Zeitschrift: Wasser Energie Luft = Eau énergie air = Acqua energia aria

Herausgeber: Schweizerischer Wasserwirtschaftsverband

Band: 83 (1991)

Heft: 10

Artikel: Eurotunnel

Autor: [s.n.]

DOI: https://doi.org/10.5169/seals-941036

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 24.10.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

- leicht transportier- und umschlagbar
- hoher Heizwert
- selbstgängige Verbrennung ohne Zusatzbrennstoff
- Substitution von Primärenergie
- guter Ausbrand.

Zur Trocknung von Klärschlamm stehen heute moderne Anlagen und Verfahren zur Verfügung, die den hohen Anforderungen der Umweltschutzgesetzgebung entsprechen. Bewährte Verfahrenstechnik und moderne Anlagensteuerungen gewährleisten einen sicheren Betrieb und geringen Bedienungsaufwand. Durchdachte Energiekonzepte für die ganze Kläranlage sowie Verbundsysteme erlauben einen energieautarken Betrieb der Trocknungsanlagen.

Mobile Klärschlammtrocknungsanlagen können für Versuche, zur Überbrückung von Engpässen und auf kleineren Kläranlagen, die eine stationäre Anlage nicht wirtschaftlich betreiben können, eingesetzt werden.

Bei zweckmässiger Auslegung und Betriebsart der Schlammtrocknung sind die Gesamtentsorgungskosten nicht höher als bei den heute üblichen Klärschlammentsorgungsverfahren (Verbrennung, Deponie von entwässertem Schlamm).

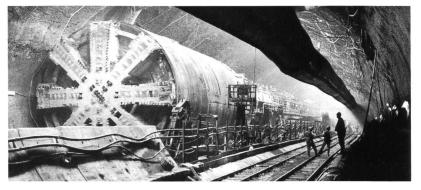
Für den Anlagenbetreiber ist wesentlich, dass er alle Möglichkeiten der Schlammverwertung bzw. -entsorgung ausschöpfen kann.

Diese Aspekte führen dazu, dass die Klärschlammtrocknung in der Schweiz zunehmend an Bedeutung gewinnen wird und den Weg zu einer sicheren, vielseitigen und unabhängigen Klärschlammentsorgung ebnen wird.

Ursprung der heutigen Technologie der Ammann-Klärschlammtrocknung ist das Alfelder-Modell. Aufbauend auf den Erfahrungen mit dieser Pionieranlage, wurde die Verfahrenstechnik ständig verbessert und neuen Anforderungen angepasst.

Heute wird mit Erfolg die neue Generation von Klärschlammtrocknungsanlagen mit geschlossenem Brüdenkreislauf in stationären und mobilen Anlagen eingesetzt.

U. Ammann, Maschinenfabrik AG, Sparte Umwelttechnik, CH-4900 Langenthal. Telefon 063/296161, Fax 063/226813.


Eurotunnel

Tunnelbohrmaschinen und Tübbingeinbau

Als Ergebnis eines der grössten Tiefbauvorhaben in der Geschichte der Menschheit ist Grossbritannien nun seit der Eiszeit zum ersten Mal physisch wieder mit dem Kontinent Europa verbunden. In einer Tiefe von 25 bis 45 m unter dem Meeresboden wird ein Tunnel mit rund 45 km Gesamtlänge, der Eurotunnel, gebaut. Er besteht aus zwei Eisenbahntunnel und einem Versorgungstunnel dazwischen. Einerseits mussten die von Frankreich und England ausgehenden Bohrungen auf halbem Wege aufeinandertreffen, und andererseits galt es, in den geologisch günstigsten Bereichen zu bohren. Eine Kreidemergelschicht unregelmässiger Form wurde als besonders gleichförmig und für den sicheren Tunnelvortrieb am geeignetsten befunden. Trotz gründlichen Vorerhebungen konnte niemand die Arbeitsbedingungen genau vorhersagen. Tatsächlich traten in der Nähe der britischen Küste Schwierigkeiten auf; so traf die 200 m lange Tunnelbohrmaschine (TBM) mit 5,38 m Schneidraddurchmesser für den Bau des Versorgungstunnels auf ausserordentlich ungünstige Arbeitsbedingungen: Durch Risse im Gestein sickerndes Salzwasser griff ihre empfindlichen Steuerorgane an, und auch der Betrieb der hochgelagerten Baueisenbahn bereitete grosse Schwierigkeiten; Versuche, das Eisenbahnmaterial zu isolieren, führten zu Überhitzung, wiederholten Triebwerksbränden und zahlreichen Betriebsausfällen. Im letzten Teil wurden die Bodenverhältnisse aber besser, so dass britische Inge-

nieure Vortriebsleistungen von wöchentlich mehr als 300 m erreichten. Inzwischen ist die Verbindung mit dem französischen Tunnel hergestellt worden. Die einschliesslich Nachläufer 260 m langen Tunnelbohrmaschinen mit verschleissfestem Schneidrad (Bild 1) arbeiten monitorüberwacht und erreichen Vortriebsleistungen von monatlich über 1000 m je TBM. Sie dienen nicht nur zum Bohren der Tunnel $(2 \times 8,72 \text{ m Durchmesser})$, sondern auch zum massgenauen Einbau der Stahlbetontübbinge für die Tunnelauskleidung. Nach dem Verkeilen der mit Robotern in die gewünschte Lage gehobenen Tübbinge (Bild 2) wird Zementmörtel hinter die Auskleidung gepresst, um durch Ausfüllen der Hohlräume eine feste Verbindung zwischen Tunnelauskleidung und dem Kreidemergel zu schaffen; diese Verbindung vermittelt der Struktur eine zusätzliche Festigkeit. Insgesamt sind elf Tunnelbohrmaschinen beim Bau des Eurotunnels eingesetzt, sechs davon kommen aus Grossbritan-

Auf der britischen Seite wird das Vorhaben unter der Leitung von Transmanche Link (TML) durchgeführt. Andere britische Mitglieder des Konsortiums sind die Firmen Balfour Beatty Construction, Costain Civil Engineering, Tarmac Construction, Taylor Woodrow Construction und Wimpey Major Projects. In dem Ärmelkanaltunnel, dessen Kosten etwa 23 Mrd. DM betragen dürften, werden bis 80 Personen- und 54 Güterzüge täglich zwischen England und dem Kontinent verkehren. Pendelzüge für den Strassenfahrzeugtransport werden die Strecke in 26 Minuten zurücklegen.

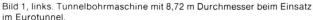


Bild 2, rechts. Einbau und Festlegen der Stahlbetontübbinge für die Auskleidung des Eurotunnels mit Robotern.

