Zeitschrift: Wasser Energie Luft = Eau énergie air = Acqua energia aria

Herausgeber: Schweizerischer Wasserwirtschaftsverband

Band: 80 (1988)

Heft: 10

Artikel: Die schweizerische Wasserkraftnutzung : von der Intensivierung zur

Extensivierung?

Autor: Vischer, Daniel

DOI: https://doi.org/10.5169/seals-940750

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 18.10.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Die schweizerische Wasserkraftnutzung – Von der Intensivierung zur Extensivierung?

Daniel Vischer

Das beiliegende Diagramm (Bild 1) zeigt die Entwicklung der in der Schweiz mit Wasserkraft erzeugten Elektrizität in TWh (Milliarden Kilowattstunden) pro Jahr, und zwar so, wie sie von 1890 bis heute registriert wurde und bis ins nächste Jahrhundert vorauszusehen ist: Einer starken Intensivierung in der Vergangenheit folgt nun offenbar eine gewisse Extensivierung! Was bewirkt diesen Umschwung?

Die heutige Ausgangslage

Die Intensivierung der Vergangenheit war durch vier Phasen gekennzeichnet:

- Die Pionierzeit von den ersten Anfängen bis 1907
- Der Aufschwung von 1908 bis 1945
- Die Blütezeit von 1946 bis 1970
- Der Endausbau von 1971 bis heute.

Hier soll nur auf die vierte Phase eingegangen werden: Schon in den sechziger Jahren zeichnete sich ab, was man aufgrund der damals ungestümen Bautätigkeit zwar vorausgesagt, aber vielleicht doch nicht ganz geglaubt hatte. Der Endausbau der schweizerischen Wasserkräfte! Mangels weiterer realisierbarer Projekte verlangsamte sich der Bau von Wasserkraftanlagen zunehmend und vermochte mit dem weiterhin steigenden Strombedarf nicht mehr Schritt zu halten. Deshalb mussten die für die Stromversorgung Verantwortlichen nach andern Energiequellen Ausschau halten. Die Inbetriebnahme des ersten schweizerischen Kernkraftwerkes in Beznau im Jahre 1969 kündete die neue Zeit an.

Anfang der achtziger Jahre kam der Bau von neuen und reinen Wasserkraftanlagen praktisch ganz zum Erliegen. Die weitere Aktivität betraf vor allem den Umbau einiger älterer Anlagen sowie die Ergänzung von bestehenden Hochdruck-Speicherkraftwerken mit Speicherpumpen. Sie bedingte damit nur wenige spektakuläre Bauten und insbesondere keine stolzen Talsperren. Für die heutige Situation ist kennzeichnend, dass in der Schweiz nur noch eine einzige Talsperre im Bau ist: die 52 m hohe Gewichtsmauer Panix der Kraftwerke Ilanz im Vorderrheintal. Auch decken die Wasserkraftanlagen nurmehr 60% des schweizerischen Strombedarfs.

Damit ist die Ausgangslage für eine Prognose der Weiterentwicklung gegeben. Von Bedeutung ist noch, dass hier nur die eigentliche Wasserkraftnutzung – also die Umwandlung der Schwereenergie der Gewässer in Strom – betrachtet wird. Die Umwandlung von Sommerstrom in Winterstrom oder von Nacht- und Wochenendstrom in Werktagsstrom mit Speicherpumpen in Speicherkraftwerken ist nicht Gegenstand der Überlegungen. Es gilt in der Elektrizitätswirtschaft gleichsam den *Generator* von der *Batterie* zu unterscheiden: Ein reines Kraftwerk ist seinem Wesen nach ein Generator, weil es aus einer fremden Energie Strom erzeugt. Ein reines Pumpspeicherwerk ist hingegen eine Batterie, welches Strom aufnimmt und anschliessend wieder abgibt. Das eine ist also eine Produktionsanlage, das andere ein Lager oder ein Speicher.

Wenn hier aber nur von den eigentlichen Wasserkraftwerken die Rede ist, so heisst das, dass die Entwicklung der

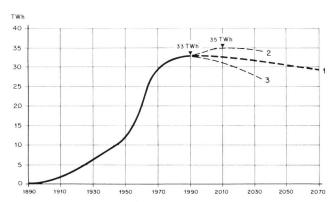
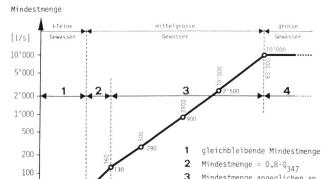


Bild 1. Entwicklung der Stromerzeugung der schweizerischen Wasserkraftwerke bis heute und Prognose für drei Szenarien. Kurve 1 entspricht dem wahrscheinlichsten Szenario.

Saison- oder Pumpspeicheranlagen durchaus einen anderen Weg einschlagen kann.

Die Konsequenzen der bevorstehenden Restwassererhöhung


Die schon seit längerer Zeit besonders von Fischerei- und Naturschutzkreisen angestrebte Erhöhung der Restwasserabflüsse soll demnächst im Rahmen der Revision des Bundesgesetzes über den Schutz der Gewässer (Gewässerschutzgesetz) oder aber der Volksinitiative «zur Rettung unserer Gewässer» verwirklicht werden.

Der vom Bundesrat dem Parlament im Juli 1987 vorgelegte Revisionsentwurf sieht diesbezüglich ein Zweifaches vor: eine *Mindestanforderung* und einen *Ermessensspielraum*. Die Mindestanforderung schreibt vor, welcher Abfluss auf jeden Fall im Fluss- oder Bachbett belassen werden muss und damit nicht gefasst und abgeleitet werden darf. Sie wird durch eine Kurve (Bild 2) dargstellt.

Der Ermessensspielraum besagt, dass die Kantone als Vollzugsbehörde des Gewässerschutzgesetzes verpflichtet sind, den Mindestabfluss im Einzelfall jeweils soweit zu erhöhen, als dies aufgrund einer Interessenabwägung möglich ist. Diese Abwägung hat sämtliche mit dem Abfluss zusammenhängenden Fragen zu berücksichtigen, also zum Beispiel neben ökologischen auch ökonomische.

Nun ist es ohne weiteres möglich, die sich aus der *Mindest-anforderung* ergebende Energieeinbusse von Umleitkraft-

Bild 2. Mindestmenge nach Artikel 31 Absatz 1 (logarithmische Darstellung) des Entwurfs für ein revidiertes Bundesgesetz über den Schutz der Gewässer gemäss der Botschaft zur Volksinitiative «zur Rettung unserer Gewässer» und zur Revision des Bundesgesetzes über den Schutz der Gewässer vom 29. April 1987, S.71.

werken zu bestimmen. Hingegen kann die sich aus dem *Ermessensspielraum* ergebende Energieeinbusse grundsätzlich nicht vorausgesagt werden. Einen gewissen Anhaltspunkt liefert vielleicht der Umstand, dass einige Kantone kürzlich Mindestabflüsse festgelegt haben, die um 28 bis 266 % höher lagen als der Mindestanforderung entsprechend. Dabei stützten sich die Entscheidungsinstanzen vornehmlich auf Fischereigutachten.

Will man heute also die Energieeinbusse beziffern, die das in Revision begriffene Gewässerschutzgesetz verursacht, steht man vor der Schwierigkeit, dass sich nur der Minimalwert errechnen lässt, nicht aber der Maximalwert, der ein Vielfaches davon betragen kann. Damit lässt sich auch der wahrscheinliche Wert, der dazwischen liegt, nicht abschätzen.

Ein Versuch, dennoch zu Angaben zu gelangen, stammt von der Elektrowatt-Ingenieurunternehmung, die 1987 einen einschlägigen Bericht zuhanden des Schweizerischen Wasserwirtschaftsverbandes ausgearbeitet hat. Dieser Bericht errechnet den Minimalwert für den gesamten Kraftwerkspark auf 1,9 TWh pro Jahr und versucht, den wahrscheinlichen Wert einzugabeln. Als untere Gabelgrenze nimmt er eine Erhöhung des Minimalwertes um 39% und als obere eine Erhöhung von 166% an. Das führt zu einer Spanne von 2,6 bis 5,0 TWh pro Jahr, was einem Streuungsverhältnis von 1 zu 2 entspricht. Nimmt man an, dass der wahrscheinliche Wert der Energieeinbusse genau dazwischen liegt, erhält man 3,8 TWh.

Eine Energieeinbusse von 3,8 TWh macht aber 12% der heutigen und – wie sich noch zeigen wird – kaum vermehrbaren mittleren Jahresproduktion aller Schweizer Kraftwerke aus und entspricht etwa dem Potential sämtlicher Anlagen Graubündens.

Um Missverständnissen vorzubeugen sei noch erwähnt, dass es sich bei dieser Energieeinbusse nur um jene Produktionsverminderung handelt, die das in Revision begriffene Gewässerschutzgesetz verursacht, indem es die Mindestabflüsse gegenüber den bisher schon respektierten und in den laufenden Konzessionen verankerten erhöht. Allerdings wird sich die Energieeinbusse nicht schlagartig manifestieren. Denn das neue Gewässerschutzgesetz anerkennt die laufenden Konzessionen als wohlerworbene Rechte und sieht für die Einführung der Mindestabflüsse zwei Fälle vor: Entweder erfolgt diese Einführung während einer laufenden Konzession, dann wird die verursachte Einbusse voll entschädigt. Oder sie tritt bei einer Konzessionserneuerung oder einer neuen Konzession ohne weiteres in Kraft.

Geht man davon aus, dass der zweite Fall der häufigste sein wird, erstreckt sich die Einführungszeit theoretisch über die nächsten 80 Jahre, also fast bis ins Jahr 2070, weil die meisten bestehenden Konzessionen über 80 Jahre laufen. In diesem Zeitraum wird man also die bisher genutzten Flüsse und Bäche sukzessive weniger nutzen, weshalb man tatsächlich von einer gewissen Extensivierung der Wasserkraftnutzung sprechen kann. Die zugehörige Entwicklung veranschaulicht Kurve 1 des Diagramms (Bild 1).

Nun war bisher bloss von der Energieeinbusse infolge der Revision des Gewässerschutzgesetzes die Rede. Wie sehen die Verhältnisse aus, wenn statt dessen die Volksinitiative «zur Rettung unserer Gewässer» zum Tragen kommt? Der Initiativtext, der einen neuen Verfassungsartikel vorschlägt, ist allgemeiner gehalten und nennt darum keine Zahlen. Er spricht summarisch von der Gewährleistung einer ausreichenden Wasserführung, aber nur im Hinblick auf ökologische und landschaftsschützerische Gesichtspunkte, was eine allgemeinere Interessenabwägung ausschliesst. Zu-

dem strebt er diese Gewährleistung nicht bloss für die neuen Wasserfassungen an, sondern auch für die bestehenden. Zur Abgeltung der bei jenen entstehenden Schmälerung sieht er die Schaffung eines Fonds vor, den die Wasserkraftwerke in globo speisen.

Damit wird klar, dass die Energieeinbusse bei Annahme der Volksinitiative weit höhere Werte annehmen wird, als bei der Inkraftsetzung des revidierten Gewässerschutzgesetzes. Auch wird sie sich viel früher manifestieren, da überall und praktisch sofort höhere Mindestabflüsse eingeführt werden müssen. Die Entschädigungsfrage fällt als Hemmnis weg, weil sie so gelöst wird, dass die Geschädigten, nämlich die Wasserkraftwerke selber, den Entschädigungsfonds äufnen müssen. In andern Worten: Die wohlerworbenen Rechte der laufenden Konzessionen werden faktisch entschädigungslos abgebaut.

Eine solche Entwicklung wird zwangsläufig zu einer Extensivierung der Wasserkraftnutzung führen. In welchem Ausmass dies geschehen wird, lässt sich schwerlich beziffern. Die Kurve 3 des Diagramms geht davon aus, dass die Energieeinbusse mindestens doppelt so gross ausfällt wie zufolge des revidierten Gewässerschutzgesetzes.

Die abnehmende Akzeptanz von Um- und Neubauten

In der Diskussion um die restwasserbedingte Einbusse wird etwa vermerkt, dass diese durch den Ausbau bestehender Anlagen und durch Neubauten kompensiert werden könne. Eine entsprechende Rechnung führt auch der bereits erwähnte Bericht der Elektrowatt-Ingenieurunternehmung an, wobei er sich auf eine Studie des Schweizerischen Wasserwirtschaftsverbandes aus dem Jahre 1987 stützt. In dieser Studie wird das Potential der Aus-und Neubaumöglichkeiten bis 2005 auf 3,2 TWh mittlere Jahresproduktion veranschlagt und bis zum Planungshorizont von 2025 um weitere 0,2 TWh erhöht (Pumpenergie abgezogen). Diese Zahlen ergeben sich aus einer Prognose der

- Erhöhung der Produktivität bestehender Anlagen durch Verbesserung des Wirkungsgrades und Erhöhung des Schluckvermögens
- Nutzung bisher ungenutzter Fluss- und Bachstrecken durch grössere Neuanlagen
- Auferstehung der einst weitverbreiteten Kleinkraftwerke.

Ist diese Prognose heute noch vertretbar? Sie postuliert immerhin eine Vermehrung der mittleren Jahresproduktion der Schweizer Wasserkraftwerke um rund 10%, und zwar schon bis 2005, also in den nächsten 17 Jahren. Ein Blick auf die Kurve 2 des Diagrammes (Bild 1) zeigt, dass damit gegenüber heute sogar ein beschleunigtes Wachstum vorausgesetzt wird.

Die Praxis beweist, dass eine Erhöhung der Produktivität bestehender Anlagen tatsächlich bis zu einem gewissen Grad möglich ist. In den letzten Jahren wurde eine Anzahl von älteren Kraftwerken erneuert und hinsichtlich Wirkungsgrad verbessert. Weitere Erneuerungsarbeiten sind noch im Gang. Diese Erneuerung geschah und geschieht hauptsächlich durch den Ersatz von überholten Maschinen - gemeint sind Turbinen, Generatoren und Transformatoren - durch neuere. Die überholten Maschinen weisen ein Alter von 50 bis 60 Jahren auf, stammen also aus den späten 20er und den 30er Jahren und damit aus einer Zeit, in der die entsprechende Technik noch nicht voll ausgereift war. Darum bringt ihr Ersatz durch modernere Einheiten eben auch eine nennenswerte Verbesserung. Es darf aber nicht damit gerechnet werden, dass sich eine solche Aufwertung auch in Zukunft erzielen lässt. Denn schon die Maschinen

Absperrklappen

ERHARD Absperr- und Regelarmaturen für Wasserversorgung, Wasserkraftanlagen, Gasverteilung usw. Umfangreiche Werkstoffauswahl. DN 50 bis 3000. ERHARD, über 100 Jahre Erfahrung im Bau und Einsatz von Trink- und Abwasserarmaturen. Von diesem Know How sollte man unbedingt profitieren.

Willi Vögtlin Aktiengesellschaft 4015 Basel Telefon 061/54 15 00 Telefax 061/541267

Büro Frauenfeld: Tel. 054/215539 Bureau Nyon: Tel. 022/67 1577

TRÜBUNGS-**MONITOR TMK**

Unkompliziert, zuverlässig und erstaunlich preiswert. Trübungsmonitor mit geschlossenem Küvettensystem für weniger getrübte Medien. Mit variabler Meßbereichs- und Grenzwerteinstellung vor Ort und manueller Reinigungsmöglichkeit.

DR LANGE

Dr. Bruno Lange GmbH. Berlin Dr. Bruno Lange AG Industriemeßgeräte Badener Strasse 734 Wiesenstraße 21 CH-8048 Zurich 4000 Düsseldorf 11 Telefon 01/4 32 41 80 Telefon (02 11) 5 00 97-0 Teletex 21 143 300 Telex 8 588 757

Probeentnahmegerät PE-76

Schweizer Fabrikat eigene Entwicklung Beratung und Service durch Hersteller

zur vollständig automatischen Entnahme von Abwasserproben in Kläranlagen und Industrie zeit- oder mengenproportionale Entnahme mit Einfrierschutz und Rückspülung. Anschlussfertig.

Gerne beraten wir Sie auch über Pumpen:

Exzenterschneckenpumpen für Klär- und Faulschlamm sowie Fällungs- und Flockungsmittel Dosierpumpen für Chemikalien

Unterwassertauchpumpen für Wasser und Fäkalien

Für PUMPEN SAWA fragen

A. SCHMIDHAUSER Maschinenfabrik CH-9205 WALDKIRCH Telefon 071 / 98 12 55

Meto-Bau

die leistungsfähige Stahlbau-Firma

25 **Jahre** Abwassertechnik

Meto-Bau AG

5303 Würenlingen

Breite unseres Produktions-Spektrums

Neuanlagen Umbauten und Reparaturen Service und Unterhaltsarbeiten

Telefon 056/982661

5303 Würenlingen

Gute Wasserversorgung beginnt bei GRUNDFOS.

GRUNDFOS Grund 1: Die Qualität.

Alle GRUNDFOS Pumpen sind aus Chrom-Nickel-Stahl. Ein Qualitätsvorteil, der für sich zählt und für Sie.

GRUNDFOS Grund 2:

Die Erfahrung.

Die Erfahrung von jährlich über 4,3 Mio. gebauten Pumpen kommt auch Ihnen zugute.

GRUNDFOS Grund 3:

Der Service.

Der prompte GRUNDFOS Service steht Ihnen in der ganzen Schweiz zur Verfügung. Von Zürich, Bern oder Lausanne aus, sind wir rasch

GRUNDFOS Grund 4:

Uberall auf der Welt.


Profitieren Sie vom weltweiten Know-How aus über 90 Ländern der Welt.

GRUNDFOS Grund 5: Der Preis.

GRUNDFOS Pumpen gibt es zu einem Preis, für den Sie nicht einmal jede herkömmliche Pumpe vergleichbarer Leistung bekommen.

Ein Beispiel:

Vertikale Kreiselpumpen und Unterwasserpumpen für Wasserversorgung, Verfahrenstechnik und Industrie. Fördermengen bis 75 bzw. 120 m³/h Förderhöhen

GRUNDFOS PUMPEN AG

Bruggacherstr. 10 8117 Fällanden Tel. 01-825 29 25 Telex 828462

BE Militärstrasse 10 3014 Bern

Tel. 031-41 13 71 Anciens VD. Moulins 2A 1009 Pully Tél. 021-29 43 81

Ein handliches, digitalanzeigendes Photometer zur Bestimmung verschiedener Parameter der Wasseraufbereitung:

> Desinfektionsmittel (Chlor, Brom, Ozon) Flockungsmittel (Aluminium, Eisen) pH-Wert (6,5-8,0 pH) Chlorstabilisatoren (Cyanursäure)

Mit dem microprozessorgesteuerten Photometer PC 20 sind neben den täglichen Routineanalysen auch die Konzentrationen an Flockungsmitteln und Chlorstabilisatoren schnell und zuverlässig zu ermitteln. Das Gerät ist für die Untersuchung von vier Parametern programmiert.

Insgesamt stehen dem Anwender neun gängige Analysekombinationen bei der Anschaffung zur Auswahl.

Fordern Sie weitere Photometer PC 20-Informationen an. Unsere Produkte führt der Fachhandel.

TINTOMETER GMBH Westfalendamm 73 D-4600 Dortmund 1

Tintometer AG Hauserstrasse 53 CH-5200 Windisch

LOVIBOND und TINTOMETER sind eingetragene Warenzeichen der TINTOMETER GmbH

Spitzenprodukte für Ölwehr und Umweltschutz

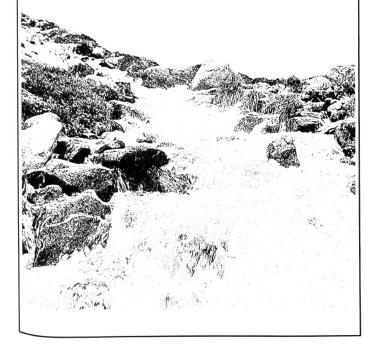
- Ölbindemittel. EKOPERL / TERRAPERL für den Einsatz auf Gewässern und Böden. Ölbindewürfel. Ölabsorbierende Sperren.
- Ölwehrgeräte. ECRAN Schnellsperre für den Einsatz bei Ölunfällen. STATIC Langzeitsperre für Baustellen und Strandbäder. Bachschleusen. Ausstreu- und Absauggeräte. Schwimmsiebrechen. Siebschaufeln. Q.S. Wasserprobenentnahmegerät.
- Kanal-/Rohrreinigungsmaschinen System ROWO, elektro-mech., für 10 bis 250 mm Rohre.
- Spray-Entferner / Spray-Schutz. LORIAUX - Reinigungs- und Imprägnierungsmittel für Gebäude und Denkmäler.
- Wasseraufbereitungs-Produkte.
 CEALIN-Sortiment für Trink-, Schwimmbad- und Gebrauchswasser aller Bereiche.

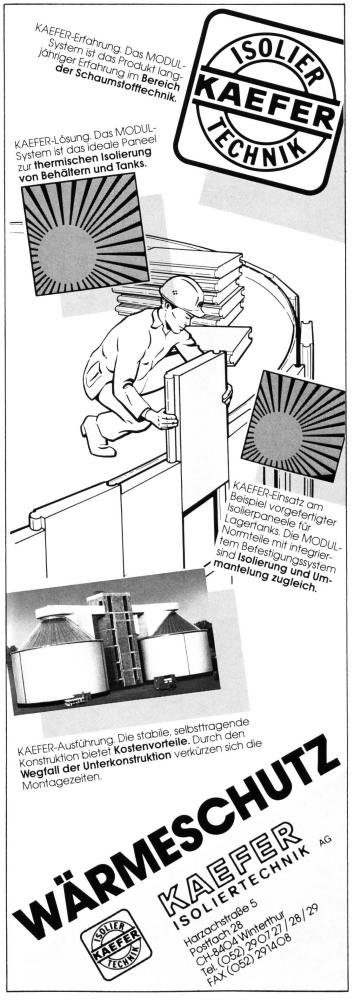
Unterlagen und Beratung durch:

ASEOL

ASEOL AG, Handelsabteilung, 3001 Bern Telefon 031 25 78 44

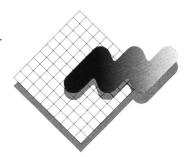
Vieles kann ein Wasser trüben. Wir schaffen wieder Klarheit. Mit kompetenter Beratung. Und mit den nötigen Einsatzmitteln.


EISEN(III)CHLORID


zur Behandlung und Aufbereitung verschiedenster Wasserarten.

SOLVAY (Schweiz) AG SOLVAY (Suisse) SA

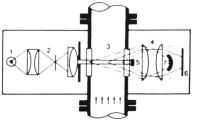
Seefeldstrasse 214 8008 Zürich Telefon 01/559141 Telefax 01/558688 Telex 812513



Als Basis Ihrer Arbeit – unsere chemischen Analysen!

Dienstleistungsanalysen im Bereich Wasser und Umwelt:

- Einzelanalysen und Untersuchungen im Abonnement nach den verschiedenen Richtlinien und Verfahren.
- Entwicklung individueller Untersuchungsprogramme.


Oekopol-Labor AG

Wasser- und Umweltanalytik Tannholzstrasse 1 3052 Zollikofen

Telefon 031/577077

bewährte Technologie für Prozeß und Labor weltweit im Einsatz

- 1 Lichtquelle
- 2 Projektionsoptik
- 3 Prozeßmedium
- 4 Empfängeroptik
- 5 Durchlichtdetektor
- 6 Streulichtdetektor
- 7 Lichtfalle

MONITEK

Ihr Partner für

- Trübungsmessung
- Mengenmessung
- Farbmessung
- Konzentrationsmessung
- Abwassermessung
- Öl in Wasser
- Flockungsmittel-Optimierung
- Wasser in Öl

S PROSE AG

RHEINFALLSTRASSE 13

CH-8212 NEUHAUSEN A/RHF.

TELEFON 053/225377

FAX 053/224580

Modernste Technik und einfache Handhabeng. Modelle mit Förderleistungen von 120 bis 150'000 l/min. und zuverlässige, flexible Service-Vertretungen. Das macht FLYGT zum weltweit grössten Hersteller von Tauchmotorpumpen. Und Heusser zum sicheren Partner der Kunden.

Alte Steinhauserstrasse 23, 6330 Cham, Telefon 042 / 44 22 ⁴⁴ Rte de Grammont, 1844 Villeneuve

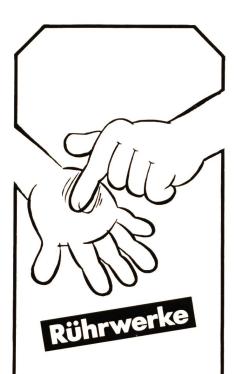
-fispal

Mit dem elastischen Mauerkragen «System Frank» wird zwischen einzubetonierendem Rohr und Bauwerk endgültig dichtgemacht.

Für alle Rohrdurchmesser und Materialien zwischen 32 und 2000 mm lieferbar. Neutraler Prüfattest bis 1 bar gegen Grund- und Druckwasser lieferbar.

Anwendung bei allen: Kunststoffrohrtypen, Stahlrohrtypen, Gussrohren, Asbestzementrohren, Zementrohren.

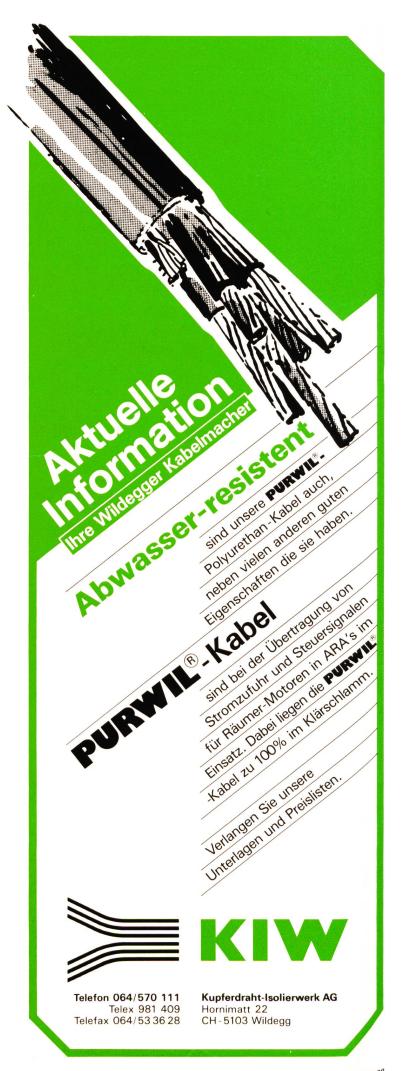
Kunststofftechnik 8330 Pfäffikon ZH Telefon 01/9500777 Telex 59983 fisp ch Telefax 01/9500778


rühren mischen umwälzen engineering

Nennen Sie uns Ihre Aufgabe – wir liefern die Lösung. Kompetent und umfassend für alle
■ Tauchrührwerke ● Tangentialrührwerke ● Belüftungsrührwerke
Unsere Spezialität: korrosionsfreie Eigenproduktion von massgeschneiderten
Problemlösungen. Fragen Sie unverbindlich, wir freuen uns, mit Ihnen
Ihr besonderes Problem zu besprechen.

arnold ag

Verfahrenstechnik CH-6105 Schachen, Tel. 041 9713 97 / 9733 85


Wir bieten Know-how.

Wir beraten Sie bei der Auswahl und Auslegung der geeigneten Rührwerke. Wir produzieren serienmässig leistungsfähige Rührwerke. Darüber hinaus haben wir uns zur Aufgabe gemacht, Rührwerke nach den jeweiligen spezifischen Anforderungen und Einsatzbedingungen zu konstruieren.

Wir bieten Rührwerke für alle Anwendungsbereiche.

☐ Bitte senden Sie uns Ihre Unterlagen:
Absender:
ALOWAG

4153 Reinach , Duggingerstr. 2 Tel. 061 76 66 36, Telex 967 066

der 40er und dann insbesondere jene der 50er Jahre weisen Wirkungsgrade auf, die sich nur wenig oder gar nicht übertreffen lassen. Wenn sie einmal um das Jahr 2000 später ersetzt werden müssen, springt produktionsmässig kaum etwas heraus.

Im Zuge gewisser Erneuerungen konnte und kann die Schluckfähigkeit der Maschinen erhöht werden. Auch das bringt insbesondere bei den älteren und darum niedrig ausgebauten Wasserkraftwerken der Vorkriegszeit eine Produktionserhöhung. Wenn aber einmal, das heisst um das Jahr 2000 und später, die von Anfang an höher ausgebauten Anlagen der Kriegs- und Nachkriegsjahre erneuerungsbedürftig werden, ist eine ähnliche Steigerung nicht mehr möglich. Ausserdem ist zu bedenken, dass die Erhöhung der Schluckfähigkeit eines Kraftwerkes grundsätzlich eine Änderung der Konzession bedingt. Dabei wird bei Umleitkraftwerken unweigerlich die Restwasserfrage aufgerollt und im bereits besprochenen Sinne so geregelt, dass eine Produktionseinbusse resultiert. Diese wird den durch den Höherausbau erzielbaren Produktionsgewinn schmälern oder gar wettmachen. Folglich ist eine bedeutende Produktionserhöhung nur bei einigen der weit weniger zahlreichen Flusskraftwerke möglich.

Sobald die Erneuerungen ein Ausmass annehmen, das über den Ersatz der alten Maschinen durch grössere und bessere, einschliesslich der damit verbundenen Anpassung der Zentralen, hinausgeht, werden sie praktisch wie Neubauten behandelt. Und da muss einfach festgestellt werden, dass sich heute solche Neubauten für Wasserkraftanlagen weder längs bereits genutzter Gewässerstrecken noch ungenutzter leicht verwirklichen lassen. Im Gegenteil! Es erwächst ihnen nicht nur von Naturschutz- und Fischereiverbänden, sondern auch aus breiten Kreisen der Bevölkerung ein nachhaltiger Widerstand. Das äussert sich unter anderem in langwierigen Verfahrensprozeduren bis vor Bundesgericht und in entsprechenden politischen Vorstössen. Es ist deshalb nicht auszuschliessen, dass sich die mit dem Inkrafttreten des Umweltschutzgesetzes am 1. Januar 1985 eingeführte Umweltverträglichkeitsprüfung für Wasserkraftanlagen als bauverhindernd auswirken wird. Denn wenn eine neue Wasserkraftanlage per se schon abgelehnt wird, vermag ihr auch keine noch so subtile Argumentation im Umweltbereich mehr zu helfen. So hat denn heute auch noch kein einziges grösseres Neubauprojekt eine Umweltverträglichkeitsprüfung bestanden. Die entsprechenden Untersuchungen ziehen sich in die Länge und weisen zum Teil einen kaum zu bewältigenden Detaillierungsgrad auf. Es ist auch unschwer vorauszusehen, dass die Ergebnisse, sollten sie per Saldo positiv ausfallen, sehr viele Ansatzpunkte für Einsprachen bieten werden.

Diese ablehnende Haltung breiter Kreise findet ihren Niederschlag ja auch in der erwähnten Volksinitiative «zur Rettung unserer Gewässer». Wenn diese zum Tragen kommen sollte, dürfte die Erstellung von Kraftwerkneubauten insbesondere längs bisher ungenutzter Gewässer unmöglich werden. Die heutige Situation in der Schweiz ist also nicht weit von einem *Moratorium für neue Wasserkraftwerke* entfernt

In dieser Situation an eine Auferstehung der Kleinkraftwerke zu glauben, fällt schwer. Von einer *Auferstehung* ist hier deshalb die Rede, weil es früher eine grosse Anzahl solcher Anlagen gab. Eine Statistik des Bundesamtes für Wasserwirtschaft für Kraftwerke unter 10 MW Leistung zeigt, dass davon 1914 fast 7000 in Betrieb waren, 1985 aber nur noch 1400. Innerhalb der letzten 70 Jahre wurden in der Schweiz also mehrere tausend Kleinkraftwerke stillgelegt. Dieses *Kleinkraftwerksterben* setzte vor allem nach dem

Zweiten Weltkrieg ein, als viele ältere Anlagen erneuerungsbedürftig wurden, sich die notwendigen Erneuerungskosten aber nicht lohnten.

Eine Auferstehung der Kleinkraftwerke wäre nur denkbar, wenn sich die bisherigen wirtschaftlichen Verhältnisse grundlegend ändern würden. Eine solche Entwicklung zeichnet sich gegenwärtig nicht ab. Im Gegenteil, ein Blick auf die weiter oben angeführte Tabelle der Mindestabflüsse gemäss Revisionsentwurf des Gewässerschutzgesetzes (Bild 2) zeigt, dass bei kleinen Gewässern im Verhältnis bedeutend grössere Restwasserabflüsse gefordert werden. Somit werden die Kleinkraftwerke von der Restwasserfrage weit stärker betroffen als mittlere und grosse Anlagen. Es gibt zwar manche gute Gründe, um den Bau von Kleinkraftwerken zu fördern. Doch muss nüchtern festgestellt werden, dass sowohl die bestehende wie die in Vorbereitung befindliche Gesetzgebung eine solche Förderung keineswegs begünstigt. Sicher werden im Zeichen der Dezentralisierung und der Gemeindeautonomie noch einige Kleinkraftwerke erstellt werden. Um gesamtschweizerisch bezüglich Produktion ins Gewicht zu fallen, müssten es aber hunderte sein. Und wie bereits gesagt, leben wir in einer Zeit in der breite Kreise ein Moratorium für neue Wasserkraftwerke als wünschbar oder doch annehmbar erach-

Das Fazit der Bestrebungen

Aus heutiger Sicht ist es folglich nicht gerechtfertigt, mit einer Zunahme der Stromproduktion aus Wasserkraftwerken zu rechnen. Die vom Schweizerischen Wasserwirtschaftsverband 1987 veröffentlichten Wachstumszahlen sind zu optimistisch. Die heute weitgehend fehlende Akzeptanz für neue Energiebauten und insbesondere Wasserkraftanlagen lässt einen wesentlichen Weiterausbau kaum mehr zu. Zwar ist anzunehmen, dass wenigstens der bestehende Kraftwerkpark laufend erneuert werden wird. Dabei lassen sich durch bessere Wirkungsgrade und höhere Schluckvermögen lokal gewisse Verbesserungen erzielen. Es fragt sich aber, ob der entsprechende Energiegewinn nicht durch Einbussen andernorts wettgemacht werden wird. Zu denken ist neben der Restwasserfrage an Verlandungseffekte in den Stauhaltungen und an Stillegungen. Die Verlandungseffekte infolge von Schwebstoff- und Geschiebeablagerungen in den Stauseen sind in der Schweiz vorläufig nicht sehr gravierend. Sie könnten aber bei einer Zunahme der Bodenerosion als Folge des Waldsterbens einschneidender werden.

Stillegungen bestehender Anlagen sind dort zu erwarten, wo sich eine Erneuerung aus wirtschaftlichen Gründen nicht lohnt. Entscheidend ist wie überall das Nutzen/Kosten-Verhältnis, das durch die neuen ökologischen Forderungen naturgemäss belastet wird. Die unterschwellig verbreitete Meinung, solche Stillegungen seien grundsätzlich nicht in Betracht zu ziehen, weil die Kraftwerkbesitzer die Anpassungskosten scheuten, die damit verbunden sein könnten, trifft vielleicht für grosse Anlagen zu. Für kleinere lässt sie sich, wie das erwähnte Kleinkraftwerksterben der letzten Jahrzehnte beweist, nicht begründen.

Wenn also per Saldo und aus heutiger Sicht keine wesentliche Vermehrung der Stromerzeugung aus Wasserkraftwerken vorausgesagt werden darf, so ist umso mehr mit einer Verminderung infolge der verschärften Restwasserbestimmung zu rechnen. Diese Verminderung steht unmittelbar vor der Tür und wird sich entweder gemäss dem revidierten Gewässerschutzgesetz oder gemäss der Volksinitiative «zur Rettung unserer Gewässer» manifestieren. Es ist ja kaum damit zu rechnen, dass beide Vorlagen vom Parla-

ment beziehungsweise vom Volk abgelehnt werden. Als wahrscheinlichste Kurve für die Weiterentwicklung der Wasserkraftproduktion der Schweiz bezeichnet der Verfasser die *Kurve 1 im Bild 1.* Sie zeigt mit aller Deutlichkeit, dass der bisherigen Phase der Intensivierung der Wasserkraftnutzung nun eine Phase der Extensivierung folgt!

Versuch einer Beurteilung

Es wurde hier mehrfach betont, dass die vorliegende Bilanz aus heutiger Sicht gezogen wird. Diese Sicht ist natürlich begrenzt. Es ist sicher nicht möglich, die Entwicklungen in der Energiewirtschaft weit über das Jahr 2000 vorauszusagen. Wie in der Vergangenheit werden sich auch in Zukunft die Präferenzen der Gesellschaft und die Möglichkeiten, ihnen zu entsprechen, ändern. Der Sinn der vorliegenden Zeilen besteht deshalb darin, den gegenwärtigen Standpunkt der schweizerischen Gesellschaft und die sich daraus ergebenden Konsequenzen für die Wasserkraftnutzung möglichst klar aufzuzeigen. Die heutige Gesellschaft hat selbstverständlich das Recht zu einem solchen Standpunkt. Sie hat aber nach Meinung des Verfassers auch das Recht auf eine nüchterne Information über die zugehörigen Konsequenzen. Und diese bestehen, wie erwähnt, in einer Extensivierung der schweizerischen Wasserkraftnutzung.

Verträgt sich das aber mit den andern Zielen der schweizerischen Energiepolitik? Trotz Sparappellen steigt der Strombedarf in der Schweiz ja weiterhin um mehrere Prozente pro Jahr. Dies beweist, dass sich der Schweizer sozusagen per Druckknopf für eine Intensivierung des Stromeinsatzes ausspricht. Man nennt diese Haltung auch etwa Druckknopfdemokratie. Die Gründe für diese Willenskundgebung sind:

- Die ungebrochene Beliebtheit des Stroms; er lässt sich aufs vielfältigste in Licht, Kraft und Wärme umwandeln.
- Die äusserst geringe Umweltbelastung im Vergleich zu andern Energieträgern; es gibt kaum Entsorgungsprobleme.
- Die rasante und alle Lebensbereiche erfassende Informatik; die zugehörige Elektronik braucht definitionsgemäss Strom.

Folglich müssen die schweizerischen Stromversorgungsunternehmen mehr und mehr Strom zur Verfügung stellen. Dabei sind sie einer Reihe von Gegebenheiten unterworfen:

- Die Erstellung schweizerischer fossilthermischer Kraftwerke kommt mangels eigener Brennstoffquellen und aus ökologischen Gründen nicht in Betracht.
- Die Erstellung neuer Kernkraftwerke stösst auf einen Widerstand, der noch grösser ist als bei Wasserkraftwerken.
- Die Entwicklung alternativer Kraftwerke auf der Basis von Sonnen- oder Windenergie steht in den Anfängen und fällt vom Potential her kaum ins Gewicht.

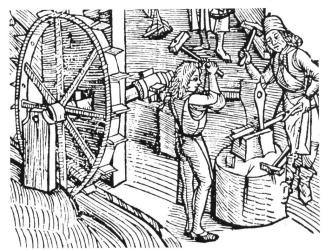
Somit bleibt den Stromversorgungsunternehmen nur noch der Import aus dem Ausland übrig. Bereits fliessen denn auch grosse Mengen von Winterstrom aus Frankreich in die Schweiz

So betrachtet ist die Extensivierung der schweizerischen Wasserkraftnutzung Ausdruck einer umfassenden, wenn auch nie ausgesprochenen und darum nicht erklärten Energiepolitik: Der Schweizer will offenbar die Energieerzeugung grundsätzlich dem Ausland überlassen und sich nur noch der Verteilung und dem Verbrauch widmen. Er frönt dieser Haltung ja bereits bei sämtlichen fossilen Brenn- und Treibstoffen, ohne dass er sich dessen recht bewusst ist. Nun möchte er diese Haltung auch beim Strom

einnehmen. Nur fragt sich, ob das Ausland längerfristig mitmacht und dabei die *Unabhängigkeit der Schweiz* genügend respektiert!

Vortrag, gehalten an der Tagung «Wasserkraft in Bayern» vom 26. September 1988 in Krün. Diese Tagung war dem Thema «Wasserkraft – eine regenerierbare Energiequelle der Zukunft» gewidmet. Getragen wurde die Tagung von der Arbeitsgemeinschaft Wasserkraft in Bayern und dem Österreichischen Verein für Ökologie und Umweltforschung.

Adresse des Verfassers: *Daniel Vischer*, Dr. Prof. Direktor der Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie der Eidgenössischen Technischen Hochschule Zürich, Gloriastrasse 37–39, ETH-Zentrum, CH-8092 Zürich.


Mittelalterliche Wasserkraftnutzung in der Schweiz

Vortrag von Niklaus Schnitter, gehalten vor dem Linth-Limmatverband am 27. September 1988

Die schon um die Zeit von Christi Geburt in Ost und West entwickelten vertikalen und horizontalen Wasserräder gelangten erst im Mittelalter in grösserem Umfang zur Anwendung.

In einer ersten Welle wurden die Wasserräder in Westeuropa und in der Schweiz im Reich der Franken verbreitet (8. Jahrhundert); sie wurden vorwiegend für den Antrieb von Getreidemühlen eingesetzt.

Durch die Einführung der Nockenwelle konnten die Wasserräder bald für die verschiedensten Zwecke gebraucht

Das Wasserrad treibt eine horizontale Welle mit Nocken (Mitte), die abwechselnd den kippbar gelagerten Schmiedehammer (rechts) hochdrükken, der dann mit Wucht aufs Werkstück fällt.

Aus *H. von Reutlingers* «Flores musicae» von 1488.

werden. Die Nockenwelle, wie auch die später dazugekommene Kurbelwelle, erlaubte die Umsetzung der Drehbewegung in eine Hin-und-her-Bewegung. Zu den Getreidemühlen kamen nun alle Arten von Stampfen, Hämmern, Sägen, Pumpen usw.

An verschiedenen Orten wurden solche Nutzungen des Wassers in grösserer Zahl an eigens erstellten Gewerbekanälen angesiedelt, wie zum Beispiel in Basel, Zürich, Aarburg/AG und Nyon/VD. Einen Höhepunkt erreichte die mittelalterliche Wasserkraftnutzung im Zusammenhang (bzw. als Grundlage) der «industriellen Revolution des 12. Jahrhunderts» bis zum Ausbruch der Pest im Jahre 1348.

Adresse des Referenten: *Niklaus Schnitter*, dipl. Ing. ETHZ, Fritz-Fleiner-Weg 44, CH-8044 Zürich.

