Zeitschrift: Wasser Energie Luft = Eau énergie air = Acqua energia aria

Herausgeber: Schweizerischer Wasserwirtschaftsverband

Band: 83 (1991)

Heft: 7-8

Artikel: Produktionsintegrierter Umweltschutz bei der Chemieproduktion

Autor: [s.n.]

DOI: https://doi.org/10.5169/seals-941009

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 24.10.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Im Brandfall bis 1200 I/min

Im Wasservertrag mit der Gruppenwasserversorgung Cordast ist der jährliche Wasserbezug auf 50 000 m³ beschränkt. Der Minimalbetrag bei Vertragsabschluss beträgt 25 000 m³ in der Übergangsphase bis Ende 1992. Der Mittelwert des Bezuges darf 100 I/min nicht überschreiten. Die Spitze liegt bei 200 I/min. Im Brandfall kann der Bezug auf 20 I/s (= 1200 I/min) erhöht werden. Der Preis ab Pumpwerk Jeuss beträgt 1.20 Fr./m³. Dazu kommt eine jährliche Grundtaxe, die sich nach der gewünschten Bezugsmenge richtet. Bei Vertragsabschluss sind das 7500 Franken.

Die Vorgeschichte

Am 19. März 1985 verwarf die Gemeindeversammlung einen Kredit von 17 000 Franken für Probebohrungen. Am 2. April 1986 bewilligte sie das Einlegen einer Trinkwasserleitung in den ARA-Leitungsgraben. Im Frühjahr 1987 verlangte der Kantonschemiker ein Konzept für eine Trinkwasserversorgung. Die Gemeindeversammlung vom 9. April 1987 stimmte dem Begehren zu. Das Konzept «Schlegel» sah vor, eine Wasserversorgung auf genossenschaftlicher Basis zu erstellen. 1988 wurden alle Quellen auf Nitratgehalt untersucht. Die Resultate fielen sehr unterschiedlich aus. Eine Probebohrung im gleichen Jahr ergab keine genügende

Schüttung. Am 20. April 1989 setzte der Gemeinderat eine Trinkwasserkommission ein. An der Gemeindeversammlung vom 7. Dezember 1989 grientierte ein Vertreter des Ingenieurbüros Bruderer über einen möglichen Anschluss an die Gruppenwasserversorgung Cordast. Im Frühjahr 1990 sicherte diese Trinkwasserlieferungen zu. Weil die Trinkwasserversorgung gesetzliche Aufgabe der Gemeinde ist, stellte der Gemeinderat der Gemeindeversammlung vom 3. Mai 1990 Antrag auf Wiedererwägung des Konzepts «Schlegel». 75 der rund 190 Stimmfähigen waren erschienen. Mit 59 gegen 3 stimmten sie dem Wiedererwägungsantrag zu. Damit war der Weg für eine langfristige Lösung nach dem Konzept «Regional» frei. Im September 1990 wurde die Vereinbarung unter den drei Gemeinden unterzeichnet, am 13. November 1990 der Wasserlieferungsvertrag durch die Delegiertenversammlung der Gruppenwasserversorgung Cordast genehmigt, und im Februar 1991 konnte der Wasserlieferungsvertrag von allen beteiligten Gemeinden unterzeichnet werden. Das Gemeindedepartement des Kantons wünscht, dass sich die drei Gemeinden Liebistorf, Ulmiz und Gempenach als Vollmitglieder der Gruppenwasserversorgung Cordast anschliessen. Dies wird als Endziel angestrebt.

Adresse des Verfassers: *Ueli Gutknecht-Mäder*, Bäumliacher, CH-3216 Ried bei Kerzers.

Produktionsintegrierter Umweltschutz bei der Chemieproduktion

Das Schwergewicht der Umweltschutzaufwendungen lag bisher auf Anlagen zur Behandlung von Abwasser und Abluft. Diese «heilenden» Massnahmen haben zu einer substantiellen Verringerung der Belastungen geführt. Auch in Zukunft kann darauf nicht verzichtet werden. Heute geht aber die produzierende chemische Industrie noch einen Schritt weiter. Sie versucht, die Entstehung von Abfällen, Abwasser und belasteter Abluft bereits an der «Quelle», d.h. in der Produktion so weit wie möglich zu vermeiden. Denn auch hier gilt der bewährte Grundsatz:

Vorbeugen ist besser als heilen

Bis Mitte dieses Jahrhunderts vertrauten sowohl Gemeinden als auch Industrie weitgehend auf die unerschöpflich scheinende Selbstreinigungskraft der Natur. Als der Mensch erkannte, dass die Natur mit dem wachsenden Zivilisationsmüll allein nicht zurechtkommt, begann ein Umdenken: Abwasser- und Abluftreinigungsanlagen wurden gebaut.

Steiniger Weg zum Ziel

Eine nachhaltige Verbesserung der Situation war die Folge. Allerdings lassen sich die hochgesteckten Umweltschutzanforderungen nicht mehr allein mit den Mitteln einer nachgeschalteten Entsorgung erfüllen. Die Herausforderung an die Industrie lautet, vorbeugende Massnahmen zu erarbeiten, die das Entstehen von Abfällen, Abwasser oder Abgasen schon in der Produktion eindämmen.

Völlig abfallfreie Verfahren werden immer Wunschdenken bleiben. Doch die chemische Industrie nähert sich dem Ziel durch Verbesserung der Produktionsbedingungen an. Umweltverträglichere Verfahren liefern vielfach eine erhöhte Ausbeute und damit weniger Abfall. Die ökologischen Bemühungen zielen also oft in die gleiche Richtung wie die ökonomischen.

Beispielhafte Lösungen

Dass die Suche nach alternativen Methoden auch zu überraschenden Lösungen führen kann, lässt sich am Beispiel der Entwicklung des Produktes «Parlodel» der Sandoz Pharma AG, das der Therapie von Parkinson-Patienten dient, zeigen. Zur Herstellung und Reinigung von Parlodel-Zwischenprodukten wurde lange Zeit Chloroform, ein chlorierter Kohlenwasserstoff, als Lösungsmittel verwendet. Als bekannt wurde, dass Chloroform für die Umwelt nicht unbedenklich ist, begaben sich die Entwicklungschemiker auf die Suche nach Alternativen. Nach einer zweijährigen intensiven Bearbeitungsphase war die Lösung gefunden: Durch eine gezielte Umstellung der Synthesesequenz kann sowohl auf den Einsatz des chlorierten Lösungsmittels als auch auf die aufwendigen Reinigungsoperationen verzichtet werden. So lassen sich 20 t Chloroform pro Jahr einsparen, und der gesamte Herstellungsprozess verkürzt sich wesentlich.

Bei der Entschwefelung eines Zwischenproduktes des Wirkstoffes im Medikament «Sirdalud» der selben Firma, das Ärzte gegen den schmerzhaften Hexenschuss einsetzen, fallen jährlich vier Tonnen Bleisulfid an. Diese Substanz muss auf kontrollierten Deponien endgelagert werden. Zudem macht das Entstehen von Bleisulfid eine spezielle Behandlung des Abwassers nötig. Ein neues Verfahren, das ohne Schwermetall auskommt, ist zurzeit in Erprobung. Bei der Entschwefelung kommt das altgediente Bleichmittel Javelle-Lauge zum Einsatz. Durch eine sorgfältige Optimierung der Reaktionstemperatur und des Säuregrades gelang den Chemikern der Durchbruch. Nach dem Pilotversuch kann das schwermetallfreie Herstellungsverfahren in den grosstechnischen Massstab umgesetzt werden.

Wasser, ein wertvoller Rohstoff

Der letzte Schritt einer Farbstoffherstellung läuft in grossen Rührkesseln ab. Zwei Komponenten reagieren chemisch miteinander und bilden dann das satte Blau, das leuchtende Gelb oder das warme Rot. Der feste Farbstoff liegt fein verteilt im Wasser vor. Um ihn in die handelsfähige Form zu bringen, muss er von Salzen oder Nebenprodukten befreit und getrocknet werden.

Bisher wurde das Wasser, das als Lösungsmittel dient, zunächst in Filtern abgepresst und dann der verbleibende Farbstoff intensiv mit Wasser gewaschen. Dazu war eine riesige Menge Frischwasser nötig. Bei grossen Filterpressen benötigte ein einziger Waschprozess über 100000 I, womit man rund 200 Badewannen bis an den Rand füllen könnte. Wasser, das anschliessend mit grossem Aufwand in den Kläranlagen gereinigt werden musste.

Die Verfahrensingenieure von Sandoz suchten nach einer Optimierung des Verfahrens und fanden nach vielen Versuchen die Lösung: Im herkömmlichen Waschvorgang durchströmte das Wasser den Filterkuchen nur in einer

Richtung. Um alle Salze und Nebenprodukte auszuspülen, war deshalb eine grosse Menge nötig. Durch periodisches Umkehren der Strömungsrichtung des Waschwassers wird nun erreicht, dass der Filterkuchen viel intensiver durchspült wird. Durch diese Pulsationswäsche reduziert sich der Wasserverbrauch auf weniger als die Hälfte! Dabei geht auch der Energiebedarf für Transport und Reinigung des Abwassers zurück. Diese Einsparung beträgt immerhin 1,2 Mio kWh und entspricht einer Energiemenge, die jährlich zum Heizen von rund 100 Wohnungen benötigt wird.

Eine Vielzahl kleiner Schritte

Liegen Lösungen der Probleme einmal gebrauchsfertig auf dem Tisch, scheinen sie vielfach trivial. Oft sind aber neben der zündenden Idee Hunderte von praktischen Experimenten zu deren Ausarbeitung nötig. Dabei vertieft sich das Verständnis für die einzelnen Verfahren und ermöglicht so weitere Verbesserungen. Der produktionsintegrierte Umweltschutz «lebt» von einer Vielzahl solcher kleiner Schritte.

Aus «Infochemie» 4/1991.

Staumauern verhinderten das Schlimmste

Speicherseen dämpften die Hochwasserspitzen von 1987 entscheidend

Das Rückhaltevermögen der noch nicht gefüllten Stauseen in den Schweizer Alpen hat bei den beiden Hochwasserkatastrophen im Juli und August 1987 entscheidend zur Verminderung der Abflussspitzen der Gewässer und damit zur Verhütung noch grösserer Schäden beigetragen. Das ist eines der Ergebnisse, zu dem der von zahlreichen Fachleuten erarbeitete und jetzt dem Bundesrat übergebene Schlussbericht über die Ursachen dieser Jahrhundert-Hochwasser kommt.

Neben der Verkettung unglücklicher Umstände im Sommer 1987 wie verspätete Schneeschmelze, grosse Niederschlagsmengen schon vor den eigentlichen Unwettern sowie die hohe Lage der Nullgradgrenze (auch in hohen Lagen fiel Regen statt Schnee und wusch zusätzlich den vorhandenen Schnee herunter) erwähnt der Bericht auch die geringen natürlichen Speichermöglichkeiten in den hochalpinen, über der Waldgrenze liegenden Gebieten, was vielerorts den praktisch ungedämpften Abfluss des Wassers zur Folge hatte.

Willkommener Stauraum

Wie aus dem Bericht weiter hervorgeht, bewährten sich die der Winterstromproduktion dienenden, zu dieser Jahreszeit noch längst nicht gefüllten Stauseen in dieser Gefahrensituation zugleich als Auffangbecken für die riesigen zu Tale strömenden Wassermassen. So wurde allein in den Speicherbecken im Schweizer Einzugsgebiet des Alpenrheins bei den Juli-Unwettern innert 48 Stunden rund 50 Mio Kubikmeter Wasser zurückgehalten, was einer Abflussmenge von etwa 300 Kubikmetern pro Sekunde entspricht. Ohne diese Speicherung wäre die Wasserführung des Rheins oberhalb des Bodensees von mehr als 2600 Kubikmetern pro Sekunde auf rund 3000 Kubikmeter erhöht worden. Mit Sicherheit dürften durch das Vorhandensein von Stauseen

auch grössere Schäden im Valsertal und im Bergell verhindert worden sein.

Auch bei den Unwettern am 24./25. August 1987 bewährten sich die künstlichen Speicherbecken wieder. So etwa bei der Aare oberhalb des Brienzersees, deren Spitzenabfluss dank der Rückhaltung von 12 Mio Kubikmeter hinter den Grimsel-Staumauern um mindestens 70 Kubikmeter pro Sekunde verringert werden konnte.

Eine geradezu entscheidende Rolle spielten beim gleichen Ereignis auch die zahlreichen Stauseen im Einzugsgebiet der Rhone: In Mattmark, Gries und im Lac des Dix konnten 10 Mio Kubikmeter der Wassermassen zurückgehalten werden. Dadurch verringerte sich der mittlere Abfluss der Rhone während 48 Stunden um rund 60 Kubikmeter pro Sekunde, bei der Spitze wohl gar um mehr als 100 Kubikmeter. Weil der Spitzenabfluss bei Brig 490 Kubikmeter pro Sekunde betrug und der Wasserspiegel stellenweise bis auf wenige Dezimeter an die Krone der Hochwasserschutzdämme heranreichte, ist anzunehmen, dass ohne die Puffer in Form von Stauseen diese Dämme überspült oder gar zerstört worden wären.

Vergleichbar war die Lage im Reusstal, wie detaillierte Untersuchungen ergaben: Ohne die 7,3 Mio Kubikmeter, die bei den gleichen Unwettern in den Stauseen Lucendro und Göschener Alp aufgefangen wurden, hätte das Autobahnviadukt bei Wassen wohl keine Chance mehr gehabt. Dies um so weniger, als es auch so nachweislich nur ganz knapp einem Einsturz entging.

Reserve für den Frühherbst

Wie die extremen Unwetter von 1987 beweisen, haben die Stauseen neben ihrer eigentlichen Aufgabe – nämlich sommerliches Schmelzwasser für die Winterstromproduktion zu speichern – zugleich auch massgeblich dazu beigetragen, noch schlimmere Schäden zu verhüten. Dazu sind sie namentlich vor ihrer vollständigen Füllung bis etwa Ende September in der Lage. Da aber kein Stausee je wirklich randvoll aufgefüllt wird, bleibt selbst bei Hochwassern im Frühherbst noch genügend Speicherraum frei, um Abflussspitzen wenigstens während einiger Stunden zu verhindern.

(SWV, 7.6.1991)

