Zeitschrift: Wasser Energie Luft = Eau énergie air = Acqua energia aria

Herausgeber: Schweizerischer Wasserwirtschaftsverband

Band: 77 (1985)

Heft: 10

Artikel: Hoover Dam : le plus prestigieux barrage des USA a 50 ans

Autor: Quinche, Daniel

DOI: https://doi.org/10.5169/seals-940960

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 24.10.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

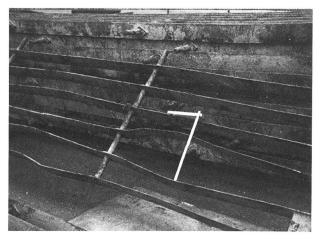


Bild 5. Deformierte Rechentafeln

(Photo RADAG)

also leicht über der zulässigen Dauerbeanspruchung liegt (20 N/mm²). Der Rechen wurde durch ein seitliches Verbinden der Rechenfelder saniert. Mit dieser Massnahme wird die Anfachung einer erzwungenen Schwingung verhindert, so dass der Rechenstab allein durch die Querkraft infolge Wirbelablösungen beansprucht ist. Die Schweissnahtspannung reduziert sich so auf 17 N/mm², also auf ein für die Dauerhaftigkeit erträgliches Mass.

Schlussfolgerungen

Die Strategie zur Vermeidung von Rechenbrüchen infolge Schwingungen lässt sich in zwei Hauptpunkte zusammenfassen:

1. Resonanzschwingungen können durch eine Hochabstimmung des Rechens verhindert werden. Die Verwen-

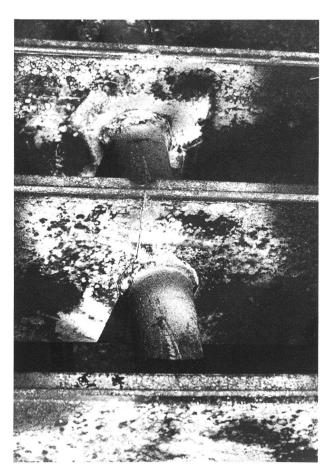


Bild 6. Bei den Distanzhaltern gebrochene Rechenstäbe. (Photo RADAG)

dung weniger hydrodynamischer Rechenprofile wie Flachstähle erleichtert die Hochabstimmung.

2. Schwingungen mit kleinen Amplituden treten trotz der Hochabstimmung des Rechens auf. Die Konstruktionsart des Rechens muss deshalb den dynamischen Beanspruchungen genügen, eine Bemessung auf Ermüdungssicherheit ist unerlässlich.

Der beschriebene Bemessungsweg erlaubt eine gute Beurteilung der Schwingungsanfälligkeit von einzelnen Rechenstäben. Rechnerisch schwer zu erfassen sind hingegen die kritischen Schwingungsformen ganzer Rechenfelder. Diese müssen deshalb zum vornherein mit konstruktiven flankierenden Massnahmen wie das seitliche Verbinden der Rechenfelder ausgeschaltet werden.

Literatur

[1] Levin L., Etude hydraulique des grilles de prise d'eau. Proc. IAHR (7th General Meeting) Vol. I 1957.

[2] Levin L., Problèmes de perte de charge et de stabilité des grilles de prise d'eau. «La Houille Blanche» No. 3, 1967, pp. 271–278.

[3] Zowski T., Trashracks and Raking Equipment. «Water Power», Sept. 1960, pp. 342–348; Okt. 1960, pp. 399–407.

[4] Bauer E., Gewalt- und Dauerbrüche an Einlaufrechen von Wasserturbinen. «Elektrizitätswirtschaft» Jg. 65, Heft 14, 1966, pp. 465–567.

[5] Bugl H.; Jericha H., Fragen der Dimensionierung und Ausbildung der Rechenanlagen vor den Turbineneinläufen von Flusskraftwerken. «Öst. Ing. Zeitschrift», März (Heft 3), April (Heft 4), 1968, pp. 81–84, 129–135.

[6] Sell L.E., Hydroelectric power plant trashrack design. «Journal of the Power Division», Proc. ASCE PO I, January 1971, pp. 115–121.

[7] Hamilton W.S., a.o. Some design factors for the Bath County trashracks. «Water Power», Aug./1982, pp. 16–19.

[8] Schwarz H.J., Die Einlaufrechen des Kraftwerkes Ottensheim-Wilhering. «Donau-Strom» 1973, Verlag Koska, Wien.

[9] Schlageter G., Erfahrungen an Maschinenhausrechen des RADAG. «wasser, energie, luft» 77 (1985) Heft 7/8.

[10] Korenev B.G., Rabinović, Baudynamik. VEB Verlag für Bauwesen Berlin, 1980.

[11] Biggs M.H., Introduction in structure dynamics. Mc. Graw-Hill Book Company, New York 1964.

Verdankung

Der Autor dankt der Rheinkraftwerk Albbruck-Dogern AG für die zur Verfügungstellung der Photos und der Ergebnisse der Schwingungsuntersuchungen von 1978.

Überarbeitete Fassung eines Vortrages, gehalten anlässlich der Betriebsleiterversammlung des Verbandes Aare-Rheinwerke am 14. März 1985 in Kleindöttingen.

Adresse des Verfassers: *Anton Schleiss*, Assistenz für Wasserbau/VAW, ETH-Hönggerberg, CH-8093 Zürich.

Hoover Dam – le plus prestigieux barrage des USA a 50 ans

Daniel Quinche

Après un demi-siècle, et tenant compte des immenses progrès de la technique de construction des barrages, le Hoover Dam représente aujourd'hui encore une performance extraordinaire. Ce barrage prestigieux s'élève à une hauteur maximale sur fondations de 221 m pour une longueur au couronnement de 379 m. Un dimensionnement phantastique pour l'époque! Il a fallu couler, en quatre ans, près de 2,5 millions de m³ de béton pour réaliser ce barrage situé au sud-ouest des Etats-Unis. Contrairement aux usages sous nos latitudes, les eaux accumulées du Colorado River ne servent pas uniquement à la production d'électricité, mais également à l'irrigation et au ravitaillement en eau potable. Le 30 septembre 1935, après quatre ans de travaux, le barrage voûte-poids situé à la frontière entre les Etats fédéraux

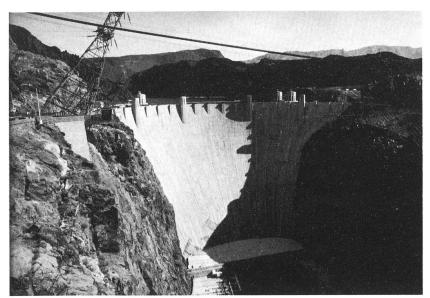


Figure 1, à gauche. Un des blondins de l'époque, à tours fixes, dessert aujourd'hui encore les deux centrales situées à la base du barrage en matériel lourd. Le chariot évolue sur 6 câbles porteurs (diamètre 10,67 cm chacun) et permet de lever ou d'abaisser des charges allant jusqu'à 135 t.

Figure 2, à droite. Les deux centrales totalisent 17 groupes: Puissance $1 \times 95\,000\,kW$, $14 \times 82\,500\,kW$, $1 \times 50\,000\,kW$, $1 \times 40\,000\,kW$ et $2 \times 2400\,kW = puissance totale installée: <math>1\,344\,800\,kW$.

Hoover Dam - Données techniques principales

Type de barrage	voûte-poids
Hauteur maximale sur fondations	221,4 m
Epaisseur max. à la base	201,2 m
Epaisseur max. au couronnement	13,7 m
Longueur au couronnement	379,2 m
Volume de béton	2 500 000 m ³
Profondeur max. du plan d'eau	152 km
Longueur de la retenue	177 m
Volume brut	35 199 871 180 m ³
Surface de la retenue	639 km ²

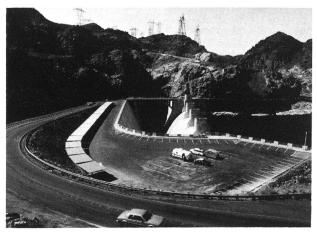


Figure 3. Les deux évacuateurs de crues, installés chacun d'un côté, ont une capacité totale de 11 327 m³/s. Dimensions: longueur 198 m, largeur 45 m, hauteur 52 m. Les galeries attenantes ont un diamètre de 15 m.

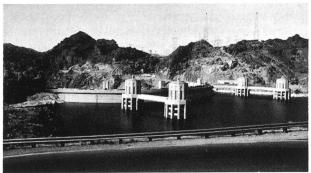


Figure 4. Les quatre ouvrages de prises, en forme de tours, en amont du barrage.

du Nevada et l'Arizona a pu être mis officiellement en service et ceci avec deux ans d'avance sur le programme établi. Commencés en 1931, en pleine crise économique, les travaux étaient placés sous surveillance du gouvernement américain.

Le site du barrage se trouve à l'endroit le plus étroit des gorges formées par le Colorado River, entre les deux Etats du sud-ouest. Ce barrage ne retient pas seulement les eaux pour la production d'électricité, mais il irrigue également une des régions les plus fertiles des USA et assure le ravitaillement en eau potable à une population de 12 millions d'habitants.

Les rives du Lake Mead sont devenues une attraction touristique par excellence. Le barrage et le Lake Mead font partie des «curiosités» à voir par chaque visiteur de sudouest des USA. A ce jour, plus de 23 millions de personnes ont visité le barrage et le lac. Dans la région du Lake Mead (qui occupe une surface d'environ 639 km²), l'économie touristique rapporte quelque 9 milliards de dollars par an. La construction du barrage a introduit une nouvelle ère dans l'économie des eaux du pays. Il représente simultanément un témoin tangible du génie des ingénieurs américains.

La construction du barrage a été rendue possible grâce à la participation de 3500 ouvriers qui ont œuvré en trois équipes par 24 h.

Leur travail fut récompensé par un maigre dédommagement compte tenu de la situation catastrophique de l'emploi qui régnait à cette époque. Aussi, l'ouvrage ne coûta que 165 millions de dollars. Comme c'est souvent le cas lors de l'édification d'ouvrages d'art en béton, les bruits les plus fantaisistes courent et persistent encore en ce qui concerne les ouvriers qui seraient morts, pris dans la masse de béton. Il se confirme pourtant que la construction du barrage a bel et bien fait 96 morts. Les causes principales en furent les chutes d'échafaudages, les accidents de la circulation et la grande chaleur. Mais officiellement on dément qu'un ouvrier ait été enseveli dans cette imposante muraille de béton.

Adresse de l'auteur: *Daniel Quinche*, 8, ch. du Mureran, case postale 19, CH-1026 Echandens (Lausanne).

