Zeitschrift: Wasser Energie Luft = Eau énergie air = Acqua energia aria

Herausgeber: Schweizerischer Wasserwirtschaftsverband

Band: 83 (1991)

Heft: 9

Artikel: Das Krafwerk Bortel : eine Herausforderung für alle Beteiligten

Autor: Fux, Paul

DOI: https://doi.org/10.5169/seals-941018

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 24.10.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Das Kraftwerk Bortel

Eine Herausforderung für alle Beteiligten Paul Fux

Einführung

Das neue Kraftwerk Bortel ist ein weiterer Baustein im hydraulischen Nutzungskonzept der Simplonnordseite. Mit dem Bau der beiden Zentralen Bortelalp und Ganterbrücke wurden der im Jahre 1941 gebauten Zentrale Silliboden zwei Gefällsstufen vorgelagert. Durch die gemeinsame Nutzung des Bortelsees und weiterer gefasster Bäche erhöhen und optimieren sie die lokale Energieproduktion und tragen damit wesentlich bei zur Sicherung der regionalen Energieversorgung. Zwei Konzessionäre teilen sich die Wasserrechte. Dank der abgestimmten Dimensionierung der elektromechanischen Einrichtungen und der hydraulischen Anlagen sowie der zuverlässigen Leit- und Fernwirkverbindung zu den drei Zentralen und deren wichtigsten Aussenanlagen ist heute eine optimale und wirtschaftliche Nutzung des Wasserangebotes garantiert.

Ein mutiger Entscheid

Energiewirtschaftliche Überlegungen zu allen ausgearbeiteten Projektvarianten liessen damals Gestehungskosten erwarten, die im Vergleich mit anderen Kraftwerken und speziell im Vergleich mit den damaligen Marktpreisen für die regionale Energiebeschaffung an der oberen Grenze lagen. Diese Situation wie auch die starke Einengung von der Gesetzesseite her prägten das Umfeld der Entscheidungsfindung. Anderseits spürte der Verwaltungsrat die Bereitschaft

der Aktionäre und die breite Akzeptanz in der Bevölkerung, als er am 26. Juni 1986 den Baubeschluss fasste. Trotz den sorgfältig ausgeführten hydrologischen und geologischen Studien im Vorfeld des Projektes Kraftwerk Bortel und diversen bautechnischen Vorabklärungen verlangte dieser Entscheid einen grossen Vorschuss an Vertrauen in Menschen und Technologie, befand sich doch die Hauptbaustelle auf rund 2500 m ü.M.

Vernunft bei der Planung

Das Kraftwerk Bortel ist heute eingebettet in die hochalpine Landschaft zwischen dem oberen Gantertal und dem Bortelhorn als Grenze zu Italien sowie zwischen den nahegelegenen Tourismusstationen Rosswald und Rothwald. Der Boden ist vorwiegend im Grundeigentum mehrerer Geteilschaften und wird im Hochsommer für den Schafauftrieb genutzt. Eher spärlich zeigten sich bis heute die Touristen, fanden sie doch bislang hier keine Clubhütte und keine sprudelnden Brunnen. Diese Anliegen wie auch weitere ökologische Gesichtspunkte wurden frühzeitig in das Projekt miteinbezogen. Nur so war es möglich, dass von den Besitzern die Eigentums- und Dienstbarkeitsrechte freihändig erworben werden konnten. Ebenso wurde auch den rechtlichen Fragen nicht ausgewichen, und alle Einsprachen konnten ohne behördliche Entscheide bereinigt werden.

Die Sorgfalt bei der Planung zeigt sich heute aber auch in den realisierten Anlagen. Ein Erddamm aus vorhandenem Moränenmaterial, der sich unauffällig in das Landschaftsbild einfügt, machte das Rennen gegenüber einer Betonstaumauer, ein oberirdisch projektiertes Ausgleichsbecken im Steinutal wurde durch einen vergrösserten Speicher-

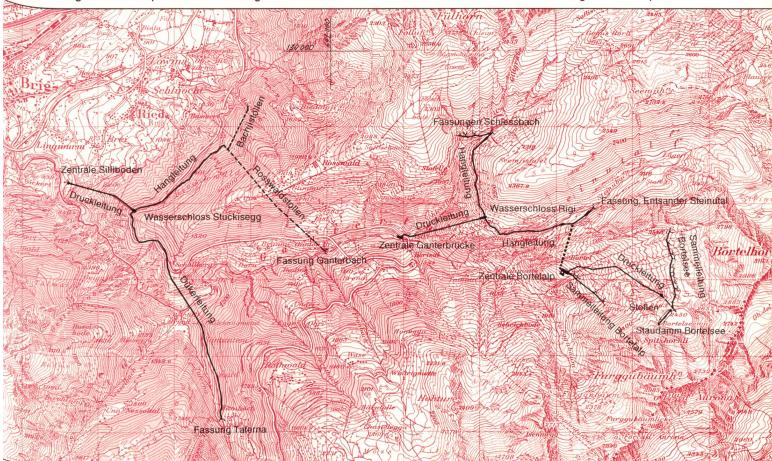


Bild 1. Die Nutzung der Wasserkräfte auf der Simplonnordseite: Reproduziert mit der Bewilligung des Bundesamtes für Landestopographie vom 21. Dezember 1990.

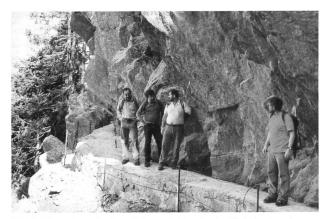


Bild 2. Ein entlang der Hangleitung Schiessbach-Rigi-Steinutal angelegter Wanderweg führt den Berggänger zu zwei Clubhütten auf der Bor-

Bild 3. Der Bortelsee hier auf der Höhe seines früheren natürlichen Ausflusses. Links im Vordergrund der Erddamm.

stollen ersetzt. Praktisch alle Bauten wie Zentralen, Entsander, Wasserfassungen und Stollenportale sind unauffällig in die Landschaft gesetzt, und nicht zuletzt beweisen einige ungefasste Bächlein, dass bei der Planung auch Fauna und Flora «mitreden» durften.

Durchdachtes Konzept

Die Ausrichtung auf Winterenergie bedingte einen Saisonspeicher. Mit dem Bau eines 310 m langen Erddammes konnte das Fassungsvermögen des natürlichen Bortelsees von 2,0 auf 3,65 Mio m³ erhöht werden. Die jährliche Seefüllung erfolgt durch das natürliche Zufliessen von Regenund Schmelzwasser sowie das über eine Sammelleitung von der Nordwestflanke des Bortelhorns zugeleitete Wasser. Im Frühjahr, wenn bei einsetzender Schneeschmelze auf der Bortelalp und im Steinutal grosse Wassermengen anfallen, fördern zusätzlich zwei Pumpen einen Teil dieses Wassers durch die Druckleitung hinauf in den Bortelsee. Von seiner tiefsten Absenkkote muss der Seespiegel rund 51 m steigen, bis er sein Maximum, die Hochwasserüberlaufkante erreicht. Dieses Ziel soll jeweils Ende September erreicht sein. Auf der Bortelalpe verstummt dann das nächtliche Brummen der Pumpmotoren. Turbine und Generator nehmen nach der langen Sommerpause ihre Tagesarbeit auf. Entsprechend der Last- und übrigen Produktionsverhältnisse in der Region kann der See hier über den Winter dosiert abturbiniert werden.

Zusammen mit dem Wasser der Hangsammelleitung Bortelalp fliesst das Seewasser durch den 650 m langen Stollen von der Zentrale Bortelalp hinüber ins Steinutal. Hier wird

Tabelle 1. Energie-Beteiligungs-Gesellschaft AG

Aktionäre	Beteiligung
Elektrizitätswerk Brig-Naters AG (EWBN) Gemeinden, Burgerschaften und Geteilschaften	50,00%
im Versorgungsgebiet des EWBN	38,40%
Walliser-Elektrizitäts-Gesellschaft AG (WEG)	6,25%
Private	5,35%
Aktienkapital: 16 Millionen Franken	

Tabelle 2. Kosten (Stand August 1990) des Kraftwerks Bortel.

Vorstudien	0,88 Mio Fr.
Bauarbeiten mit Erschliessung	28,1 Mio Fr.
Stahlbau	3,3 Mio Fr.
Elektromechanische Anlagen	12,4 Mio Fr.
Baunebenkosten, Honorare, Grundstücke, Rechte	5,4 Mio Fr.
Gesamtkosten	49,9 Mio Fr.

Tabelle 3. Technische Daten	Zentralen	
	Ganterbrücke	Bortelalp
Turbinen		
Durchfluss [I/s]	1000	600
Max. Bruttogefälle [m]	592,5	494,3
Leistung [kW]	5005	2357
Drehzahl [min ⁻¹]	1000	1000
Generatoren		
Nennleistung [kVA]	5400	2550
Betriebsspannung [V]	6300	6300

Betriebsspannung [V]	6300	6300
	Pumpanla Einzellauf	ge Bortelalp Parallellauf
Pumpen		
Max. Durchfluss [I/s]	250	2×230
Max. Bruttogefälle [m]	499	499
Max. Leistung [kW]	1398	2 × 1312
Antriebsmotoren		
Nennleistung [kW]	1500	2×1500
Betriebsspannung [V]	6300	6300

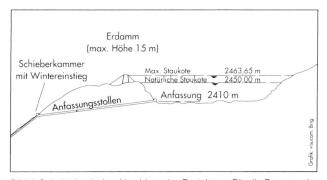


Bild 4. Schnitt durch den Abschluss des Bortelsees. Für die Fassung des Seewassers musste der See zuerst abgesenkt werden. Der Anfassungsstollen wurde von unten vorgetrieben.

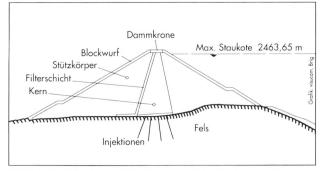


Bild 5. Schnitt durch den 310 m langen und bis 15 m hohen Steinschüttdamm. Das Dammvolumen beträgt 105 000 m³

auch der Steinubach zugeleitet, der dank seinem vergletscherten Einzugsgebiet eine ständig fliessende Quelle darstellt. Seine Fassung und der nachgeschaltete automatische Entsander sind auf ein Schluckvermögen von 1300 I/s dimensioniert. Im Steinutal wird nicht nur ein eventueller Überlauf im hydraulischen System abgeleitet (beim Stollenportal), hier kann auch das hydraulische System entleert werden. Dies erfolgt im Düker der Hangleitung Richtung Wasserschloss Rigi.

Im Wasserschloss Rigi vereinen sich die Zuleitungen vom Steinutal und vom Schiessbach her. Der Schiessbach hat seine grösste Ergiebigkeit vor allem im Frühsommer. Seine sonnenexponierten Berghänge beginnen bereits im März und April zu apern. Bei Bedarf kann auch das Schiessbachwasser via Hangleitung Rigi-Steinutal in den Stollen Steinutal-Bortelalp umgeleitet und von hier hinaus in den Bortelsee gepumpt werden.

Im Normalfall aber ist die Drosselklappe auf der Druckleitung hinunter zur Zentrale Ganterbrücke offen. Diese ist nämlich als Laufkraftwerk konzipiert und kann sich dank der zweidüsigen Peltonturbine dem schwankenden Wasserangebot anpassen. Aus dem Unterwasserkanal fliesst das Wasser zurück in den Ganterbach.

70 Höhenmeter weiter unten fliesst das Wasser in die Fassung Ganterbach, um in der Zentrale Silliboden ein drittes Mal turbiniert zu werden. Mit 1 m³ Seewasser werden so über die drei Gefällsstufen 3,5 kWh elektrische Energie erzeugt.

Erschwernisse bei der Realisierung

Die drei Jahre Bauzeit waren gleichzeitig auch eine ständige Herausforderung für alle Beteiligten, ob sie nun bei Nacht und Nebel einen riesigen Dumper über die steilen Baupisten chauffierten oder den antretenden 30 Nachtschichtarbeitern auf 2500 m ü.M. einen schmackhaften Risotto servierten oder ob sie sich zurückgezogen im Büro den Kopf zerbrachen. Auch die Gesamtbauleitung und die Baukommission blieben vor Unvorhergesehenem und rasch zu fällenden Entscheiden nicht verschont.

Erschliessung

Die Erschliessung der über das unwegsame Gelände verstreuten Baustellen bildete den ersten Prüfstein. Um es gleich vorwegzunehmen: keines der Bauwerke ist heute über eine Zufahrt erreichbar, die ausschliesslich dem Kraftwerk zugute kommt. So wurden beinahe alle Baupisten, Installations- und Umschlagsplätze wieder zugeschüttet und eingegrünt. Die beiden Grossbaustellen auf der Bortelalp und beim Bortelsee waren über eine 10-Tonnen-Schwerlastbahn und eine 10-Personen-Pendelbahn erschlossen. Der Transport von Baumaterialien, Baumaschinen, Druckleitungsrohren, Zentralen- und Pumpenhausausrüstungen erforderte auch auf der Schwerlastbahn manche Nachtschicht. Ein Seilkran parallel über der Druckleitung der Unterstufe führte zum Wasserschloss Rigi. Die Baustellen im Steinutal waren durch den heute als Zwischenspeicher benutzten Stollen von der Bortelalp her auch für Lastwagen erreichbar. Die weiter entlegenen Baustellen wurden mit dem Helikopter angeflogen, ein Transportmittel, das heute auch für sofort erforderliche Betriebseingriffe oder bei unpassierbaren Zugangswegen eingesetzt wird.

Baustromversorgung

Bau und Betrieb der Baustromversorgung waren Aufgabe des örtlichen Elektrizitätswerkes Brig-Naters AG. Fünf Transformatorenstationen 16 000/380 V, verteilt auf diverse Baustellen, waren über Kabel- und Freileitungen entlang

Bild 6. Bereits nimmt der Damm Konturen an. Erkennbar sind die Stützkörperschichten mit dem Böschungsschutz beidseitig des Kerns. Im Vordergrund des Barackendorf und die Reparaturwerkstätte.

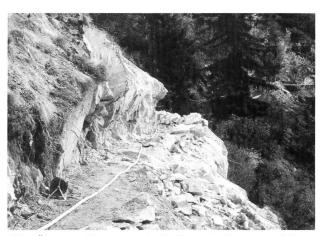


Bild 7. Über weite Strecken musste das Trasse der Hangleitung Schiessbach-Rigi ausgesprengt werden.

Bild 8. Das Trasse für die Hangleitung wird vorbereitet. Zweimal mussten rund 1300 m teils in felsigem und exponiertem Gelände überwunden werden.

felsiger und windexponierter Geländeabschnitte anzuspeisen. Zur Vermeidung von Betriebsunfällen als Folge von Leitungskurzschlüssen, verursacht durch die böenartig einsetzenden Winde oder herunterfallende Schneewalzen, musste das Mastbild verstärkt und vergrössert werden.

Tücken der Witterung

Als nicht kalkulierbare Störgrösse erwies sich einmal mehr die Witterung. Betroffen hievon war insbesondere die Baustelle Bortelsee auf 2500 m ü.M. Früh einsetzende Schneefälle schwächten im Herbst die Arbeitsleistung oder forder-

Bild 9. Die dickwandigen Kunststoffrohre der Hangleitungen wurden in einem thermischen Schweissverfahren miteinander verbunden.

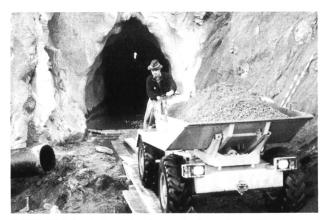


Bild 10. Blick durch den 650 m langen Stollen zwischen Bortelalp und Steinutal. Hier dient er noch der Baustellenerschliessung. Heute wird er als Zwischenspeicher benutzt.

ten sogar die teilweise Einstellung. Im Frühjahr zögerten riesige Schneewächten die Arbeitsaufnahme hinaus oder erforderten aufwendige Schneeräumungsarbeiten. Mit der vollen Arbeitsleistung bei der Dammschüttung durfte an maximal 100 Tagen pro Jahr gerechnet werden. Mitunter erzwang sogar dichter Nebel die Einstellung des Transportes von Dammaterial zwischen Baggerfeld, Aufbereitungsanlage und Dammbaustelle. Mit der Einführung von Nachtschichten während des Hochsommers konnte die kurze Bauzeit verlängert werden. Unfallschutz und Sicherheit mussten auch nachts gewährleistet sein, was wiederum ein zusätzliches Sicherheitsdispositiv erforderlich machte.

Arbeitssicherheit

Für die Sicherheit der Baustellen und der Aufstellung der Baustelleninstallationen wie Kantine, Unterkünfte, Reparaturwerkstätten, Sortieranlagen usw. mussten vorgängig Lawinengutachten eingeholt werden.

Schutz von Quellen

Erschwernisse insbesondere bei den Aushubarbeiten beim Wasserschloss Rigi und dessen Zuleitungen von den Seiten Steinubach und Schiessbach waren voraussehbar. Das Rigigebiet ist nämlich das Quellgebiet für die Trinkwasserversorgung der Gemeinde Brig-Glis. Um diese Quellen nicht zu gefährden, musste auf die konventionelle Sprengmethode verzichtet und ein Abpressverfahren gewählt werden.

Unterirdischer Seeanstich

So kompliziert der unterirdische Seeanstich klingen mag, so elegant präsentiert sich die Lösung, die dafür gefunden wurde. Pausenlos förderten im Herbst 1987 drei bis fünf Pumpen Wasser aus dem Bortelsee über dessen natürlichen Ablauf. Parallel liefen die Sprengarbeiten im 300 m langen Anfassungsstollen. Nach einem Pumpvolumen von rund 2,5 Mio m³ erreichte der Seespiegel das heutige Absenkziel, und mit der letzten Sprengung konnte der Durchstich geschaffen werden. Der sofortige Bau einer provisorischen Druckwand erlaubte den Wiederaufstau des Sees bei der Schneeschmelze im folgenden Frühjahr.

Die Liste der Erschwernisse liesse sich noch weiterführen. Sie soll genügen, um dem Leser einen etwas tieferen Einblick in den Bauablauf zu geben. Das Projekt selber ist in einer soeben erschienenen 30seitigen Broschüre dargestellt und beschrieben. Gegen einen Unkostenbeitrag kann diese solange vorrätig von Interessenten bezogen werden.

Zufriedenheit und Zuversicht

Knapp 200 Geladene versammelten sich am 22. September 1990 zur Begehung einer schlichten kirchlichen und offiziellen Einweihungsfeier. Die Baustellen waren inzwischen geräumt, und das Werk hatte bereits eine bewährte Probephase hinter sich. Mit sichtlicher Zufriedenheit richtete Dr. Hermann Bodenmann, Präsident des Verwaltungsrates der Energie-Beteiligungs-Gesellschaft AG, seine Dankesworte an alle, die beigetragen und mitgeholfen haben, dieses Werk unfallfrei, fachgerecht und im vorgegebenen Termin zu realisieren.

Nach Abschluss des Probebetriebes hat das KW Bortel als Gesamtsystem am 1. Januar 1991 seinen Betrieb aufgenommen. 80 Jahre lang soll das Wasser Kraft und Bewegung bringen, aus denen neue Kräfte und Energie entstehen. So deutet es die Eisenplastik an der Hauptfassade der Zentrale Ganterbrücke.

Tabelle 4. Am Bau Beteiligte

Bauherrschaft Energie-Beteiligungs-Gesellschaft AG (EBG) Verwaltungsrat EBG Dr. Hermann Bodenmann, Präsident Direktion Anton Schwestermann, Direktor Baukommission Dr. Raymond Perren, VR EBG, Vorsitz Walter Borter, VR EBG Anton Schwestermann, Direktor EBG Gesamtbauleitung Paul Schmidhalter, dipl. Ing. ETH/SIA, Vorsitz Martin Bodenmann, dipl. Ing. ETH/SIA Lot Wyer, dipl. Ing. ETH/SIA Projektierung Staudamm Bortelsee

Ingenieurbüro Dr. Ing. G. Lombardi, Locarno Bau Zentralen, Druckleitungen Lonza AG, Sparte Energie, Visp Ingenieurbüro Walker-Imoberdorf AG, Naters Fassungen, Entsander, Zuleitungen, Stollen Ingenieurbüro Schneller Schmidhalter Ritz AG, Brig Hangleitungen, Werkstrassen, Quellenmessungen

Bodenmann-Schmidt-Andenmatten & Partner, Brig Elektromechanische Ausrüstungen der Zentralen

Lonza AG, Sparte Energie, Visp

Geologie, Hydrologie

Odile Schmid, Büro für beratende Geologie, Brig

Elektromechanische Ausrüstungen Elektromechanische Anlagen:

ABB, Baden - Generatoren, Schaltanlagen, Steuerung, Fernwirkanlage Bell AG, Kriens – Turbinen, Speicherpumpen Siemens-Albis SA, Renens – Pumpmotoren, Maschinentransformatoren

Druckleitungen:

Giovanola Frères SA, Monthey - Stahlbau

Hydro-Progress AG, Luzern - Revisions- und Sicherheitsabschluss-

Adresse des Verfassers: Paul Fux, dipl. El.-Ing. ETH, Direktionsadjunkt, Elektrizitätswerk Brig-Naters AG, Nordstrasse 30, Postfach, CH-3900

