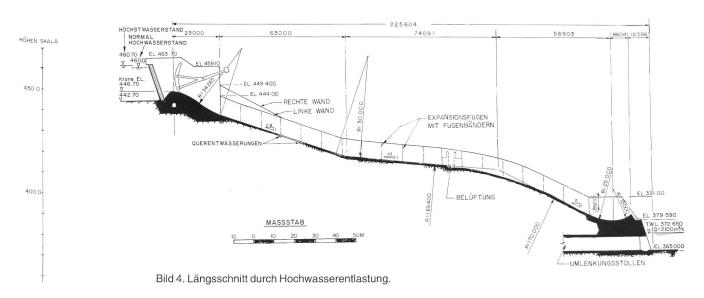
Schlüssel zu den Dammzonen

Zone	Funktion	Material
1	Kern	Siltiger – toniger Sand
2	Feinfilter	Gebrochener Kies/Sand
3	Grobfilter	Gebrochener Kies
4	Übergangszone	Steinschüttung (400 mm max.)
4A	Übergangszone	Gebrochener Kies oder klassierte Steinschüttung (100 mm max.)
5A	Innere Randzone	Feine Steinschüttung (0,5 m max.)
5B	Innere Randzone	Steinschüttung (1 m max.), leicht verwitterter oder frischer Fels
6	Äussere Randzone	Steinschüttung frischer Fels
7	Böschungsschutz	Sauberer, frischer Fels (Blockwurf)
8	Schüttung	Felsaushubmaterial

gegenübergestellt. Die entsprechenden Vortriebsleistungen sowie die Kosten werden dort ebenfalls angegeben. Die wichtigsten Merkmale der neun verwendeten Ausbauklassen sind in Tabelle 4 beschrieben (siehe auch Bild 7):

Variationen in den Felssicherungsklassen VI und VII führten zu weiteren sieben Unterklassen, die jedoch weniger aus technischen als aus wirtschaftlichen Gründen eingeführt wurden. So wurden zum Beispiel für die Auflagerung von Spiessen anstelle der schweren GI-Stahlbögen von 37 kg/m leichtere von 26,8 kg/m oder Gitterbögen verwendet, wenn die geologische Situation es erlaubte. Die Anwendung von Spiessen oder Vorpfänddielen war in diesen Bereichen nicht durchwegs erforderlich.

Die Einführung der Sicherungsklasse S (= soft ground) wurde notwendig, da das vertraglich festgelegte, hufeisenförmige Ausbruchprofil den geotechnischen Gegebenheiten des streckenweise total zerklüfteten, verwitter-


ten und wassergesättigten Gebirges nicht gerecht wurde. Insgesamt zehn mittlere Nachbrüche während und nach dem Vortrieb, alle im Kämpferbereich, gingen der Einführung der Sicherungsklasse S ebenso voran wie aufwendige Zusatzankerungen und Nachprofilierungsarbeiten verursachende Konvergenzen bis zu 30 mm im Ulmenbereich. Das modifizierte, beinahe eiförmige Profil war statisch stabiler und erlaubte einen raschen Ringschluss. Der Sohlschluss musste zwischen 2 und 6 m hinter der vorauseilenden Kalottenortsbrust vollzogen sein, um die Gebirgsbewegungen und die damit zusammenhängende Entfestigung des umgebenden Gebirges als Folge der Druckumlagerungen während des Ausbruchs so gering wie möglich zu halten. Nach der Einführung dieses Ausbauprofils sowie einer Modifikation des Ausbruchverfahrens wurden nur noch Konvergenzen bis maximal 5 mm beobachtet und Nachbrüche im Kämpferbereich konnten ganz vermieden werden.

4. Probleme mit Stollenwasser

4.1 Wasseranfall

Die grössten gemessenen Wassermengen am Einlaufportal betrugen 96 l/s, am Auslaufportal wurden maximal 530 l/s gemessen. Während der Wasseranfall mit höchstens 70 l/s an der Ortsbrust im fallenden Vortrieb keine nennenswerten Probleme verursachte, entwickelte sich der Wasseranfall von bis zu 450 l/s im Ortsbrustbereich des steigenden Vortriebs zu einem bestimmenden Faktor für den erreichbaren Baufortschritt (Bild 8).

Ein erster starker Wassereinbruch von ca. 220 l/s wurde im steigenden Vortrieb bei Station 4710 in der sogenannten «Diyawini-Störung» in einer Übergangszone zwischen

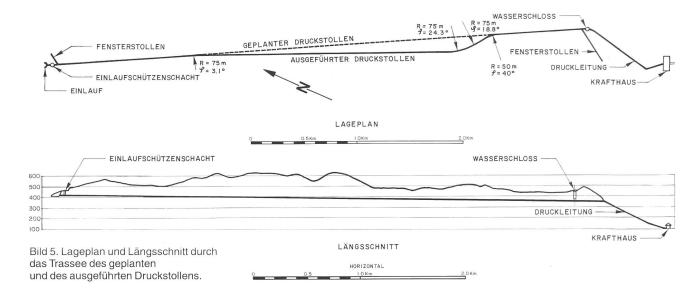
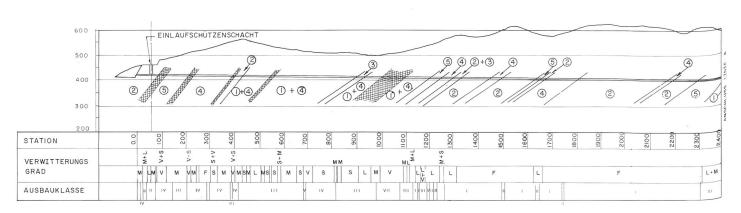
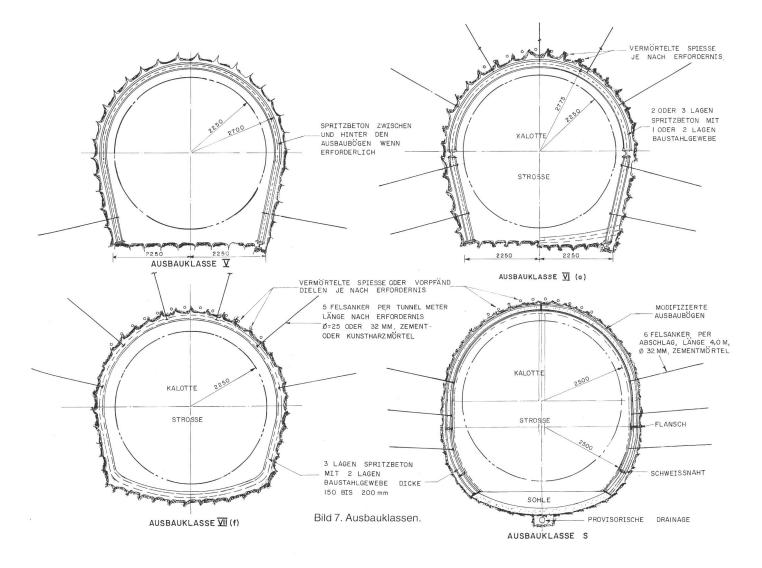


Tabelle 2. Aufteilung der Bau- und Lieferlose sowie beteiligte Firmen.


Los	Beschreibung	Beteiligte Firmen	Herkunftsland
1	Umleitstollen	Hazama	Japan
	David Harbon and Harbon Aris Davidson	Kumagai	Japan
11	Damm, Hochwasserentlastung und zugehörige Bauten	Kumagai	Japan
		Hazama	Japan
111	Wesserfersons Doublet-lies Wesserbles Cabilt	Kajima	Japan
Ш	Wasserfassung, Druckstollen, Wasserschloss, Schüt-	Balfour Beatty Construction	Crasabuitamaian
	zenkammer und baulicher Teil der Druckleitung sowie Krafthaus und Unterwasserkanal	International Ltd.	Grossbritannien
IV	Bau, Lieferung und Installation der Turbinen, Klima- und	Mitsui & Co. Ltd.	Japan
IV	Belüftungsanlage mit zugehörigen Kontrollinstallationen sowie der Beleuchtungs- und Bedarfsstrom; Telefoninstallationen und gesamte Verkabelung der Anlage	Witsura Co. Etu.	Ј аран
V	Bau, Lieferung und Installation der Generatoren, Haupt- transformatoren und der 132-kV-Schaltanlage mit zuge- hörigen Kontrollinstallationen	GEC Alsthom Turbine Generators Ltd.	Grossbritannien
VI	Stahlwasserbau: Drucksegmentschützen der Hochwas-	Sumitomo	Japan
	serentlastung, Einlaufschützen der Wasserfassung,	Mitsubishi	Japan
	Stahlpanzerung der Druckstollens, Drosselklappen und	Kurimoto	Japan
	Druckleitung	Marushima	Japan
DE	Erstellung der Baupläne. Prüfung der Pläne für den elektromechanischen Teil	Sir Alexander Gibb & Partners Engineering & Power Development	Grossbritannien
		Consultants Ltd.	Grossbritannien
SE	Baumanagement und Bauleitung der Gesamtanlage.	Joint Venture Samanalawewa:	
	Prüfung der Baupläne des Projektverfassers	Nippon Koei Co. Ltd.	Japan
		Elektrowatt Ingenieurunternehmung AG	Schweiz
		Central Engineering Consultancy Bureau	Sri Lanka


Bild 6. Stollengeologie.

Gesteinsart
1 Granulit – Gneis
2 Charnockit (Pyroxene)
3 Kristalliner Kalkstein + Kalkgneis
4 Granat – Biotit – Gneis/Biotit – Gneis
5 Quarz

Verwitterungsgrad
F Frisch
L Leicht
M Mässig
S Stark
V Vollständig
Störungszonen sind
gerastert angegeben.

vollständig verwittertem und unverwittertem Gebirge angefahren. Nach dem Durchqueren dieser Störung fiel der Wasseranfall auf ca. 1 l/s, bis bei Station 4554 – wieder in einer Übergangszone zwischen stark und leicht verwitterten, grobkörnigen Gneisen – erneut ein plötzlicher Wasserzufluss von ca. 160 l/s auftrat. Bis zu Station 4530 stieg der Wasserzufluss stetig an, bis im Bereich der Ortsbrust

etwa 450 l/s und am Portal 530 l/s gemessen wurden. Nach diesem Maximum verringerte sich der Wasserzufluss im Ortsbrustbereich kontinuierlich, bis ab Station 4500 keine erwähnenswerten Wasserzuflüsse mehr auftraten. Erst bei Station 3684 wurde erneut eine wasserführende Schicht aus Kalk-Gneis mit kristallinen, verkarsteten Kalksteinschichten angefahren. Der Wasseranfall an der Ortsbrust betrug hier etwa 130 l/s, wobei zu bemerken ist, dass eine einzige Quelle im Ulmen-Sohlenbereich eine Wasserschüttung von etwa 110 l/s brachte.

4.2 Wasserabführung

Um das anfallende Stollenwasser mit möglichst geringer Behinderung des eigentlichen Ausbrechvorgangs abzuleiten, wurde im fallenden Vortrieb ein einseitiger Entwässerungskanal mit einem Querschnitt von etwa 30 x 15 cm ausgehoben, der zu den bei den Stationen 375, 875, 1508, 2005 und 2525 installierten Pumpensümpfen führte (Bild 9). Während die ersten vier Pumpensümpfe ausserhalb des Tunnelquerschnitts aus dem Gebirge gesprengt werden mussten, konnten die Pumpen des letzten Sumpfes bei Station 2525 in einer Karsthöhe installiert werden, die sich an der rechten Seite im Ulmen-Sohlenbereich befand.

Nach dem Tunneldurchbruch und dem Zusammenschluss der Entwässerungskanäle wurde das Pumpensystem aufgehoben und das gesamte Stollenwasser über die offenen Rigolen dem Fensterstollenportal auf der Auslaufseite zugeführt.

Die Probleme mit dem Wasseranfall im steigenden Vor-

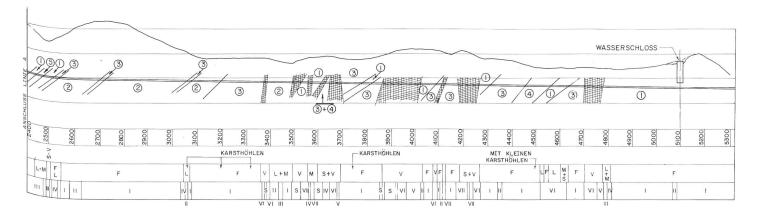


Tabelle 3. Angewandte Felssicherung im Vergleich mit L. Müllers Gebirgsklassifikation und SIA-198-Ausbruchklassifizierung. Verteilung der Vortriebsleistung und Ausbruchkosten (nur für Haupttungel)

L. Müller	SIA-198	Angewandte Fels- sicherung	Kalkulierte Verteilung m	Kalkulierte Leistung m/Woche		che Verteil r Vortrieb m/Woche	lung und Leistung Fallender Vortrieb m m/Woche		/ortrieb Fr./m
I + II	ΑI	I	2727	55,6	1155	39,19	1098	48,81	6 937
	A II	II	759	44,5	64	33,63	540	54,02	7 164
111	111	III			40	13,05	636	32,04	8 824
IV	A III	IV	1446	16,7	58	12,48	350	17,79	13 260
V	A IV	V			123	8,57	22	13,18	20 763
VII	B V	VI	70	13,9	333	7,78	110	13,66	25 140
VI	A V	VII			70	14,56	246	14,14	18 173
VII	B VI	S			146	9,10	12	5,61	39 107
			(5002)		(1989)		(3014)		

¹ Leistung pro Vortrieb

trieb waren zweifacher Natur. Einmal galt es, das Wasser aus dem vor der Ortsbrust gelegenen Gebirge wegzubringen und in irgendeiner Weise zu fassen, zweitens mussten die beträchtlichen Wassermengen abgeleitet werden, ohne den Betrieb zu stören.

Zuerst versuchte man mit Erkundungsbohrungen, welche in der Regel die Vortriebslänge einer Woche abdeckten, sowie einer Aufteilung des Ausbruchquerschnitts in Pilotstollen, Kalotte, Strosse und Sohle eine Drainage des Gebirges zu erreichen. Nach einem grösseren, zum Teil dem Wasserdruck anzulastenden Verbruch ging man jedoch dazu über, Entlastungslöcher zu bohren, wenn die während der Wochenenden ausgeführten Erkundungsbohrungen Wasserzuflüsse anzeigten. Je nach der Stärke der angetroffenen Zuflüsse wurden bis zu 60 m lange, in sehr flachem Winkel zur Tunnelachse fächerförmig angeordnete und sich zum Teil überdeckende Entlastungsbohrungen ausserhalb der Ausbruchsperipherie angebracht. Diese Entlastungslöcher trugen wesentlich zur Erhöhung der Standzeit des gebrächen Gebirges bei und bewährten sich ausgezeichnet (Bild 10).

Das durch die Drainage des Gebirges anfallende Wasser musste an der Ortsbrust gefasst und abgeleitet werden, ohne die zum Teil schwache Sohle aufzuweichen.

Tabelle 4. Definition der angewandten Felssicherungsmassnahmen.

Felssiche- rungsklasse	Art der Sicherungsmassnahmen
I	Keine Massnahmen oder nur sporadische Ar wendung von K- oder SN-Ankern oder Spritzbeton ($d \ge 30$ mm).
II	Systematische Felsankerung mit 5 K- oder SN Ankern pro Tunnelmeter und – wenn erforderlic – Spritzbeton ($d \le 30$ mm).
Ш	Systematische Felsankerung mit 5 K- oder SN Ankern pro Tunnelmeter und einer Lage Spritz beton (<i>d</i> ≥ 50 mm) im First.
IV	Systematische Felsankerung mit 5 K- oder SN Ankern pro Tunnelmeter und 2 Lagen Spritzbeton ($d \ge 100$ mm) mit einer Lage Baustahlgewebe im First und einer Lage Spritzbeton ($d \ge 5$ mm) in den Ulmen.
V	GI-Stahlbögen und – wenn erforderlich – Spritz beton zwischen und hinter den Stahlbögen; Las verteilungsträger in der Sohle, wenn erforderlic (siehe Bild 5, Ausbauklassen).
VI	Teilweiser Ausbruch in Kalotte und Strosse; G Stahlbögen; Lastverteilungsträger in der Kalott und Strosse; vermörtelte Spiesse im Firstbereich, 2 oder 3 Lagen Spritzbeton mit Baustah einlage; SN-Anker und Sohleinbau wenn erfo derlich (Bild 5).
VII	Systematische Felsankerung mit 5 K- oder SN Ankern pro Tunnelmeter; 3 Lagen Spritzbeton (= 150 bis 200 mm) mit 2 Lagen Baustahlgeweb oder 2 Lagen Spritzbeton (d = 50 bis 100 mm) meiner Lage Baustahlgewebe, je nach Erforderni (Bild 5).
VIII	Teilweiser Ausbruch in Kalotte, Strosse un leicht gewölbter Sohle; 3 Lagen Spritzbeton (d: 200 mm) mit 2 Lagen Baustahlgewebe in Firs Ulmen und Sohle; systematische Felsankerun mit 5 K- oder SN-Ankern pro Tunnelmeter; wer erforderlich vermörtelte Spiesse mit verstärkten armiertem Spritzbetonkragen als Auflager (Bild 5
S	Teilweiser Ausbruch in Kalotte, Strosse und stäker gewölbter Sohle; modifizierte GI-Stahlböger 3 Lagen Spritzbeton ($d > 200$ mm) mit 2 Lage Baustahlgewebe; 6 K- oder SN-Anker ($L = 4,0$ n pro Tunnelmeter; vermörtelte Spiesse oder L

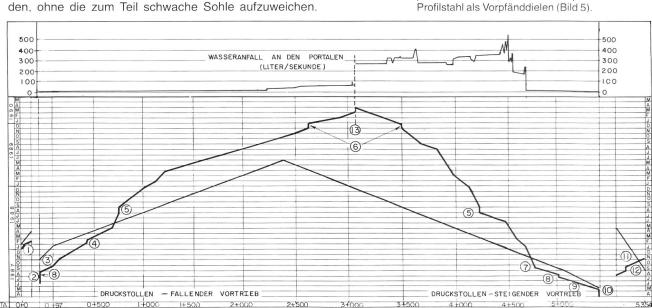


Bild 8. Gegenüberstellung des geplanten und des erreichten Baufortschritts sowie Wasseranfall während des Vortriebs.

1 Einlaufstollen, 2 Voreinschnitt/Portale, 3 Fensterstollen (fallender Vortrieb), 4 Schieneneinbau, 5 Streik vom 22. Juli bis 1. September 1988, 6 Stromausfall vom 12. bis 24. Dezember 1989, 7 Vorausbohrung, 8 Ausnahmezustand vom 29. Juli bis 4. August 1987, 9 Fensterstollen (steigender Vortrieb), 10 Voreinschnitt / Portale, 11 Auslaufstollen, 12 Vorübergehende Einstellung des Vortriebes, 13 Durchschlag am 22. März 1990.

Dazu wurden fortlaufend, in 200 bis 300 m der Ortsbrust folgend, Rigolen bis zu Querschnittsmassen von 1.0×0.22 m ausgehoben und zusammen mit dem Sohlbeton ausgekleidet. Ab Station 4504, wo die grössten Wassereinbrüche registriert worden sind, mussten gar zwei Kanäle dieses Ausmasses gebaut werden, um die gesamte Wassermenge ohne Überschwemmung der Sohle ableiten zu können.

Die verschiedenen angewendeten Rigolentypen und deren Verteilung entlang des Stollens sind in Tabelle 5 zusammengestellt.

Ein eher unerwünschter Sekundäreffekt dieser erheblichen Drainagewirkung war das rapide Absinken des Grundwasserspiegels im unmittelbaren Bereich des Tun-

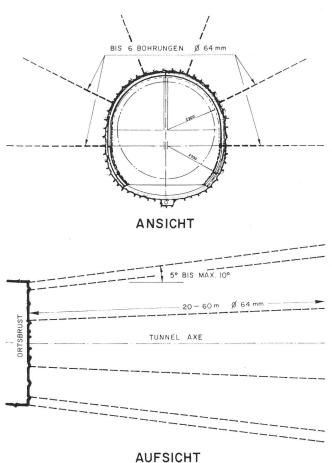


Bild 10. Schematische Anordnung der Bohrungen zur Vorentwässerung des Gebirges von der Ortsbrust aus.

neltrassees, so dass lokale Quellen und Ziehbrunnen bis zu einer Distanz von etwa 5 km beidseits der Tunnelachse trocken fielen. Die Wasserversorgung der etwa 5000köpfigen betroffenen Bevölkerung wurde mittels Tankwagen aufrechterhalten.

Nach dem Verfüllen des Stollenentwässerungssystems und dem Abschluss der Verfestigungsinjektionen regenerierte sich der Grundwasserspiegel in einer sich asymptotisch dem ursprünglichen Spiegel annähernden Kurve innerhalb von drei Regenzeiten.

5. Arbeitsmethode

Als Bohrgeräte wurden 24 kg und 26 kg schwere Bohrhämmer mit hydraulischen Bohrstützen eingesetzt. Gebohrt wurde von einer mobilen Doppelplattform aus.

Das Haufwerk wurde von einem Wurfschaufellader mit integriertem Förderband (installierte Leistung 97 kW bzw. 127,5 kW, Schaufelinhalt 1,85 m³, Ladeleistung 6 m³/min) auf einen 8 m³ fassenden Förderwagen geladen. Der Wagenwechsel wurde mit Hilfe einer mobilen Doppelgleisanlage ermöglicht. Es waren 14 t, 20 t und 25 t schwere batterie- oder dieselangetriebene Loks eingesetzt.

Diese relativ wenig mechanisierte Arbeitsmethode hatte neben dem prinzipiellen Nachteil der kleineren Leistung den Vorteil der guten Anpassung an die ständig wechselnden geologischen Gegebenheiten.

Die durchschnittliche spezifische Ladung betrug 2,16 kg/m³ und variierte von minimal 1,23 kg/m³ bis maximal 2,88 kg/m³ in Strecken, wo mit Sprengvortrieb gearbeitet wurde. In Gebieten mit extrem verwittertem und wassergesättigtem Gebirge, d.h. vor allem im Anwendungsbereich der Sicherungsklasse S, erfolgte der Vortrieb mittels eines auf einer mit einem Gegengewicht versehenen 20-t-Diesellok montierten hydraulischen Baggerarms, ohne Verwendung von Sprengstoff (Bild 11).

6. Baukosten

Die Gesamtkosten für das Auffahren des Druckstollens einschliesslich der beiden Fensterstollen belaufen sich auf 57,40 Mio. Franken. Pro Meter Tunnel ergibt sich im Mittel ein Wert von 10720 Franken. Die Kosten pro Meter variieren zwischen 6637 und 39 107 Franken, je nach Sicherungsmassnahmen (siehe Tabellen 3 und 4).

7. Baufortschritt

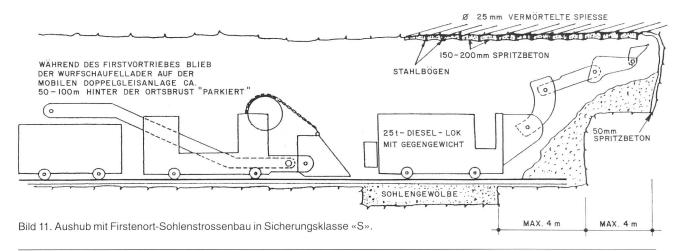
Auf dem Bild 8 ist der geplante dem erreichten Baufortschritt gegenübergestellt. Man erkennt eine Verzögerung von 9,7 Monaten.

Tabelle 5. Details der Rigolen zur Ableitung des Stollenwassers.

Station		Beschreibung		
von	bis	(alle Masse in mm)		
70,0	425,0	Keine Rigolen		
425,0	975,0	Trapezfőrmige Rigole:	links	
		310————————————————————————————————————		
975,0	1070,0	Rigole seitlich im Sohlenbeton ausgespart: (bei Ausbauklasse VII f oder S angewendet)	links	
		400 - 1100 - 1500 - Sohlengewölbe		
1070,0	1151,0	Trapezförmige Rigole:	links	
		320 *** ********************************		
1151,0	1188,0	Rigole seitlich im Sohlenbeton ausgespart: (bei Ausbauklasse VII f oder S angewendet)	links	
		- Sohlengewölbe		
1188,0	2080,0	Trapezförmige Rigole:	links	
		320 - *		

Diese Verzögerung ist verschiedenen Ursachen zuzuschreiben. Ein Grund ist in den schwierigen geologischen Verhältnissen mit dem teilweise sehr hohen Wasseranfall zu suchen. Der ständige Wechsel der Verhältnisse und der notwendigen Sicherungsmassnahmen machten es dem Unternehmer schwer, einen Rhythmus zu finden und zu halten. Es gab deshalb auch keine ausgeprägte Lernkurve. Ein anderer Grund ist in der politischen Situation zur Zeit der Ausbrucharbeiten zu sehen, die zu Streiks und Sabotage führte.

Die Verzögerungen waren bereits im Frühjahr 1988 erkennbar (Bild 8). Es wurden sofort Abhilfemassnahmen eingeleitet, denn der Tunnel lag auf dem kritischen Weg der Gesamtanlage.


Static	on	Beschreibung	
von	bis	(alle Masse in mm)	
2080,0	2092,0	Handgeformter Drain im Bereich des Pumpensumpfes.	links
2092,0	3042,0	Trapezłórmige Rigole:	links
		71111111111111111111111111111111111111	
3042,0	3050,0	Kreuzung von einer Sohlenseite zur anderen mit rechteckigem Kanal:	links/ rechts
3050,0	4504,0	Rechteckiger Kanal:	rechts
4504,0	4980,0	Beidseitig angelegte rechteckige Kanāle gleichen Ausmasses bis zum Fensterstollen:	rechts und links
		-X1000	

Durch organisatorische Änderungen des Bauunternehmers konnte die Anzahl der Schichten von 17 auf 18 pro Woche erhöht werden.

Ein wesentlich grösserer Beitrag zur Reduktion der Verzögerung wurde jedoch erreicht, indem die Sohle parallel zu den Ausbrucharbeiten betoniert wurde. Ursprünglich war vorgesehen, das Betonieren der Sohle nach Fertigstellung des Ausbruchs und vor dem Erstellen der Auskleidung auszuführen. Durch diese Massnahme konnte die Verzögerung auf 51/2 Monate reduziert werden.

Auch diese Zeit konnte in der Folge wieder aufgeholt werden. Dies wurde durch Einsatz einer Teleskopschalung und einen kontinuierlichen Betoniervorgang erreicht. Darüber soll in einem kommenden Artikel berichtet werden.

Adresse der Verfasser: Prof. Dr. Hans-Erwin Minor, Project Director, und Peter Molinari, dipl. Ing. ETHZ, Deputy Construction Manager, und Volker Öhmichen, Ing. HTL, Section Engineer Tunnel, Elektrowatt Ingenieurunternehmung AG, Bellerivestrasse 36, Postfach, CH-8034 Zürich.

