Zeitschrift: Wasser Energie Luft = Eau énergie air = Acqua energia aria

Herausgeber: Schweizerischer Wasserwirtschaftsverband

Band: 79 (1987)

Heft: 10

Artikel: Approvisionnement en eau de la région d'Aletsch = Wasserversorgung

im Aletschgebiet

Autor: Quinche, Daniel / Rudaz, Raymond / Keuse, Hans Rudolf

DOI: https://doi.org/10.5169/seals-940665

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 18.10.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Approvisionnement en eau de la région d'Aletsch

Wasserversorgung im Aletschgebiet

Daniel Quinche, Raymond Rudaz, Hans Rudolf Keusen, Hans Zeindler und Jean-Louis Amiguet

1. Introduction

L'eau vive des montagnes, partie de l'énergie sauvage du cycle de l'eau, offre encore des ressources...

Qu'est-ce que l'eau?

La formule des livres élémentaires de chimie, $\rm H_2O$, résume des corps chimiques complexes, l'un des plus difficiles à obtenir pur, riche d'anomalies dans ses constantes physiques. D'une constitution exceptionnelle, l'eau est discrète au point que sont encore inexpliquées nombre de ses actions sur d'autres corps: dissolution, ionisation, hydrolyse ou hydratation. Chaque fois que l'on fouille sa structure, une découverte apparaît. Ainsi l'eau solide se présente sous six formes dont une seule, la glace ordinaire, est plus légère que l'eau liquide.

L'eau est banale, inodore, incolore et sans saveur en même temps que singulière, fantasque, exceptionnelle. De valeur nutritive à peu près nulle, elle est cependant le constituant principal de tout être vivant.

2. Historique du projet

Le plateau de la région d'Aletsch possède deux stations touristiques bien connues: Riederalp et Bettmeralp.

Alors que Bettmeralp dispose d'un réseau d'eau potable bien structuré, les hameaux formant Riederalp ne sont pas aussi bien nantis. Par ailleurs, le tourisme ne fait que s'accroître dans cette région; aujourd'hui on compte 3500 lits d'hôtes. Il y a donc un réel problème en approvisionnement d'eau. Les trois communes de Ried-Mörel, Greich et Goppisberg ont dû, de tout temps, lutter pour s'approvisionner en eau. Hélas, la situation s'est encore aggravée juste après la deuxième guerre mondiale par le percement d'une galerie dans le cadre d'un aménagement hydro-électrique et qui a provoqué le tarissement de certaines sources de ces communes.

Il est clairement établi aujourd'hui que ces travaux ont grandement perturbé la vie locale des habitants et par conséquent ont freiné le développement touristique de la région. A certaines périodes de l'année, le précieux liquide manque tout simplement.

Si l'eau potable est juste suffisante, l'eau d'irrigation, par contre, fait parfois cruellement défaut au cours des mois d'été. On imagine alors les incidences fâcheuses qui se répercutent sur l'agriculture locale.

Cette constatation a amené les responsables des communes à s'adresser aux instances supérieures du canton et de la Confédération afin de remédier à cette situation pénible.

En 1972 les communes de Lax, Martisberg, Goppisberg, Greich, Ried-Mörel et Bitsch ont formé une association sous la dénomination «Verband für Wasserwirtschaft und Entwicklungsplanung im Aletschgebiet».

Une commission a été créée dans le but d'étudier le problème d'approvisionnement en eau de la région d'Aletsch; études auxquelles s'associa également l'Ecole polytechnique fédérale de Zurich.

Les études ont abouti à un projet comportant une retenue au lieu-dit «Vordersee», ravitaillée par les torrents et les sources de la région de Galtjinen au-dessus de Fieschertal. Depuis le bassin d'accumulation, l'eau est acheminée par une conduite jusqu'à Laxeralp d'où elle est distribuée aux régions intéressées.

Deux variantes on été étudiées dans l'avant-projet. Le Département fédéral de l'Economie et des Finances, en 1978, adopta celui de la variante «nord». La région dominant le glacier d'Aletsch étant un site partiellement protégé, les écologistes ne manquèrent pas de s'opposer au mode d'exécution «variante nord». Mais comme chacun était conscient malgré tout de la nécessité d'un aménagement, on tomba finalement d'accord pour la «variante sud». Quoique plus onéreuse, elle comportait l'avantage d'être moins dommageable à l'environnement.

Les travaux ont commencé en 1981 par la construction d'une piste carrossable.

Après deux saisons d'été de travaux, le tunnel d'accès, long de 1000 m franchissant le Tälligrat près de l'Eggishorn et conduisant au site Märjelen a été percé le 13 septembre 1983. Les travaux se sont déroulés sans difficulté notable.

Cette galerie constitue un important maillon à double fonction: d'une part, il a ouvert l'accès au chantier de la digue et d'autre part, ultérieurement, il supportera la conduite d'amenée d'eau potable aux communes intéressées du plateau d'Aletsch.

A la suite de ces travaux, ce fut le tour de la construction de la digue «Vordersee» qui retiendra quelque 500000 m³ d'eau.

Cette digue comprend des ouvrages annexes tels que la vidange de fond qui la traverse et sert également de prise d'eau et l'évacuateur des crues situé sur la rive droite. Le revêtement aval de la digue sera adapté à la nature du terrain et ensemencé dans le cadre d'une entente avec les milieux écologistes.

La face intérieure par contre a été munie d'un tapis bitumineux imperméable.

La construction du corps de la digue a été exécuté pendant les étés 1984 et 1985. La membrane d'étanchéité sur le versant amont de la digue fut mis en place en 1986. La période de travail sur le chantier durait généralement de début juillet à début octobre.

En 1987 les travaux seront concentrés sur la construction de la station de traitement de Laxeralp, sur le réseau de conduite d'eau et les installations annexes. La mise en service de l'ouvrage est prévu en automne 1987.

L'aménagement d'Aletsch est le dernier en date de ceux qui ont été réalisés en Valais avec une retenue importante pour l'eau potable et d'irrigation. Concernant le site de Märjelen nous ne saurions ignorer l'énorme travail qui a fait l'objet d'un livre très détaillé de 350 pages additionné d'une cinquantaine de plans et de photographies intitulé «Der Märjelensee und seine Abflussverhältnisse» datant de 1915 émanant de l'ingénieur *O. Lütschg.* Cet ouvrage se trouve aux archives du Département de l'Intérieur à Berne.

Le développement touristique de la région de Riederalp et des communes avoisinantes a fait augmenter les besoins en eau potable, indispensable pour une vie harmonieuse et le confort qui en découle. Ce qui est en train de se réaliser sur le plateau d'Aletsch est le fruit de l'apparition et le développement de nouvelles techniques de construction, pour que ce qui paraissait utopique il y a encore une quinzaine d'années puisse devenir réalité.

3. Technischer Beschrieb

Allgemeines

Die geplante Anlage hat im wesentlichen zwei Aufgaben zu erfüllen:

- Bereitstellung von genügend Wässerwasser für jene landwirtschaftlichen Gebiete von Lax, Martisberg, Goppisberg, Greich, Ried-Mörel und Bitsch, die an Wassermangel leiden.
- Sicherstellen des erforderlichen Trinkwassers für die genannten Gemeinden, insbesondere für die touristischen Zonen von Laxeralp, Goppisbergeralp, Riederalp und das Maiensässgebiet von Oberried.

Für die Berechnung des Trinkwasserbedarfs wurde mit 11274 Einwohnergleichwerten gerechnet. Die ins Projekt einbezogenen Bewässerungsperimeter umfassen 300 ha.

Projekt

Sämtliches Wasser für die Bewässerung und das Trinkwasser wird im Raume von Galtjinen gefasst und bis zum Staubecken Vordersee geführt.

Das Rohwasser wird in einer Transportleitung vom Staubecken Vordersee bis zur zentralen Aufbereitungsanlage Laxeralp geleitet. Von dort werden das Wässerwasser als Rohwasser und das aufbereitete Trinkwasser in zwei getrennten Rohrleitungssträngen nach den Versorgungsgebieten transportiert.

Bauinstallation

Die geographisch verstreuten Bauobjekte des Projektes erforderten in einer ersten Phase die folgenden, recht aufwendigen Bauinstallationen:

- Sanierung der 10km langen Forststrasse Lax-Laxeralp
- Bau der Installationsstrasse Laxeralp-Vordersee von 5,1 km Länge mit einem Tunnel von 1000 m Länge durch den Tälligrat
- Erstellen einer Baupiste Staubecken Vordersee–Fassung Galtjinen von 1500m Länge.

Bachwasserfassungen

Die beiden Bäche in Galtjinen werden mit einem Tirolerwehr auf 2374 m gefasst und zu einem Entsander und einer Sammelkammer geführt.

Zuleitung Galtjinen-Vordersee

Das gefasste Bachwasser wird über eine duktile Gussleitung, Durchmesser 400 mm, mit einer Leistung von 245 l/s und einer Länge von 1180 m, zum Staubecken Vordersee geleitet. Das Trassee entspricht der für den Bau der Bachwasserfassung erstellten Installationspiste, die, gemäss Auflagen des Naturschutzes, nach dem Bau auf einen Weg von 1,5m Breite reduziert werden muss.

Staubecken Vordersee

Die Hauptabflüsse der Bäche in Galtjinen erfolgen in den Monaten Mai bis September. Im Winter versiegt der Abfluss vollständig. Für den Jahresausgleich von Trink- und Wässerwasser muss im Raume Vordersee eine Reserve von 500 000 m³ geschaffen werden.

Dammlänge auf der Krone	170 m
Grösste Dammbreite	60 m
Grösste Dammhöhe über dem gewachsenen Boden	16m
Dammvolumen 48	850 m ³

Zuleitung Staubecken Vordersee-Laxeralp

Die Belieferung der Aufbereitungsanlage Laxeralp und der Bewässerungsleitung ab Laxeralp erfolgt über eine duktile

Tabelle 1. Schüttung und Temperatur der Galtjinen-Quellen

	1.7.1972		4.8.1972	
Quelle	Schüttung I/min	Temperatur °C	Schüttung I/min	Temperatur °C
1	Tropfen	_	Tropfen	_
2	40	3,0	36	3,0
3	1500	3,6	1260	3,1
4	300	3,4	0	1-1
5	100	3,6	61	3,2
6	85	4,0	0	-

Tabelle 2. Chemismus der Galtjinen-Quellen

	Konzentratio	n mgl
Komponente	Wasser Galtjinen-Quelle	Wasser Vordersee
Karbonathärte	1,3	0,3
Gesamthärte	2,2	0,8
Sulfat	15	< 5
Chlorid	< 0,5	< 0,5
Nitrat	1,0	0,3
pH	7,2	7,7
Leitfähigkeit	60 μ S/cm	19 μ S/cm

Die chemischen Analysen zeigen ein sehr schwaches mineralisiertes Wasser. Die Wassertemperaturen liegen weit über der mittleren Jahrestemperatur der Luft, welche bei ca. -2° C liegt.

Gussleitung, Durchmesser 350 mm, von 4200 m Länge. Die Leitung wird in die Bauinstallationstrasse Laxeralp-Staubecken Vordersee verlegt. Diese Baustrasse wird für den zukünftigen Unterhalt aufrechterhalten.

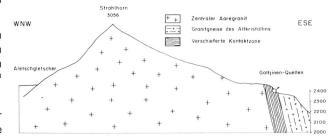
Aufbereitungsanlage Laxeralp

Die Aufbereitungsanlage Laxeralp liegt auf 2295 m und hat folgende Aufgaben zu erfüllen:

- Aufbereitung des Rohwassers zu Trinkwasser
- Steuerung und Kontrolle des Zuflusses vom Staubecken Vordersee und der Verteilung des Trink- und Wässerwassers ab der Aufbereitungsanlage.

Verteilnetz des Wässerwassers

Das Wässerwasser für die Gemeinden Lax und Martisberg wird ab der Aufbereitungsanlage Laxeralp direkt über den Martisbergsee zum Deischbach geführt.


Die Bewässerungsflächen von Goppisberg, Greich, Riederalp und Oberried erhalten das Wasser von 5 Abgabestellen mittels einer 10500 m langen Leitung, deren Durchmesser 125 mm und 200 mm betragen.

Verteilnetz des Trinkwassers

Die bestehenden Trinkwasserreservoirs von Goppisbergeralp, Greicheralp und Riederalp sowie das neue Reservoir von Oberried werden mit einer 10500 m langen Leitung, Durchmesser 80 bis 200 mm, versorgt. Diese Leitung liegt im gleichen Graben wie die Bewässerungsleitung.

Bild 1. Hydrogeologie der Galtjinenquellen.

Figure 1. Profil hydro-géologique des sources de Galtjinen.

4. Geologie

Geologische Übersicht

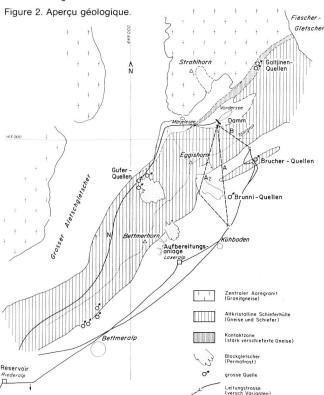
Die Gesteine im Gebiet zwischen Bettmeralp und Märjelensee gehören zur südlichen altkristallinen Mantelzone des Aarmassivs und bestehen vorwiegend aus Gneisen und Schiefern.

Das Altkristallin grenzt nordwestlich des Eggishorns in scharfem Kontakt an den jüngeren zentralen Aaregranit. Die Kontaktzone ist stellenweise durch eine starke Verschieferung (Tektonisierung) geprägt.

Die Felsgesteine sind meist nur wenig überdeckt von Gehängeschutt und Moräne. Während der letzten Eiszeit reichte der Gletscher im Gebiet Märjelen bis auf Höhe 2480 m; beim letzten Gletscherhochstand von 1850 lag der Gletscherrand etwa 100 m höher als heute und bildete einen Randsee, den Märjelensee.

Der Rückgang des Aletschgletschers hatte 1913 ein Auslaufen des Märjelensees zur Folge (Spitzenabfluss 195 m³/s, total 4½ Mio m³, *Lütschg* 1915).

Auffallend sind die zahlreichen vorhandenen Blockgletscher. Es handelt sich dabei um dauernd gefrorene Schuttströme (Permafrost) mit Fliessgeschwindigkeiten bis zu 60 cm pro Jahr.


Die Quellen

Im Gebiet zwischen Bettmeralp und Märjelen gibt es einige bedeutende Quellen. Sie spielten früher eine wichtige Rolle. Ihr Wasser wurde in Bissen zu den Alpgebieten geleitet. Heute sind die Bissen verfallen, und die Quellen werden meist nicht mehr genutzt.

Geologisch können zwei Quelltypen unterschieden werden.

Felsquellen: Ihr Wasser entspringt mehr oder weniger direkt aus dem Gebirge, meist bei Schwächezonen und Störungen. Zu ihnen gehören die Riederalpquellen (welche nach dem Bau des Riederstollens versiegten), die Bettmeralpquellen und die Galtjinenquellen.

Bild 2. Geologische Übersicht.

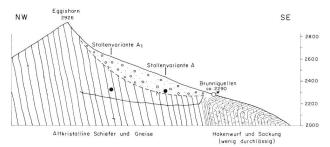


Bild 3. Schematisches Profil Eggishorn–Brunniquellen.

Figure 3. Profil schématique Eggishorn-Brunniquellen.

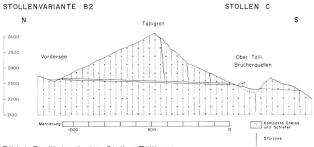


Bild 4. Profil durch den Stollen Tälligrat.

Figure 4. Profil en long de la galerie Tälligrat.

Blockgletscherquellen entspringen an Blockgletscherstirnen. Es handelt sich dabei um Schmelzwasser der Blockgletscher. Ihre Schüttungen erreichen im Spätsommer ihr Maximum und gehen im Winter auf 0 zurück. Zu diesem Quelltyp gehören die ergiebigen Quellen des grosser Gufers und eventuell zum Teil die Brunniquellen.

Hydrogeologie der Galtjinenquellen

Die Galtjinenquellen entspringen nordöstlich der Märjelenalp unmittelbar am Kontakt des Zentralen Aaregranit zum Altkristallin. Es handelt sich dabei wahrscheinlich um Stauquellen (Bild 1): Das im zerklüfteten Aaregranit versikkernde Wasser wird an der Kontaktzone gestaut und gelangt an die Oberfläche.

Es wurden insgesamt 6 Wasseraustrittstellen beobachtet. Teilweise sprudelt das Wasser direkt aus Klüften des Felsens, zum Teil aus der dünnen Gehängeschuttdecke.

Wahl der Linienführung der Wasserleitung Vordersee-Bettmeralp

Das ursprüngliche Projekt sah vor, die Verbindung zum Vordersee durch einen direkten Tunnel zum Kühboden herzustellen (Variante A).

Aus geologischen Gründen konnte diese Linienführung nicht empfohlen werden, da eine Beeinträchtigung der sehr ergiebigen und wichtigen Brunniquellen (Besitzer: Gemeinde Fiesch) befürchtet werden musste (Bild 3).

Vom Geologen wurde deshalb vorgeschlagen, die Leitung entweder durch einen kürzeren, weiter östlich liegenden Stollen (Variante B) zu führen oder mit einer Hauptleitung nördlich des Eggishorns entlang dem Aletschgletscher das Reservoir zu erreichen (Variante Nord). Variante Nord wurde vorerst weitergezogen, weil sie die kürzeste Verbindung darstellte und kostengünstig (kein Stollen) war. Der Naturschutz lehnte diese Linienführung jedoch schliesslich ab, und realisiert wurde Variante B.

Der Stollen durch den Tälligrat

Der zirka 1000 m lange Stollen durchfährt die Gneise rechtwinklig zur steilstehenden Schieferung und einzelnen Störzonen. Dadurch ergeben sich günstige Ausbruchverhältnisse. Ein Einbau von Stahlbögen war nur bei den Portal-

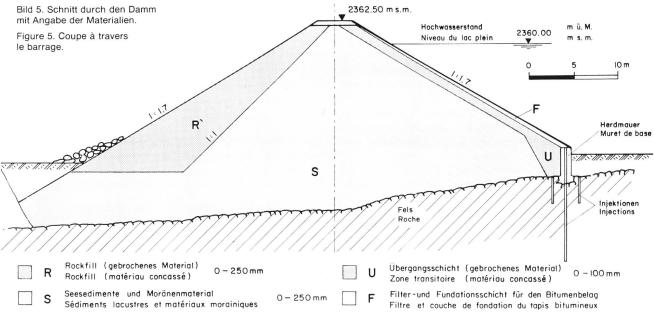


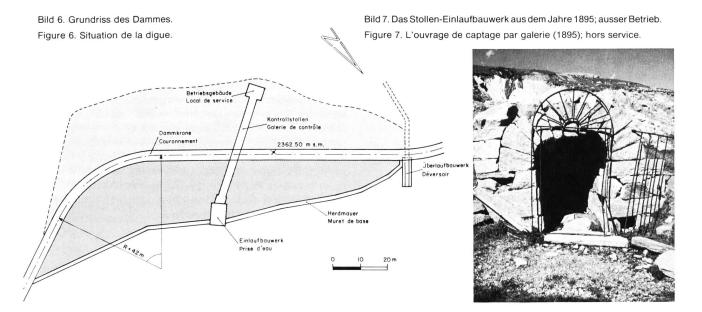
Tabelle 3. Der Stollen durch den Tälligrat - Hauptdaten

Breite	3,70 m
Höhe	3,95 m
Querschnittfläche	15 m ²
Länge	1000 m
Beginn der Arbeiten	14. September 1981
Durchbruch	13. September 1983
Arbeitstage	230
Ausbruchsvolumen	25000 m³, wovon ca. 15000 m³ für den
	Dammkörper wiederverwendet wurden

bereichen und in einzelnen Störzonen erforderlich (total zirka 65m). Sonst konnte allgemein auf Sicherungen verzichtet werden. Nach dem Ausbau wurde die Kalotte des Stollens mit Anker, Netz und Spritzbeton 5 bis 8cm ausgekleidet (Tabelle 3).

Geologie des Speicherbeckens Vordersee

Zur Abklärung der geologischen Verhältnisse des Speicherbeckens und seiner unmittelbaren Umgebung wurden seismische Sondierungen ausgeführt, Baggerschlitze und Kernbohrungen abgeteuft.


Diese Untersuchungen ergaben für die Seeflanken einen weitgehend kompakten Felsuntergrund aus Granitgneisen unter geringer Überdeckung.

In der Seeachse wurden seismisch «langsamere» Gesteine erkundet, und die Vermutung liegt nahe, dass der See in einer Störzone angelegt ist.

Östlich des Vordersees wurden seismisch alte Beckenstrukturen ermittelt. Sie sind mit glazialen Seesedimenten gefüllt. Diese bestehen aus einer rhythmischen Wechsellagerung von sandigsiltigen und kiesigen Böden mit deutlichen Warvenstrukturen. Sie sind in lokalen, an der Gletscherstirn gebildeten Seen abgelagert worden.

Bei der *Sperrstelle* weist die Felsoberfläche infolge von Auskolkungen ein markantes kleinräumiges Relief aus. An der Südflanke ist der Fels zudem lokal stark verwittert. Diese Umstände bedingten zum Teil eine tiefe und aufwendige Fundation des Dammkörpers.

Mit Wasserabpressversuchen wurden im Fels Durchlässigkeiten von 0,5 bis 5·10⁻⁶m/s bestimmt. Diese hohen Werte machten Abdichtungsinjektionen im Felsbereich unter der Herdmauer notwendig.

5. Aspects géotechniques de la digue de Vordersee

Description générale

La topographie du toit de la roche aurait permis le choix entre un barrage en béton ou une digue en enrochement. La solution du barrage fut écartée pour des raisons de protection du site, en faveur d'une digue qui s'intégrait mieux dans le paysage.

Les éboulis de pente du versant de l'Eggishorn constituaient un matériau de bonne qualité et en quantité largement suffisante pour le corps de la digue. La protection de la nature interdisait cependant toute exploitation de matériaux en dehors du futur lac. De ce fait la quantité de matériaux était limitée et provenait du rocher excavé du tunnel sous le Tälligrat ainsi que des dépôts lacustres et éboulis de pente du bord du lac actuel, complété par des blocs concassés.

Ces restrictions ont abouti à une digue simple avec étanchéité de surface constituée d'un enrobé bitumineux (figure 5).

La digue repose sur un fond rocheux. Du côté lac, un muret de base en béton armé assure la liasion avec la roche en place. Il a une épaisseur de 1,30 m et sa hauteur varie selon la topographie locale du toit de la roche jusqu'à environ 4 m. Il est encastré dans la roche saine sur une profondeur de 70 cm

Tableau 4. Données de la digue de Vordersee

Hauteur maximale du corps de la digue	21 m
Longueur du couronnement	170 m
Enrochement	17 500 m ³
Terre	27 800 m ³
Niveau du couronnement	2362,50 m s.m.
Niveau du lac plein	2360,00 m s.m.
Volume du bassin d'accumulation	env. 500 000 m ³
Pente de la digue : côté aval et côté lac	1:1,7
Largeur à la base	60 m
Largeur au couronnement	4 m

L'étanchéité au pied du muret est assurée par un voile d'injection constitué d'une série d'injections inclinées de 6 m de long de part et d'autre du muret. Dans la partie sud de la digue où la schistosité et la fissuration étaient plus intenses, elle a été complétée par une deuxième série d'injections de 16 à 21 m à travers le muret.

La prise d'eau est située au pied du talus amont de la digue. Elle est reliée au local de service au pied du talus aval par une galerie de contrôle qui repose sur toute sa longueur sur la roche en place.

La canal du déversoir est placé à l'extrémité nord de la digue.

Bild 8. Belagsarbeiten auf der Seeseite des Staudamms.

Figure 8. Travaux d'asphaltage en amont de la digue.

Bild 9. Das Überlaufbauwerk.

Figure 9. Déversoir.

Les matériaux du corps le la digue

La zone principale de la digue (zone S) est formée par les sédiments lacustres du futur lac. La composition de ces matériaux est très hétérogène. Les matériaux utilisés sont composés de graviers sableux et de sables graveleux peu à pas limoneux. Les éléments dépassant 250 mm de diamètre ont été écartés lors de l'extraction.

Les essais en laboratoire effectués dans le cadre des campagnes de sondage ainsi que pendant les travaux d'extraction des matériaux ont permis d'établir, puis de contrôler les caractéristiques géotechniques qui ont été utilisés pour les calculs de stabilité et les travaux de compactage.

La zone de rockfill (zone R) consolide le talus aval de la digue. Les matériaux sont constitués de gneiss concassé provenant de la galerie d'accès du Tälligrat ainsi que des gros blocs extraits des gisements morainiques et d'éboulis de pente dans la zone du futur lac. Le diamètre maximum des grains est de 250 mm.

La zone de transition (zone U) sépare la couche de fondation du tapis bitumineux de la zone principale du corps de la digue (zone S). Comme la zone R, elle est composée de gneiss concassé, mais avec une granulométrie à grain maximum de 100 mm de diamètre. La membrane d'étanchéité en enrobé recouvrant le talus côté lac de la digue est composée de trois couches de béton bituminé de 10, 9 et 6 cm d'épaisseur. Elle repose sur une couche égalisatrice de 10 cm qui est constituée de matériaux sélectionnés amenés depuis la plaine.

Le talus de la digue du côté aval sera recouvert d'un tapis de végétation.

Bild 10. Das rechte Widerlager des Staudammes mit dem Überlaufbauwerk. Figure 10. L'appui droit de la dique avec déversoir.

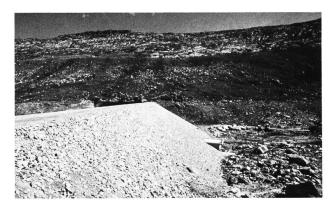


Bild 11. Der Staudamm von der Talseite aus gesehen.

Figure 11. Digue côté aval.

La construction de la digue

Sur le site de la digue les travaux ont débuté au mois de juillet 1984. Dans une première étape, il s'agissait d'évacuer le terrain meuble recouvrant la roche en place sur toute la surface de la digue afin de pouvoir construire un remblai homogène et compacté au maximum afin de limiter les tassements.

A ce stade de la construction, il a été procédé à des essais de compactage. Ceux-ci ont permis de déterminer l'épais-seur des couches à mettre en place et le nombre de passages que l'engin de compactage devait effectuer pour compacter correctement les divers types de matériaux utilisés pour le corps de la digue. Les essais ont été effectués avec un rouleau vibrant du type Dynapac C125, engin qui a été utilisé pour les travaux de compactage de la digue.

La mise en place des matériaux du corps de la digue a été effectuée par couches de 80 cm d'épaisseur pour les matériaux d'enrochement et de 40 cm pour les matériaux de sédiments lacustres et morainiques.

Pendant toute la durée des travaux, le lac existant a été maintenu à son niveau naturel. Le trop plein a été dévié par le côté sud, puis, une fois que la digue a dépassé le niveau du terrain naturel, il a été évacué par un tuyau posé à travers la digue.

Un puits, placé dans la partie avale de la digue, a permis d'abaisser la nappe d'eau pendant la mise en place des matériaux et de contrôler ensuite le niveau de la nappe qui s'était rétablie dans la partie intérieure de la digue.

Le contrôle de la mise en place des matériaux a été effectué par des mesures en place de la masse volumique par la méthode du ballon et par remplissage d'eau d'un trou d'essai, au moyen d'un nucléodensimètre, ainsi que par des essais en laboratoire (teneurs en eau, granulométries).

Le muret de base a été érigé pendant les travaux de terrassement et la mise en place du corps de la digue. Lors des travaux de fouille dans la partie sud, il a été constaté que la qualité des schistes à pendage quasi-verticaux devenait très mauvaise et la profondeur de la roche en place très variable. Ainsi durant le construction il a fallu déplacer le tracé du muret vers l'est où les conditions locales de la roche étaient plus favorables. Par conséquent, il a également fallu modifier le tracé du couronnement qui à l'origine était prévu en droite ligne.

Les travaux du voile d'injection sous le muret de base ont été effectués par l'entreprise SIF-Groutbor S.A., Renens, en été 1985. Partant d'une base d'un trou d'injection tout les 2,5 m de part et d'autre du muret, l'emplacement des trous a été adapté en fonction des conditions locales de la roche. La pression d'injection variait entre 0,5 et 2 bars. La deu-

Tableau 5. Coûts des ouvrages et financement

Coûts des ouvrages	Fr.	
Routes de chantier	1,680	mio
Tunnel d'accès	3,0	mio
Digue	3,5	mio
Canalisation, tuyaux et fouilles	7,0	mic
Station de filtrage	1,7	mic
Télécommande	0,4	mic
Réservoir d'Oberried	0,3	mic
Soit au total environ	18	mic
Financement		
Etat du Valais	13 %	
Communes intéressées	70%	
Confédération	17 %	

xième série de trous de 16 à 21 m de long a été effectuée à travers le muret, au sud de la prise d'eau. L'espacement des trous était de 2 m, l'inclinaison de 45° et la pression d'injection entre 0,5 et 5 bars, selon la profondeur dans le trou. La période de travail sur le site était dictée par les conditions d'enneigement. Elle durait généralement du mois de juillet au mois d'octobre.

A la fin des travaux de chantier en automne 1985, la digue avait atteint la cote 2360 m, environ 2,50 m sous le niveau du couronnement. Les tassements enregistrés pendant la période d'hiver ont donné des valeurs entre 2 et 6 cm, représentant 2 à 6‰ de la hauteur de la digue. Ainsi la période d'hiver a permis à la digue de subir une grande partie des tassements avant la mise en place de la membrane d'étanchéité et de contrôler, dans une certaine mesure, la qualité globale des travaux de compactage.

En été 1986, le consortium Aletsch formé des entreprises Rhonebau, S.A., Evéquoz et Dénériaz a terminé la mise en place des matériaux de la digue. Dès le mois d'août, l'entreprise Walo Bertschinger S.A. a pu procéder à la pose de la membrane d'étanchéité.

Divers travaux de finition sont encore prévus pendant l'été 1987, avant la mise en service de l'aménagement à la fin de l'année. Coûts des ouvrages et leur financement voir tableau 5.

Participants aux travaux

Maitre de l'œuvre	Zweckverband Aleischgebiet
Géomètre et DT	Bureau technique Raymond Rudaz, Sierre
Ingénieur-conseil	N. Cordonier, ing. civil dipl. EPF/SIA, Sierre
Géologie-géotechnique- géophysique	Géotest SA, Etagnières/VD et Zollikofen/ BE
Construction du tunnel	Ulrich Imboden, Viège Losinger SA, Sion
Exécution de la digue	Consortium Aletsch Rhonebau SA, Turtemagne Dénériaz SA, Sion Evéquoz SA, Pont-de-la Morge Pius Schmid, Viège

Revêtement bitumineux Walo Bertschinger SA, Sion/Zurich

Routes d'accès Walpen AG, Reckingen Russi Bau AG, Fiesch Injection SIF-Groutbor S.A., Renens

Adressen der Verfasser/Adresses des auteurs

Introduction et historique du projet y.c. photos: *Daniel Quinche*, reporter-photographe, 8, ch. du Muveran, CH-1026 Echandens.

Technischer Beschrieb, Allgemeines und Projekt: Raymond Rudaz, géomètre officiel, av. Général-Guisan 30, CH-3960 Sierre.

Geologie: Dr. *Hans Rudolf Keusen*, Geologe SIA, Geotest AG, Birkenstrasse 15, CH-3052 Zollikofen BE.

Aspects géotechniques de la digue du Vordersee: *Hans Zeindler* et *Jean-Louis Amiguet*, ing. dipl. EPF, SIA, Geotest AG, Birkenstrasse 15, CH-3052 Zollikofen BE/Géotest SA, CH-1037 Etagnières VD.

Strichzeichnungen: Geotest AG.

